BFS and Dijsktra’s

Subrahmanyam Kalyanasundaram

30th September 2025

Breadth-first Search

Breadth-first Search

The idea is to explore the graph “radially outward” from the source.

In each step, we expand our exploration by visiting the
neightborhood of all explored vertices.

Algorithm 1 Breadth-first Search from vertex s

1: Color all vertices WHITE.

2: Forall u e V, d[u] < oo, 7[u] < NIL.
3: d[s] < 0, color[s] + GRAY.

4: Initialize queue Q < 0.

5: ENQUEUE(Q, s)

6: while Q # () do

7 u< DEQUEUE(Q)

8: foreachve N(u)do

: if color(v) =WHITE then
10: color[v] < GRAY

11: d[v] < d[u] + 1

12: mlv] < u

13 ENQUEUE(Q, v)

14: end if

15: end for
16: color[u] +— BLACK.
17: end while

Breadth-first Search
Queue: ()

Breadth-first Search

Dequeued vertex: | |[Queue:| s

Breadth-first Search

Dequeued vertex: | s |Queue:| r | g

Breadth-first Search
Dequeued vertex:| r [Queue:| g | f

Breadth-first Search
Dequeued vertex:| g |Queue:| f | a | b

Breadth-first Search
Dequeued vertex:| f |Queue:| a | b

Breadth-first Search

Dequeued vertex: | a |Queue:| b | e | d

Breadth-first Search

Dequeued vertex: | b |Queue:| e | d | ¢

Breadth-first Search

Dequeued vertex:| e |Queue:| d | c | j| h| i

Breadth-first Search
Dequeued vertex: | d |Queue:| ¢ | j | h | i

Breadth-first Search

Dequeued vertex: | ¢ |Queue:| j | h | i

Breadth-first Search

Dequeued vertex: | j |Queue:| h | i

Breadth-first Search

Dequeued vertex: | h |Queue:| i

Breadth-first Search

Dequeued vertex: | i |Queue: ()

Algorithm 2 Breadth-first Search from vertex s

1: Color all vertices WHITE.
. Forall u € V, d[u] < oo, 7[u] < NIL.
. d[s] «+ 0, color[s] + GRAY.
. Initialize queue Q < 0.
. ENQUEUE(Q, s)

2

3

4

5 ot
6: while Q # () do m\,m\o&m#

. Lo Jow

8

9

u < DEQUEUE(Q) — /W;Q e
for each v € N (u) do L£(£O>
n

: if color(v) :WWRK .
10: color[v] <~ GRAY 5 Tk J\\QUQM% J\ "

11: d[V] %d[u]—|—1
/6N 12: mlv] < u
2t ENQUEUE(Q, v) £IN) Ewgrans. & Toguau 0P8,
W 14: end if

15: \end for
16: color[u] < BLACK.
17: end while

Time Complexity of BFS

v

Each enqueue/dequeue takes O(1) time.

v

Total queue operations take O(|V/|) time.

» Each list in the adj. list is scanned once. This requires total
O(|E|). This is assuming the graph is provided using adjacency
list.

\ 4

Initialization required O(|V/|).
» Total running time is O(|V| + |E|).

Time Complexity of BFS

v

Each enqueue/dequeue takes O(1) time.

v

Total queue operations take O(|V/|) time.

» Each list in the adj. list is scanned once. This requires total
O(|E|). This is assuming the graph is provided using adjacency
list.

\ 4

Initialization required O(|V/|).
» Total running time is O(|V| + |E|).

» Note: The colors can be omitted. Instead, check if d[v] = oo

Correctness of BFS

Notation: Let'd(s, v) denote the minimum number of edges on a
path from s to v.

Let G = (V, E) be a graph. When BFS is run on G from vertex
se V:

1. Every vertex that is reachable from s gets discovered.

2. On termination, d[v| = d(s, v) for all v.

We will first show (2).

Proof of correctness

Suppose, for the sake of contradiction, (2) does not hold.

Let v be the vertex with smallest d(s,v) such that
d[v] # 5(s, v). ’\\ AL 7 Q)

Claim 1: d[v] > (s, v)

Choose a shortest path from s to v.

Let u be the vertex immmediately preceding v.
Then (s, v) = (s, u) + 1 = d[u] + 1.

So we have:

O/\/VWO—_.
14 L |

dlv] > 6(s,v) = (s, u) + 1= d[u] + 1

Proof of correctness

We have:

dlv] > d(s,v) =6(s,u) + 1 =d[u] + 1

Consider the time step when v is dequeued.
» Case 1: v was white.
The algo sets d[v] = d[u] + 1.
This contradicts the eq above.
» Case 2: v is black.

Then, v was dequeued before u.
Claim 2: If v was dequeued before u, then d[v] < d[u].

Proof of correctness

W
» Case 3: v was gray. m>\-l
. K
Vertex v was colored gray after dequeuing some vertex
w earlier.

So d[v] = d[w] + 1.
By Claim 2, d[w] < d[u] since w was dequeued before u.
This gives: d[v] = d[w] + 1 < d[u] + 1.

Exercise

Show (1) using (2). That is, given that d[v] = (s, v), show
that every vertex reachable from s gets discovered.

Proof of correctness

Let (u, v) € E. Then we have:

o(s,v) < d(s,u) + 1

If uis reachable from s, then:
Take the shortest path from s to u. Then take the edge (u, v).

This gives a path from s to v.
The shortest path from s to v can only be shorter than the

above path.

[]

Proof of correctness

Vv e V. d[v] > (s, v)

Induction on the number of enqueue operations.
Hypothesis: same as claim.

Base case: The time when the first vertex enqueued.
The first vertex enqueued is s. At this time we have:

> Vv e V\{s} d[v] =0
» d[s] =d(s,s) =0.

Hence the claim holds for the base case.

Proof of correctness

Hypothesis: Vv € V., d[v] > i(s, V)

Step: A white (undiscovered) vertex v gets discovered while
we are visiting a vertex u with (u, v) € E.
From induction, we have: d[u] > (s, u). w N
The algorithm assigns d[v] < d[u] + 1. So:

0——o

dlv] = d[u] + 1
> (s, u) + 1
> (s, v)

Last inequality follows from Claim 3.

Proof of correctness

If v was dequeued before u, then d[v] < d|ul.

We will show a stronger claim:

If at some point, the queue contained vy, vy, ..., v, where v,

was the head. Then:
(@) d[wi] < d[vo] <--- < d[v]
(b) d[v] < d[w] + 1

Proof of Claim 2:

Write down vertices in the order they went through the queue.

By claim 4 (a), the calculated d values for them are non-decreasing.
Vertex v will appear before u in this order.

Hence claim 2 follows. [

Proof of correctness

If queue contains vy, v, ..., v, where v; is the head. Then:
@ div] < dlw] < - < d[v]
(b) d[v,] < d[w;] + 1

Induction on number of queue operations.
Hypothesis: Same as claim. We show that the claim holds

after every enqueue and dequeue.
Base case: The first queue operation - enqueuing s.
The claim trivially holds.

Proof of correctness

If queue contains vy, v, ..., v, where v; is the head. Then:
(@) dlwi] < d[vo] <--- < d[v]
(b) dlv,] < d[vy] + 1

Step:

» Dequeue: After v is dequeued, v, is the new head.
Part (a): From induction,
dlvi] < d[wr] < d[ws] < --- < d[v,].
Hence (a) holds.
Part (b): From induction, d[v,] < d[v1] + 1. And so:

d[Vr] S d[V1] + 1
S d[Vz] + 1

Proof of correctness

» Enqueue: When a vertex v is enqueued:
It was enqueued because:

» it was undiscovered so far.
> it was present in the adjacency list of a vertex u that
was just dequeued.

Since u was the previous head of the list, from induction
we have:

> dlu] < d[vi] < d[w] < --- < d|v].

> d[v,] < d[u] + 1.
We assign d|v| <— d[u] + 1 and then enqueue v. Hence,
we have:

> dlv,| < d[u] +1=d|v]

> dn]<dlv] < sdlv] < dlv] Gy g H

Dad T AL AN L Wy o e, bosuse £+ -

Loop Invariant

If queue contains vy, v, ..., v, where v; is the head. Then:
(@) dvi] < d[v] <--- <d|v]
(b) d[v] < d[w] + 1

Claim 4 is actually a loop invariant!

Another loop invariant

The queue Q consists of the set of GRAY vertices.

Weighted Graphs

A weighted graph is a graph G = (V, E) with a weight function:

w:E— 7

The weight of an edge (u,v) € Eis w((u, v)).
For this lecture, we look at directed weighted graphs with weight
function w : E — Z7.

Shortest path in weighted graphs

Input:
» Graph G = (V, E) eccp
» Weight function w : E — Z* W \U\U‘v& W&Lﬁ

» Source vertex s € V. ﬁ*) ‘D\'k‘cg’(*&! :
Goal: Compute the shortest path from Mreachable vertices.
(i DLW se N el

Owgle. nseg. O pgtink T ok ooliy hawe ¢ B ve V.

L Do, Chaist P8 | Gty skt pta o 4
"‘Q)C,(QKV"VJ\A (w9)

Example graph

Dijkstra’s Algorithm Pseudocode

Algorithm 3 Dijkstra’s algorithm

—_—
-_ O
LN] o e

12:
13:
14:

15:

2O s g e By

For all u € V, d[u] + oo, w[u] < NIL
d[s] < 0
Initialize min-priority queue Q < V
S0
while Q # () do

u < ExTRACT-MIN(Q)

S+ Su{u}

for each v € N(u) do

if du] + w(u,v) < d|[v] then

dlv] < d[u] + w(u, v)
DECREASE-KEY(v, d[v]).
mlv] < u

end if
end for

end while

Example graph

Example graph

Example graph

Example graph

Example graph

Example graph

Example graph

Example graph

Example graph

Example graph

Example graph

Dijkstra’s algorithm

“It is the algorithm for the shortest path, which | designed
in about twenty minutes. One morning | was shopping in
Amsterdam with my young fiancée, and tired, we sat down on
the café terrace to drink a cup of coffee and | was just thinking
about whether | could do this, and | then designed the algorithm
for the shortest path. As | said, it was a twenty-minute invention.”

-Edsger Dijkstra

Source: Wikipedia and "An Interview with Edsger W. Dijkstra". Communications of the ACM

Dijkstra’s Algorithm Pseudocode

Algorithm 4 Dijkstra’s algorithm

d[s] < 0

S+ 0
while Q # () do

S+ Su{u}
for each v € N(u) do

if du] + w(u, v) < d|[v] then
d[v] < d[u] + w(u,v)
DECREASE-KEY(v, d[v]).
12: mlv] < u
13: end if
14: end for
15: end while

2O s g e By

—_—
-_ O
LN] LN 3

For all u € V, d[u] + oo, w[u] < NIL

Initialize min-priority queue Q < V

¥

u < ExTRACT-MIN(Q) SL&"& X W%(/»Qm J\UL

Time Complexity of Dijkstra’s

» Initialization: O(|V])
» We need to do |V| EXTRACT-MIN’s and |E| DECREASE-KEY’s

» Depends on the implementation of the priority queue.

Time Complexity of Dijkstra’s

» Initialization: O(|V]) J
» We need to do |V| EXTRACT-MIN’s and |E| DECREASE-KEY’s

» Depends on the implementation of the priority queue.

o olwitr el
» Array: EXTRACT-MIN takes O(|V|) and DeEcReASE-KEY takes O(1)
eap: EXTRACT-MIN and DEcREASE-KEY both take O(log |V/|)

ibonacci Heap: DECREASE-KEY takes O(1) amortized time
b

0 (1Vl Lgy\V\+ \E V) M

L o olwken i)
S Tolelle. . 1 o

N¢ N2 N2

Proof of Correctness

At the end of Dijkstra’s algorithm, we have:

Yu e V., d[u] = (s, u)

Loop Invariant:

At the start of each iteration, we have Vv € S, d[v] = d(s, v).
Init: At the start of the first iteration, S = ().

Maintenance: Let u &€ V be the first vertex¢f0r which
d[u] # 8(s{u). tbo dagpmonmedl

If uis not reachable from s, then d[u] = d(s,u) = oo, so u
must be reachable. Why?

If u = s, then the claim holds. So assume u # s.

Proof of Correctness

Take a shortest path o from s to u. Sd"J\)
Let y be the first vertex on o that is outside S’ ot

Let x € S be the vertex on o just before y. g
So the path o looks like:

dagpansd

vk

S

01 (0)y)
S~ X—=>y~Uu

Claim 1: d[y] = d(s, y).

Proof of Correctness

01 (02)
O=S~~>X—>y~U

Claim 1: d[y] = 6(s, y).

Since y appears before uin o, we have d(s, y) < d(s, u).
Claim 2: d[u] > 4(s, u).

Thus:

dly]l = d(s,y) < 0(s, u) < d[u]

Although y and u were in V' \ S, EXTRACT-MIN returned u.
This means d[u] < d[y]. Hence:

dly]l = d(s,y) = 0(s, u) = d[u]

Proof of Correctness

01 O)
O=S~>X—>y~1U

We have d[y] = d(s, y)

From loop invariant, for all vertices that were added to S before
u, we computed the correct shortest distance.

So d[x] = 4(s, x).

We updated d[y| when we added x to S.

Now we note a convergence property:

Let s ~ x — y be a shortest path, and d[x] = J(s, x).

Then, relaxing the edge (x, y) sets d[y] = d(s, y).

Proof of Correctness

dlu] > i(s, u)

Induction on number of times d is updated after initialization.
Base case: Immediately after init, Vv, d[v] = co except d[s] =
0. So the claim holds.

Step: Assume claim for up to kK many updates on d.

The value of d[u] is updated when:

» We visit a vertex v and there exists edge (v, u).

» dlu] > d[v] + w((v, u)).

Proof of Correctness

dlu] > i(s, u)

Induction on number of times d is updated after initialization.
Base case: Immediately after init, Vv, d[v] = co except d[s] =
0. So the claim holds.

Step: Assume claim for up to kK many updates on d.

The value of d[u] is updated when:

» We visit a vertex v and there exists edge (v, u).
> dlu] > d|v] + w((v, u)).

The new d[u] = d[v] + w((v, u)).
The hypothesis holds for vertex v: d[v] > d(s, v). So:

dlu] = d[v] + w((u,v)) > (s, v) + w((u,v)) > (s, u)

