Maximum Flows and Minimum Cuts

In 1950's, US defence researchers whole a classified report about the train network in then I miet Union. The network was nealled as a graph.

The graph had 44 nextires and 105 edges. The report determined the maximum amont of malerial that could be moved from Russia to Europe and the cheapert way to cause a disruption.

This is me of the first recorded instances of the max flow- nun cut problem.

Max Flow Problem.

We are given a directed graph $\hat{a} = (V, E)$ with two designated vertices s, t.

We are given capacity function $c: E \to \mathbb{R}^+$

houl! Want to assign flows to each edge, so that the following are satisfied.

Floo is f:E->R.

O For each edge e CE, O L fle) L C(e)

2 For each vertex VEV \ Es.t3, we have

 $\leq f(u,v) = \leq f(v,\omega) \rightarrow Flow conveniention$

mining flow of the flow.

Subject to above, we want to maximize

Value 1 | F = \geq f(s, w) - \geq f(u,s)

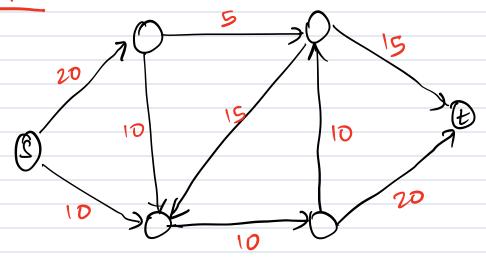
the containing flow flow in the food of the containing flows.

It can be shown that IfI is the net flow incoming to the well. That is,

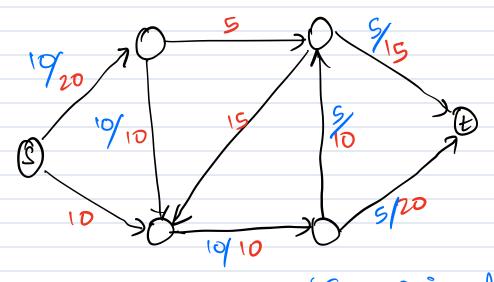
 $|f| = \mathcal{L} f(u,t) - \mathcal{L} f(t,\omega)$

bly? For each $v \in V \setminus \{s_1, t_3\}$, we have flow conservation. So the net outgoing flow from s must equal the net incoming flow at t.

Example

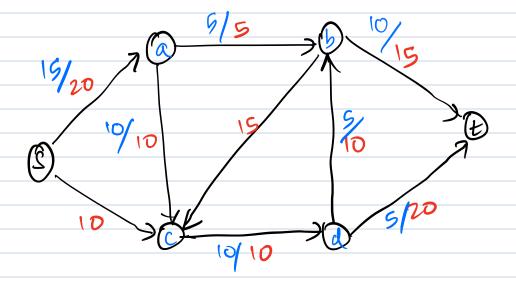


Capacities see indicated in Red.



Flow in blue. (Flow = 2 in edges to blue is 10.

The maximum flow problem is to compute the largest flow that can be purched in this network, subject to constraints.



Hue flow value = 15.

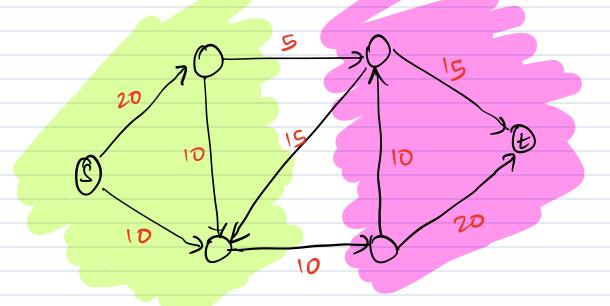
Minimum Cut Problem.

An (s, t) cut is a partition of the nectices into two disjoint subsets S and T such that ses, tet, snt=p and SUT=V.

The capacity of the cut (2, T) is given by the sum of all the edge capacities that are crossing from 2 to T.

Capacity of $(S,T) = ||S,T|| = \sum_{v \in S} \sum_{\omega \in T} c(v,\omega)$

Note: If (v, w) & E, then we take that c(v, w) = 0.



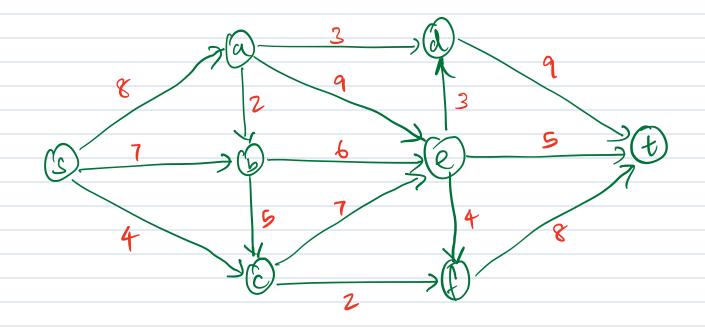
S

The capacity of the above cut is |15,T1 = 5+10=15.

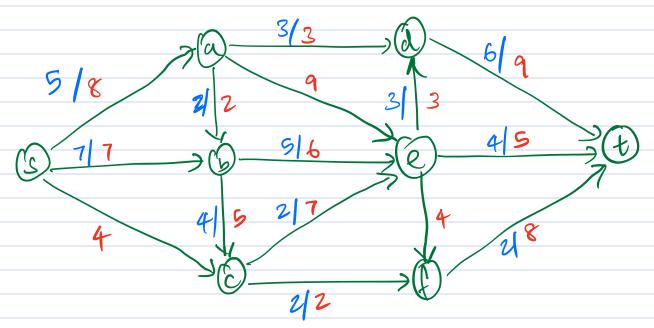
The minimum cut problem is to compute an (2,T) - cut of the level possible capacity.

Another example

Red: Capacities



Blue: Flow nabue at each edge.

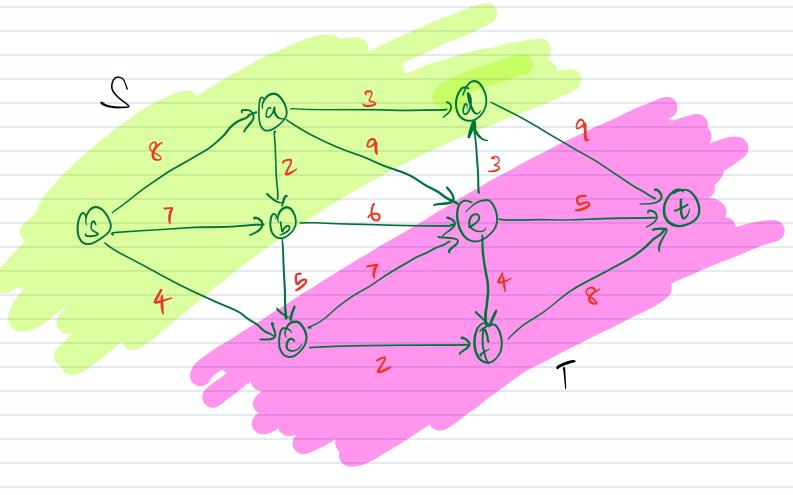


Red: Capacity

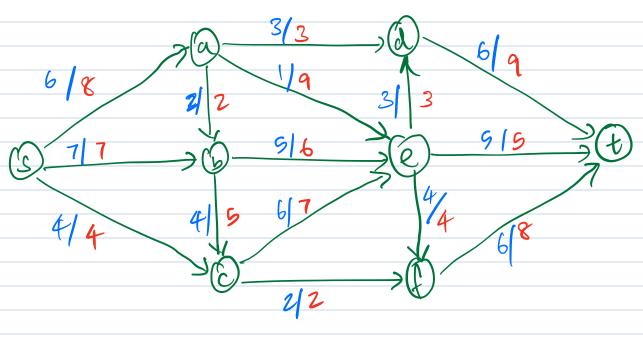
Blue: f.

Note: f is O when not indicated.

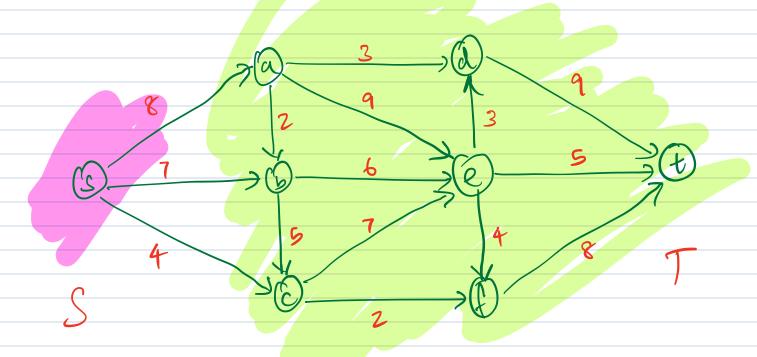
Value of flow f = 161 = 12



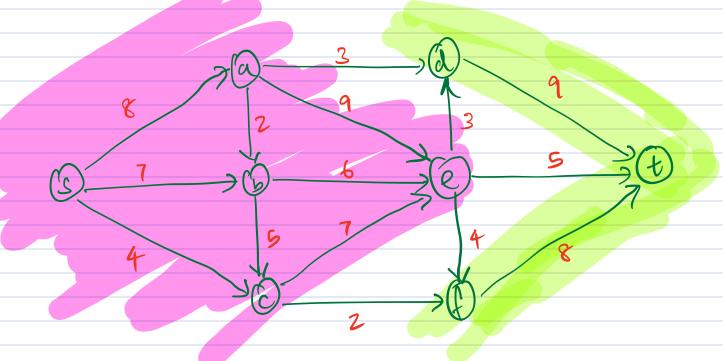
||S,T||= 4+9+6+9+9=33.



Total flow nalue = 17.



This cut has capainty ||SiT|| = 8+7+4



Capacity of this art = 3+3+9+4+2 = 17

Theorem! Suppose his a flow network. let f be any feairble (s, t) - flow and (2, T) be any (s,t)-cut. Then value of the flow f, is at most the capacity A (SIT). That is If I = 119,T1 In particular Max flow & Min out. Prof! | | | = & f(s, w) - & f(u,s) (Flow consentation) = $\sum_{v \in S} \left[\sum_{w} f(v, w) - \sum_{u} f(u, v) \right]$ at other v $= \underbrace{\xi}_{\text{VES}} \underbrace{\xi}_{\text{V}}(v, \omega) - \underbrace{\xi}_{\text{VES}} \underbrace{\xi}_{\text{V}}(v, \omega)$ = 2 2 f(v,w) - 2 2 f(u,v) ves uses (Remains flows) = E E f(v,w) - E E f(u,v) VES WET VES WET Inequality | ZE E f (U, W)

(ignoring negative)

team

I negrality 2 $\leq \lesssim \lesssim c(v, \omega)$ (Flow (e) $\leq cop(e)$)

= 11,211

Question: When do we get 1f1=1/5,71/?

This happens when both the inequalities are tight. Ineq I is tight when $\leq \leq f(u,v)$ is goo. That means there is no incoming flow from any edge that goes from T to C.

Inequality 2 is tight when for each $v \in S$, $w \in T$, we have f(v, w) = c(v, w). That is, each edge that goes from S to T is "saturated".

Theorem! Subfore his a flow network.

Let f be any fearble (s, t) - flow and

(S, T) be any (s,t) - cut. Then |f| = ||S, T||

if and only if f raturates all the edges from

I to T and anish all the edges from T to S.

Max flow. Mincut thesem: In every flow network with rowree and target t, the value of the maximum flow is equal to the capacity of the vinnimum ent.

Proof. Let a be a graph, with s, t identified and c'E > 1Rzo.

He further resume that G is reduced. That is, for any u, v C V, at most one of the edges (u, v) or (v, w) exist.

We may assume the above by wing the below transformation.

The resulting graph has the same max flow and min cut as the original graph.

Suppose f is an (c,t)-flow in G. We define a new capacity function c; $V \times V \rightarrow IR$ called residual capacity.

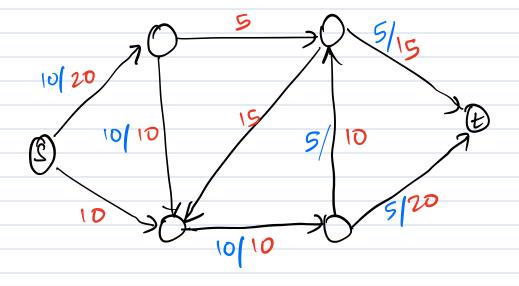
$$C_{\xi}(u,v) = \begin{cases} C(u,v) - f(u,v) & \text{if } (u,v) \in E \\ f(u,u) & \text{if } (u,v) \in E \end{cases}$$

$$C_{\xi}(u,v) = \begin{cases} C(u,v) - f(u,v) & \text{if } (u,v) \in E \\ C(u,v) & \text{otherwise} \end{cases}$$

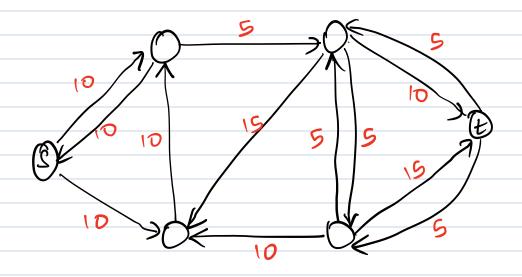
Intuitively, cf denote how much more"
flow each edge can casely. Note that

Cf (u,v) 70 + u,v.

We define recidual graph Gre containing all the edges for which Ce(.) > 0.



G with flow f.



leidual grafih Gf.

Dole: If flow at edge u, v such that

O < f(u, v) < c(u, v), then Gf contains

both the edges (u, v) and (v, v).

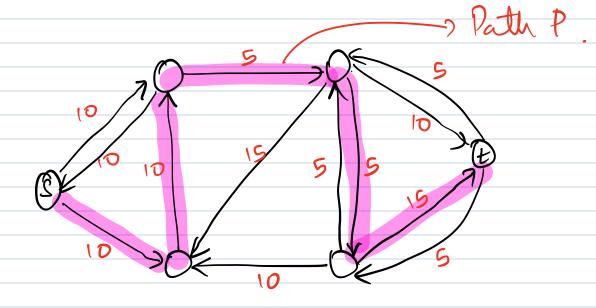
Two cases! Either Gf contains an (E, t) path (with pointine capacity) or it does not.

Case !: Suppose Ge contains an (s,t) path P.

let F=min Cf(u,v) be the maximum (u,v) ep flow we can send from s to t through P. We define a new flow in a Coriginal graph) as follows.

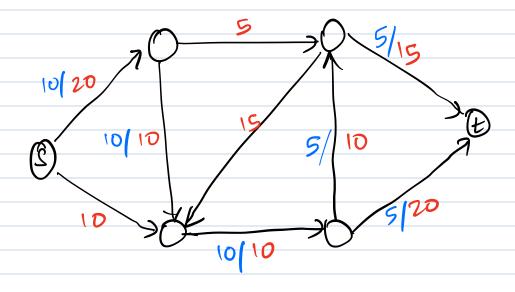
 $f'(u,v) = \begin{cases} f(u,v) + F & \text{if } (u,v) \in P \\ f(u,v) - F & \text{if } (u,u) \in P \\ f(u,v) & \text{otherwise} \end{cases}$

Such a path P is called augmenting path.



leidual graph Gf.

How F=5.



(need to uplate with f').

Claim: The new flow f' is fearable with respect to the original capacities c. That is, for all eEE, OEf(e) < e(e).

Proof. There are three cases.

(1) (u,v) is an diemal edge in h and P contains (u,v).

f(u,v) = f(u,v) + F > f(u,v) 70.

 $f^{\dagger}(u,v) = f(u,v) + F$

< f(u,v) + cf(u,v)

= f(u,v) + c(u,v) - f(u,v)

= c(u,v). fædge (uv). Henre t'is ferenble in this case.

(U,V) is an original edge G and P contains (V, W).

 $f'(u,v) = f(u,v) - F < f(u,v) \le c(u,v)$. Since fix feasible

f'(u,v) = f(u,v) - F $\geq f(u,v) - cf(v,u)$ (since $F = min \ cf(e)$) = f(u,v) - f(u,v) = 0

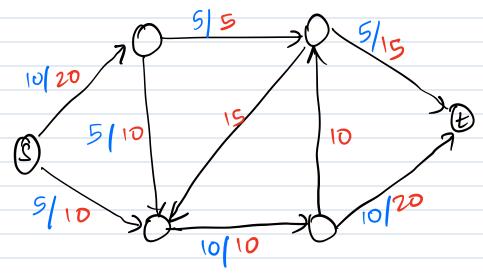
Henre et is feairble for (u,1).

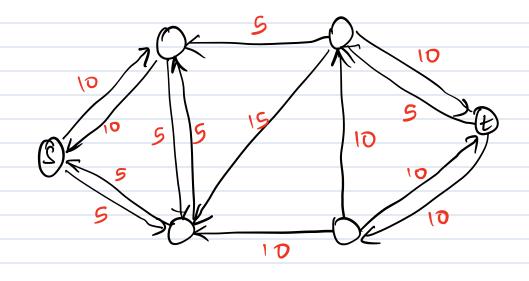
(u,v) is an original edge of b. Weither (u,v) not (v,u) is in P. In this case f'(u,v) = f(u,v) and f' remains feasible w.r.t. (u,v). Value of f': |f'| = |f| + F > |f|.

Hence f' is a fewerble flow with value
larger than f.

So we conclude that if there is an augmenting path P in Gg, then fis not a wax flow.

Case 2: Suppose there is no augmenting path in Gg.





Consider the set of vertices reachable from 2 in Gg. Let us call this set S. Note that t & S since the case assumes so. Let T=VS.

Henre (S,T) is an (s,t) cut.

Coverdes the pris (u,v) where u ES, vET.

If (u,v) was in E(b), then

Cf(u,v) = c(u,v) - f(u,v) = 0.

Henre f(u,v) = c(u,v).

The edge (u,v) is saturated by f.

If (v, u) was in E(h), then $C\varphi(u, v) = f(v, u) = 0.$ The edge (v, u) is anoided by f.

So for all $n \in S$, $v \in T$, the edge (u,v) is retreated by f or edge (v,u) is availed by f. Hence |f| = ||S,T||. Which means f is a max f low and S,T is a num (s,t) cut.

We showed that fix maximized if and only if his no augmenting path.

We also subtlat life has no augmenting path => There is an S,T which is a min (s,t)-cut.
That is ||S,T|| = |f|.

If there is an (S,T) with 11S,T11=1f1, we have that
f is make num flow.

Rence maximum flors = nimimum cut.

This yields an algorithm. (Ford Fulkeren algorithm)

-> Start with G = Gf

-> Repeat till no augmenting path in Gr

> Find an augmenting path in Gg.

-> Send maximum possible flow theoregy P.

L → lecalulate f and Gf.

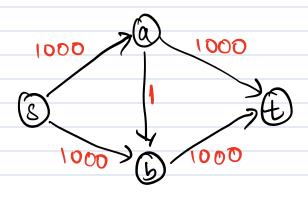
What is the time complexity?

If all capacities are integers, then each augmenting flow will be integed and hence we need $\leq |f^*|$ augmentations where $|f^*|$ is max flow value.

So running time = 0 (IEI If*1)

O(IEI) time required per iteration.

Bad example:



Two rules by Edwards and Kasp.

O Choose the augmenting path with the largest bottleneck value.

Runs in O(| E|2 log | E| log | f*) time

(2) Choose the augmenting path with the smallest no. of edges.

luns in O(IVIIEI2) time