

Notation :

- \mathcal{T}_{cf} be the co-finite topology.
- \mathcal{T}_{cc} be the co-countable topology.
- \mathcal{T}_{disc} be the discrete topology.
- \mathcal{T}_{indisc} be the indiscrete topology.

Problem 1. Let $\{\mathcal{T}_{\alpha}\}$ be a family of topologies on X. Show that $\cap \mathcal{T}_{\alpha}$ is a topology on X. Is $\cup \mathcal{T}_{\alpha}$ a topology on X?

Problem 2. Let $\{\mathcal{T}_{\alpha}\}$ be a family of topologies on X. Show that there is a unique smallest topology on X containing all the collections \mathcal{T}_{α} , and a unique largest topology contained in all \mathcal{T}_{α} .

Problem 3. In \mathbb{Z}_+ define a topology as follows: A subset of U of \mathbb{Z}_+ is open if and only if whenever $n \in U$ all the divisors of n belong to U. Show that this is a topology on \mathbb{Z}_+ and it is not same as the discrete topology.

Problem 4. Show that the collection

 $\mathbb{B} = \{(a, b) : a < b, a \text{ and } b \text{ are rational} \}$

is a basis for the standard topology on \mathbb{R} .

Problem 5. Let \mathbb{N} denote the set of natural numbers. Let $A_n = \{m \in \mathbb{N} : m \geq n\}$. Let $\mathcal{T}_1 = \{\emptyset\} \cup \{A_n\} n \in \mathbb{N}$. Show that \mathbb{T}_1 is a topology on \mathbb{N} . Find the smallest topology containing \mathcal{T}_1 and \mathcal{T}_{cf} , and the largest topology contained in \mathcal{T}_1 and \mathcal{T}_f .

Problem 6. Let X be a nonempty set.

(a) Show that $\mathcal{T}_{indisc} \subseteq \mathcal{T}_{cf} \subseteq \mathcal{T}_{cc} \subseteq \mathcal{T}_{disc}$.

- (b) Let X be a finite set. Show that $\mathcal{T}_{indisc} \subsetneq \mathcal{T}_{cf} = \mathcal{T}_{cc} = \mathcal{T}_{disc}$.
- (c) Let X be a countably infinite set. Show that $\mathcal{T}_{indisc} \subsetneq \mathcal{T}_{cf} \subsetneq \mathcal{T}_{cc} \subseteq \mathcal{T}_{disc}$.
- (d) Let X be an uncountable set. Show that $\mathcal{T}_{indisc} \subsetneq \mathcal{T}_{cf} \subsetneq \mathcal{T}_{cc} \subsetneq \mathcal{T}_{disc}$.

Definition 0.1. A property P of a topological space X is *hereditary*, if every subspace of X has property P, whenever X has property P.

Problem 7. Show that the following properties are hereditary.

- (a) Discreteness,
- (b) Indiscreteness,
- (c) Cofiniteness,
- (d) Cocountableness.

Problem 8. If \mathcal{T} and \mathcal{T} are topologies on X, and \mathcal{T}' is strictly finer than \mathcal{T} . What can you say about the corresponding subspace topologies on the subset Y of X?

Problem 9. A map $f: X \to Y$ is said to be an open map if for every open set U of X, the set f(U) is open in Y. Show that π_1 and π_2 are open maps.

Problem 10. Show that if A is closed in X and B is closed in Y, then $A \times B$ is closed in $X \times Y$.

Problem 11. Let X be an ordered set in the order topology. Show that $(a, b) \subseteq [a, b]$. Under what conditions does equality hold?

Problem 12. Let A, B and $A\alpha$ denote the subsets of a topological space X. Show that

- 1. If $A \subseteq B$, then $\overline{A} \subseteq \overline{B}$.
- 2. $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- 3. $\cup \overline{A_{\alpha}} \subseteq \overline{\cup A_{\alpha}}$. What about reverse inclusion?

Problem 13. Let A, B and $A\alpha$ denote the subsets of a topological space X. Show that

- 1. $\overline{A \cap B} = \overline{A} \cap \overline{B}$.
- 2. $\cap \overline{A_{\alpha}} = \overline{\cap A_{\alpha}}.$

Problem 14. Show the T_1 axiom is equivalent to the condition that for each pair of points of X, each has a neighborhood not containing the other.

Problem 15. Determine the closure of the set $K = \{\frac{1}{n} : n \in \mathbb{Z}_+\}$ in \mathbb{R} with respect to the following topologies:

- (a) Standard topology,
- (b) Lower-limit topology,
- (c) Upper-limit topology,
- (d) *K*-topology,
- (e) Discrete topology,
- (f) Indiscrete topology,
- (g) Co-countable topology,
- (h) Co-finite topology.

Problem 16. Which of the above topologies are Hausdorff?

Problem 17. Show that X is Hausdorff if and only if $\Delta = \{x \times x : x \in X\}$ is closed in $X \times X$.

Problem 18. For $A \subseteq X$, define the boundary of A as follows:

$$\operatorname{Bd} A = \overline{A} \cap \overline{X \setminus A}.$$

- (a) Show that Int A and Bd A are disjoin, and $\overline{A} = Int(A) \cup Bd(A)$.
- (b) Show that $Bd(A) = \emptyset$ if and only if A is both open and closed.
- (c) Show that U is open if and only $Bd(U) = \overline{U} \setminus U$.
- (d) True or false : If U is open, then $U = Int(\overline{U})$. Justify your answer.