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Breadth-first Search

Breadth-first Search

The idea is to explore the graph “radially outward” from the source.

In each step, we expand our exploration by visiting the
neightborhood of all explored vertices.



Algorithm 1 Breadth-first Search from vertex s

1: Color all vertices WHITE.

2: Forall u e V, d[u] < oo, 7[u] < NIL.
3: d[s] < 0, color[s] + GRAY.

4: Initialize queue Q < 0.

5: ENQUEUE(Q, s)

6: while Q # () do

7 u< DEQUEUE(Q)

8: foreachve N(u)do

: if color(v) =WHITE then
10: color[v] < GRAY

11: d[v] < d[u] + 1

12: mlv] < u

13 ENQUEUE(Q, v)

14: end if

15: end for
16:  color[u] +— BLACK.
17: end while
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Queue: ()
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Dequeued vertex: | |[Queue:| s




Breadth-first Search

Dequeued vertex: | s |Queue:| r | g
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Dequeued vertex:| r [Queue:| g | f




Breadth-first Search
Dequeued vertex:| g |Queue:| f | a | b




Breadth-first Search
Dequeued vertex:| f |Queue:| a | b




Breadth-first Search

Dequeued vertex: | a |Queue:| b | e | d




Breadth-first Search

Dequeued vertex: | b |Queue:| e | d | ¢




Breadth-first Search

Dequeued vertex:| e |Queue:| d | c | j| h| i




Breadth-first Search
Dequeued vertex: | d |Queue:| ¢ | j | h | i




Breadth-first Search

Dequeued vertex: | ¢ |Queue:| j | h | i




Breadth-first Search

Dequeued vertex: | j |Queue:| h | i




Breadth-first Search

Dequeued vertex: | h |Queue:| i




Breadth-first Search

Dequeued vertex: | i |Queue: ()




Algorithm 2 Breadth-first Search from vertex s

1: Color all vertices WHITE.
. Forall u € V, d[u] < oo, 7[u] < NIL.
. d[s] «+ 0, color[s] + GRAY.
. Initialize queue Q < 0.
. ENQUEUE(Q, s)

2

3

4

5 ot
6: while Q # () do m\,m\o&m#

. Lo Jow

8

9

u < DEQUEUE(Q) — /W;Q e
for each v € N (u) do L£(£O>
n

: if color(v) :WWRK .
10: color[v] <~ GRAY 5 Tk J\\QUQM% J\ "

11: d[V] %d[u]—|—1
/6N 12: mlv] < u
2t ENQUEUE(Q, v) £IN) Ewgrans. & Toguau 0P8,
W 14: end if

15:  \end for
16:  color[u] < BLACK.
17: end while




Time Complexity of BFS

v

Each enqueue/dequeue takes O(1) time.

v

Total queue operations take O(|V/|) time.

» Each list in the adj. list is scanned once. This requires total
O(|E|). This is assuming the graph is provided using adjacency
list.

\ 4

Initialization required O(|V/|).
» Total running time is O(|V| + |E|).



Time Complexity of BFS

v

Each enqueue/dequeue takes O(1) time.

v

Total queue operations take O(|V/|) time.

» Each list in the adj. list is scanned once. This requires total
O(|E|). This is assuming the graph is provided using adjacency
list.

\ 4

Initialization required O(|V/|).
» Total running time is O(|V| + |E|).

» Note: The colors can be omitted. Instead, check if d[v] = oo



Correctness of BFS

Notation: Let'd(s, v) denote the minimum number of edges on a
path from s to v.

Let G = (V, E) be a graph. When BFS is run on G from vertex
se V:

1. Every vertex that is reachable from s gets discovered.

2. On termination, d[v| = d(s, v) for all v.

We will first show (2).



Proof of correctness

Suppose, for the sake of contradiction, (2) does not hold.

Let v be the vertex with smallest d(s,v) such that
d[v] # 5(s, v). ’\\ AL 7 Q)

Claim 1: d[v] > (s, v)

Choose a shortest path from s to v.

Let u be the vertex immmediately preceding v.
Then (s, v) = (s, u) + 1 = d[u] + 1.

So we have:

O/\/VWO—_.
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dlv] > 6(s,v) = (s, u) + 1= d[u] + 1




Proof of correctness

We have:

dlv] > d(s,v) =6(s,u) + 1 =d[u] + 1

Consider the time step when v is dequeued.
» Case 1: v was white.
The algo sets d[v] = d[u] + 1.
This contradicts the eq above.
» Case 2: v is black.

Then, v was dequeued before u.
Claim 2: If v was dequeued before u, then d[v] < d[u].




Proof of correctness

W
» Case 3: v was gray. m>\-l
. K
Vertex v was colored gray after dequeuing some vertex
w earlier.

So d[v] = d[w] + 1.
By Claim 2, d[w] < d[u] since w was dequeued before u.
This gives: d[v] = d[w] + 1 < d[u] + 1.

Exercise

Show (1) using (2). That is, given that d[v] = (s, v), show
that every vertex reachable from s gets discovered.




Proof of correctness

Let (u, v) € E. Then we have:

o(s,v) < d(s,u) + 1

If uis reachable from s, then:
Take the shortest path from s to u. Then take the edge (u, v).

This gives a path from s to v.
The shortest path from s to v can only be shorter than the

above path.

[]




Proof of correctness

Vv e V. d[v] > (s, v)

Induction on the number of enqueue operations.
Hypothesis: same as claim.

Base case: The time when the first vertex enqueued.
The first vertex enqueued is s. At this time we have:

> Vv e V\{s} d[v] =0
» d[s] =d(s,s) =0.

Hence the claim holds for the base case.




Proof of correctness

Hypothesis: Vv € V., d[v] > i(s, V)

Step: A white (undiscovered) vertex v gets discovered while
we are visiting a vertex u with (u, v) € E.
From induction, we have: d[u] > (s, u). w N
The algorithm assigns d[v] < d[u] + 1. So:

0——o

dlv] = d[u] + 1
> (s, u) + 1
> (s, v)

Last inequality follows from Claim 3.




Proof of correctness

If v was dequeued before u, then d[v] < d|ul.

We will show a stronger claim:

If at some point, the queue contained vy, vy, ..., v, where v,

was the head. Then:
(@) d[wi] < d[vo] <--- < d[v]
(b) d[v] < d[w] + 1

Proof of Claim 2:

Write down vertices in the order they went through the queue.

By claim 4 (a), the calculated d values for them are non-decreasing.
Vertex v will appear before u in this order.

Hence claim 2 follows. [



Proof of correctness

If queue contains vy, v, ..., v, where v; is the head. Then:
@ div] < dlw] < - < d[v]
(b) d[v,] < d[w;] + 1

Induction on number of queue operations.
Hypothesis: Same as claim. We show that the claim holds

after every enqueue and dequeue.
Base case: The first queue operation - enqueuing s.
The claim trivially holds.




Proof of correctness

If queue contains vy, v, ..., v, where v; is the head. Then:
(@) dlwi] < d[vo] <--- < d[v]
(b) dlv,] < d[vy] + 1

Step:

» Dequeue: After v is dequeued, v, is the new head.
Part (a): From induction,
dlvi] < d[wr] < d[ws] < --- < d[v,].
Hence (a) holds.
Part (b): From induction, d[v,] < d[v1] + 1. And so:

d[Vr] S d[V1] + 1
S d[Vz] + 1




Proof of correctness

» Enqueue: When a vertex v is enqueued:
It was enqueued because:

» it was undiscovered so far.
> it was present in the adjacency list of a vertex u that
was just dequeued.

Since u was the previous head of the list, from induction
we have:

> dlu] < d[vi] < d[w] < --- < d|v].

> d[v,] < d[u] + 1.
We assign d|v| <— d[u] + 1 and then enqueue v. Hence,
we have:

> dlv,| < d[u] +1=d|v]

> dn]<dlv] < sdlv] < dlv] Gy g H
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Loop Invariant

If queue contains vy, v, ..., v, where v; is the head. Then:
(@) dvi] < d[v] <--- <d|v]
(b) d[v] < d[w] + 1

Claim 4 is actually a loop invariant!

Another loop invariant

The queue Q consists of the set of GRAY vertices.




Weighted Graphs

A weighted graph is a graph G = (V, E) with a weight function:

w:E— 7

The weight of an edge (u,v) € Eis w((u, v)).
For this lecture, we look at directed weighted graphs with weight
function w : E — Z7.



Shortest path in weighted graphs

Input:
» Graph G = (V, E) eccp
» Weight function w : E — Z* W \U\U‘v& W&Lﬁ

» Source vertex s € V. ﬁ*) ‘D\'k‘cg’(*&! :
Goal: Compute the shortest path from Mreachable vertices.
(i DLW se N el
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Example graph




Dijkstra’s Algorithm Pseudocode

Algorithm 3 Dijkstra’s algorithm

—_—
-_ O
LN ] o e

12:
13:
14:

15:

2O s g e By

For all u € V, d[u] + oo, w[u] < NIL
d[s] < 0
Initialize min-priority queue Q < V
S0
while Q # () do

u < ExTRACT-MIN(Q)

S+ Su{u}

for each v € N(u) do

if du] + w(u,v) < d|[v] then

dlv] < d[u] + w(u, v)
DECREASE-KEY(v, d[v]).
mlv] < u

end if
end for

end while
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Dijkstra’s algorithm

“It is the algorithm for the shortest path, which | designed
in about twenty minutes. One morning | was shopping in
Amsterdam with my young fiancée, and tired, we sat down on
the café terrace to drink a cup of coffee and | was just thinking
about whether | could do this, and | then designed the algorithm
for the shortest path. As | said, it was a twenty-minute invention.”

-Edsger Dijkstra

Source: Wikipedia and "An Interview with Edsger W. Dijkstra". Communications of the ACM



Dijkstra’s Algorithm Pseudocode

Algorithm 4 Dijkstra’s algorithm

d[s] < 0

S+ 0
while Q # () do

S+ Su{u}
for each v € N(u) do

if du] + w(u, v) < d|[v] then
d[v] < d[u] + w(u,v)
DECREASE-KEY(v, d[v]).
12: mlv] < u
13: end if
14:  end for
15: end while

2O s g e By

—_—
-_ O
LN ] LN 3

For all u € V, d[u] + oo, w[u] < NIL

Initialize min-priority queue Q < V

¥

u < ExTRACT-MIN(Q) SL&"& X W%(/»Qm J\UL




Time Complexity of Dijkstra’s

» Initialization: O(|V])
» We need to do |V| EXTRACT-MIN’s and |E| DECREASE-KEY’s

» Depends on the implementation of the priority queue.



Time Complexity of Dijkstra’s

» Initialization: O(|V]) J
» We need to do |V| EXTRACT-MIN’s and |E| DECREASE-KEY’s

» Depends on the implementation of the priority queue.

o olwitr el
» Array: EXTRACT-MIN takes O(|V|) and DeEcReASE-KEY takes O(1)
eap: EXTRACT-MIN and DEcREASE-KEY both take O(log |V/|)

ibonacci Heap: DECREASE-KEY takes O(1) amortized time
b
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Proof of Correctness

At the end of Dijkstra’s algorithm, we have:

Yu e V., d[u] = (s, u)

Loop Invariant:

At the start of each iteration, we have Vv € S, d[v] = d(s, v).
Init: At the start of the first iteration, S = ().

Maintenance: Let u &€ V be the first vertex¢f0r which
d[u] # 8(s{u). tbo dagpmonmedl

If uis not reachable from s, then d[u] = d(s,u) = oo, so u
must be reachable. Why?

If u = s, then the claim holds. So assume u # s.




Proof of Correctness

Take a shortest path o from s to u. Sd"J\)
Let y be the first vertex on o that is outside S’ ot

Let x € S be the vertex on o just before y. g
So the path o looks like:

dagpansd

vk

S

01 (0)y)
S~ X—=>y~Uu

Claim 1: d[y] = d(s, y).




Proof of Correctness

01 (02)
O=S~~>X—>y~U

Claim 1: d[y] = 6(s, y).

Since y appears before uin o, we have d(s, y) < d(s, u).
Claim 2: d[u] > 4(s, u).

Thus:

dly]l = d(s,y) < 0(s, u) < d[u]

Although y and u were in V' \ S, EXTRACT-MIN returned u.
This means d[u] < d[y]. Hence:

dly]l = d(s,y) = 0(s, u) = d[u]




Proof of Correctness

01 O)
O=S~>X—>y~1U

We have d[y] = d(s, y)

From loop invariant, for all vertices that were added to S before
u, we computed the correct shortest distance.

So d[x] = 4(s, x).

We updated d[y| when we added x to S.

Now we note a convergence property:

Let s ~ x — y be a shortest path, and d[x] = J(s, x).

Then, relaxing the edge (x, y) sets d[y] = d(s, y).




Proof of Correctness

dlu] > i(s, u)

Induction on number of times d is updated after initialization.
Base case: Immediately after init, Vv, d[v] = co except d[s] =
0. So the claim holds.

Step: Assume claim for up to kK many updates on d.

The value of d[u] is updated when:

» We visit a vertex v and there exists edge (v, u).

» dlu] > d[v] + w((v, u)).




Proof of Correctness

dlu] > i(s, u)

Induction on number of times d is updated after initialization.
Base case: Immediately after init, Vv, d[v] = co except d[s] =
0. So the claim holds.

Step: Assume claim for up to kK many updates on d.

The value of d[u] is updated when:

» We visit a vertex v and there exists edge (v, u).
> dlu] > d|v] + w((v, u)).

The new d[u] = d[v] + w((v, u)).
The hypothesis holds for vertex v: d[v] > d(s, v). So:

dlu] = d[v] + w((u,v)) > (s, v) + w((u,v)) > (s, u)




