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Breadth-first Search

Breadth-first Search

The idea is to explore the graph “radially outward” from the source.

In each step, we expand our exploration by visiting the
neightborhood of all explored vertices.
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Algorithm 1 Breadth-first Search from vertex s
1: Color all vertices WHITE.
2: For all u → V , d[u] ↑ ↓, ω[u] ↑ NIL.
3: d[s] ↑ 0, color[s] ↑ GRAY.
4: Initialize queue Q ↑ ↔.
5: ENQUEUE(Q, s)
6: while Q ↗= ↔ do
7: u ↑ DEQUEUE(Q)
8: for each v → N (u) do
9: if color(v) =WHITE then
10: color[v] ↑ GRAY
11: d[v] ↑ d[u] + 1
12: ω[v] ↑ u
13: ENQUEUE(Q, v)
14: end if
15: end for
16: color[u] ↑ BLACK.
17: end while
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Breadth-first Search
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Breadth-first Search
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Breadth-first Search
Dequeued vertex: r !eue: g f

s

a

b

d

f

c

r

e

g

h

i
j

k
l

1

1

∞

∞

2

∞

∞ ∞
∞

∞
∞

∞
∞

0



Breadth-first Search
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Breadth-first Search
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Breadth-first Search
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Breadth-first Search
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Breadth-first Search
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Breadth-first Search
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Breadth-first Search
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Algorithm 2 Breadth-first Search from vertex s
1: Color all vertices WHITE.
2: For all u → V , d[u] ↑ ↓, ω[u] ↑ NIL.
3: d[s] ↑ 0, color[s] ↑ GRAY.
4: Initialize queue Q ↑ ↔.
5: ENQUEUE(Q, s)
6: while Q ↗= ↔ do
7: u ↑ DEQUEUE(Q)
8: for each v → N (u) do
9: if color(v) =WHITE then
10: color[v] ↑ GRAY
11: d[v] ↑ d[u] + 1
12: ω[v] ↑ u
13: ENQUEUE(Q, v)
14: end if
15: end for
16: color[u] ↑ BLACK.
17: end while
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Time Complexity of BFS

↭ Each enqueue/dequeue takes O(1) time.
↭ Total queue operations take O(|V |) time.
↭ Each list in the adj. list is scanned once. This requires total

!(|E|). This is assuming the graph is provided using adjacency
list.

↭ Initialization required !(|V |).
↭ Total running time is O(|V |+ |E|).

↭ Note: The colors can be omi"ed. Instead, check if d[v] = ↓
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Correctness of BFS

Notation: Let ε(s, v) denote the minimum number of edges on a
path from s to v .

Theorem

Let G = (V , E) be a graph. When BFS is run on G from vertex
s → V :
1. Every vertex that is reachable from s gets discovered.
2. On termination, d[v] = ε(s, v) for all v .

We will first show (2).



Proof of correctness

Proof

Suppose, for the sake of contradiction, (2) does not hold.
Let v be the vertex with smallest ε(s, v) such that
d[v] ↗= ε(s, v).
Claim 1: d[v] ↘ ε(s, v)
Choose a shortest path from s to v .
Let u be the vertex immmediately preceding v .
Then ε(s, v) = ε(s, u) + 1 = d[u] + 1.
So we have:

d[v] > ε(s, v) = ε(s, u) + 1 = d[u] + 1
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Proof of correctness

Proof cont...

We have:

d[v] > ε(s, v) = ε(s, u) + 1 = d[u] + 1

Consider the time step when u is dequeued.
↭ Case 1: v was white.

The algo sets d[v] = d[u] + 1.
This contradicts the eq above.

↭ Case 2: v is black.
Then, v was dequeued before u.
Claim 2: If v was dequeued before u, then d[v] ≃ d[u].



Proof of correctness

Proof cont...

↭ Case 3: v was gray.
Vertex v was colored gray a#er dequeuing some vertex
w earlier.
So d[v] = d[w] + 1.
By Claim 2, d[w] ≃ d[u] since w was dequeued before u.
This gives: d[v] = d[w] + 1 ≃ d[u] + 1.

Exercise

Show (1) using (2). That is, given that d[v] = ε(s, v), show
that every vertex reachable from s gets discovered.



Proof of correctness

Claim 3

Let (u, v) → E . Then we have:

ε(s, v) ≃ ε(s, u) + 1

Proof

If u is reachable from s, then:
Take the shortest path from s to u. Then take the edge (u, v).
This gives a path from s to v .
The shortest path from s to v can only be shorter than the
above path.

innate



Proof of correctness

Claim 1

⇐v → V , d[v] ↘ ε(s, v)

Proof

Induction on the number of enqueue operations.
Hypothesis: same as claim.
Base case: The time when the first vertex enqueued.
The first vertex enqueued is s. At this time we have:
↭ ⇐v → V \ {s}, d[v] = ↓
↭ d[s] = ε(s, s) = 0.

Hence the claim holds for the base case.



Proof of correctness

Proof

Hypothesis: ⇐v → V , d[v] ↘ ε(s, v)
Step: A white (undiscovered) vertex v gets discovered while
we are visiting a vertex u with (u, v) → E .
From induction, we have: d[u] ↘ ε(s, u).
The algorithm assigns d[v] ↑ d[u] + 1. So:

d[v] = d[u] + 1
↘ ε(s, u) + 1
↘ ε(s, v)

Last inequality follows from Claim 3.

it



Proof of correctness
Claim 2

If v was dequeued before u, then d[v] ≃ d[u].

We will show a stronger claim:

Claim 4

If at some point, the queue contained v1, v2, . . . , vr where v1
was the head. Then:
(a) d[v1] ≃ d[v2] ≃ · · · ≃ d[vr ]

(b) d[vr ] ≃ d[v1] + 1

Proof of Claim 2:
Write down vertices in the order they went through the queue.
By claim 4 (a), the calculated d values for them are non-decreasing.
Vertex v will appear before u in this order.
Hence claim 2 follows.



Proof of correctness

Claim 4

If queue contains v1, v2, . . . , vr where v1 is the head. Then:
(a) d[v1] ≃ d[v2] ≃ · · · ≃ d[vr ]

(b) d[vr ] ≃ d[v1] + 1

Proof

Induction on number of queue operations.
Hypothesis: Same as claim. We show that the claim holds
a#er every enqueue and dequeue.
Base case: The first queue operation - enqueuing s.
The claim trivially holds.



Proof of correctness
Claim 4

If queue contains v1, v2, . . . , vr where v1 is the head. Then:
(a) d[v1] ≃ d[v2] ≃ · · · ≃ d[vr ]

(b) d[vr ] ≃ d[v1] + 1

Proof

Step:
↭ Dequeue: A#er v1 is dequeued, v2 is the new head.

Part (a): From induction,
d[v1] ≃ d[v2] ≃ d[v3] ≃ · · · ≃ d[vr ].
Hence (a) holds.
Part (b): From induction, d[vr ] ≃ d[v1] + 1. And so:

d[vr ] ≃ d[v1] + 1
≃ d[v2] + 1



Proof of correctness

Proof

↭ Enqueue: When a vertex v is enqueued:
It was enqueued because:
↭ it was undiscovered so far.
↭ it was present in the adjacency list of a vertex u that

was just dequeued.
Since u was the previous head of the list, from induction
we have:
↭ d[u] ≃ d[v1] ≃ d[v2] ≃ · · · ≃ d[vr ].
↭ d[vr ] ≃ d[u] + 1.

We assign d[v] ↑ d[u] + 1 and then enqueue v . Hence,
we have:
↭ d[vr ] ≃ d[u] + 1 = d[v]
↭ d[v1] ≃ d[v2] ≃ · · · ≃ d[vr ] ≃ d[v].

d v d a H
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Loop Invariant

Claim 4

If queue contains v1, v2, . . . , vr where v1 is the head. Then:
(a) d[v1] ≃ d[v2] ≃ · · · ≃ d[vr ]

(b) d[vr ] ≃ d[v1] + 1

Claim 4 is actually a loop invariant!

Another loop invariant

The queue Q consists of the set of GRAY vertices.



Weighted Graphs

A weighted graph is a graph G = (V , E) with a weight function:

w : E ⇒ Z

The weight of an edge (u, v) → E is w((u, v)).
For this lecture, we look at directed weighted graphs with weight
function w : E ⇒ Z+.



Shortest path in weighted graphs

Input:
↭ Graph G = (V , E)
↭ Weight function w : E ⇒ Z+

↭ Source vertex s → V .
Goal: Compute the shortest path from s to all reachable vertices.

We willseeonly
SSSP
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Dijkstra’s Algorithm Pseudocode

Algorithm 3 Dijkstra’s algorithm
1: For all u → V , d[u] ↑ ↓, ω[u] ↑ NIL
2: d[s] ↑ 0
3: Initialize min-priority queue Q ↑ V
4: S ↑ ↔
5: while Q ↗= ↔ do
6: u ↑ E!"#$%"&M’((Q)
7: S ↑ S ⇑ {u}
8: for each v → N (u) do
9: if d[u] + w(u, v) < d[v] then
10: d[v] ↑ d[u] + w(u, v)
11: DECREASE&KEY(v, d[v]).
12: ω[v] ↑ u
13: end if
14: end for
15: end while
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Dijkstra’s algorithm

“It is the algorithm for the shortest path, which I designed
in about twenty minutes. One morning I was shopping in
Amsterdam with my young fiancée, and tired, we sat down on
the café terrace to drink a cup of co!ee and I was just thinking
about whether I could do this, and I then designed the algorithm
for the shortest path. As I said, it was a twenty-minute invention.”

-Edsger Dijkstra

Source: Wikipedia and "An Interview with Edsger W. Dijkstra". Communications of the ACM



Dijkstra’s Algorithm Pseudocode

Algorithm 4 Dijkstra’s algorithm
1: For all u → V , d[u] ↑ ↓, ω[u] ↑ NIL
2: d[s] ↑ 0
3: Initialize min-priority queue Q ↑ V
4: S ↑ ↔
5: while Q ↗= ↔ do
6: u ↑ E!"#$%"&M’((Q)
7: S ↑ S ⇑ {u}
8: for each v → N (u) do
9: if d[u] + w(u, v) < d[v] then
10: d[v] ↑ d[u] + w(u, v)
11: DECREASE&KEY(v, d[v]).
12: ω[v] ↑ u
13: end if
14: end for
15: end while
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Time Complexity of Dijkstra’s

↭ Initialization: O(|V |)
↭ We need to do |V | E!"#$%"&M’(’s and |E| D)%#)$*)&K)+’s
↭ Depends on the implementation of the priority queue.

↭ Array: E!"#$%"&M’( takes O(|V |) and D)%#)$*)&K)+ takes O(1)
↭ Heap: E!"#$%"&M’( and D)%#)$*)&K)+ both take O(log |V |)
↭ Fibonacci Heap: D)%#)$*)&K)+ takes O(1) amortized time
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Proof of Correctness

Theorem

At the end of Dijkstra’s algorithm, we have:

⇐u → V , d[u] = ε(s, u)

Proof

Loop Invariant:
At the start of each iteration, we have ⇐v → S, d[v] = ε(s, v).
Init: At the start of the first iteration, S = ↔.
Maintenance: Let u → V be the first vertex for which
d[u] ↗= ε(s, u).
If u is not reachable from s, then d[u] = ε(s, u) = ↓, so u
must be reachable. Why?
If u = s, then the claim holds. So assume u ↗= s.

tobedequered



Proof of Correctness

Take a shortest path ϑ from s to u.
Let y be the first vertex on ϑ that is outside S.
Let x → S be the vertex on ϑ just before y .
So the path ϑ looks like:

s ω1↫ x ⇒ y ω2↫ u

Claim 1: d[y] = ε(s, y).

setofvertices
that are
already
dequered



Proof of Correctness

ϑ = s ω1↫ x ⇒ y ω2↫ u

Claim 1: d[y] = ε(s, y).
Since y appears before u in ϑ, we have ε(s, y) ≃ ε(s, u).
Claim 2: d[u] ↘ ε(s, u).
Thus:

d[y] = ε(s, y) ≃ ε(s, u) ≃ d[u]

Although y and u were in V \ S, E!"#$%"&M’( returned u.
This means d[u] ≃ d[y]. Hence:

d[y] = ε(s, y) = ε(s, u) = d[u]



Proof of Correctness

Claim 1

ϑ = s ω1↫ x ⇒ y ω2↫ u

We have d[y] = ε(s, y)

Proof

From loop invariant, for all vertices thatwere added to S before
u, we computed the correct shortest distance.
So d[x] = ε(s, x).
We updated d[y] when we added x to S.
Now we note a convergence property:
Let s ↫ x ⇒ y be a shortest path, and d[x] = ε(s, x).
Then, relaxing the edge (x, y) sets d[y] = ε(s, y).



Proof of Correctness
Claim 2

d[u] ↘ ε(s, u)

Proof

Induction on number of times d is updated a#er initialization.
Base case: Immediately a#er init, ⇐v, d[v] = ↓ except d[s] =
0. So the claim holds.
Step: Assume claim for up to k many updates on d .
The value of d[u] is updated when:
↭ We visit a vertex v and there exists edge (v, u).
↭ d[u] > d[v] + w((v, u)).

The new d[u] = d[v] + w((v, u)).
The hypothesis holds for vertex v : d[v] ↘ ε(s, v). So:

d[u] = d[v] + w((u, v)) ↘ ε(s, v) + w((u, v)) ↘ ε(s, u)
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