Graphs, Matrices and Algorithms 29/84/25

I'm SUBRAUMANYAM KALYANASUNDAKAM Dept J. CSE, IITHYDERABAD. EMAIL: SUBRUK @ CSE.IITH. AC.IN

I'll be dieuring some basics of graph alsoithms ner the conese of 4 lectures.

Algorithm: A well defined compitational procedure that takes rane natures as input and produces rune rulue of values as onthut.

Guld be decision problem (does this eyable have a traingle?) or function computation (given a graph, color graph wing the smallest no. of colors).

to model different kinds of relations, retworks and it could be useful to compute the parameters properties of such graphs. (Is a graph connected?

Does a cealin have a specific subgraph?

Lind a shortest path from X to Y.)

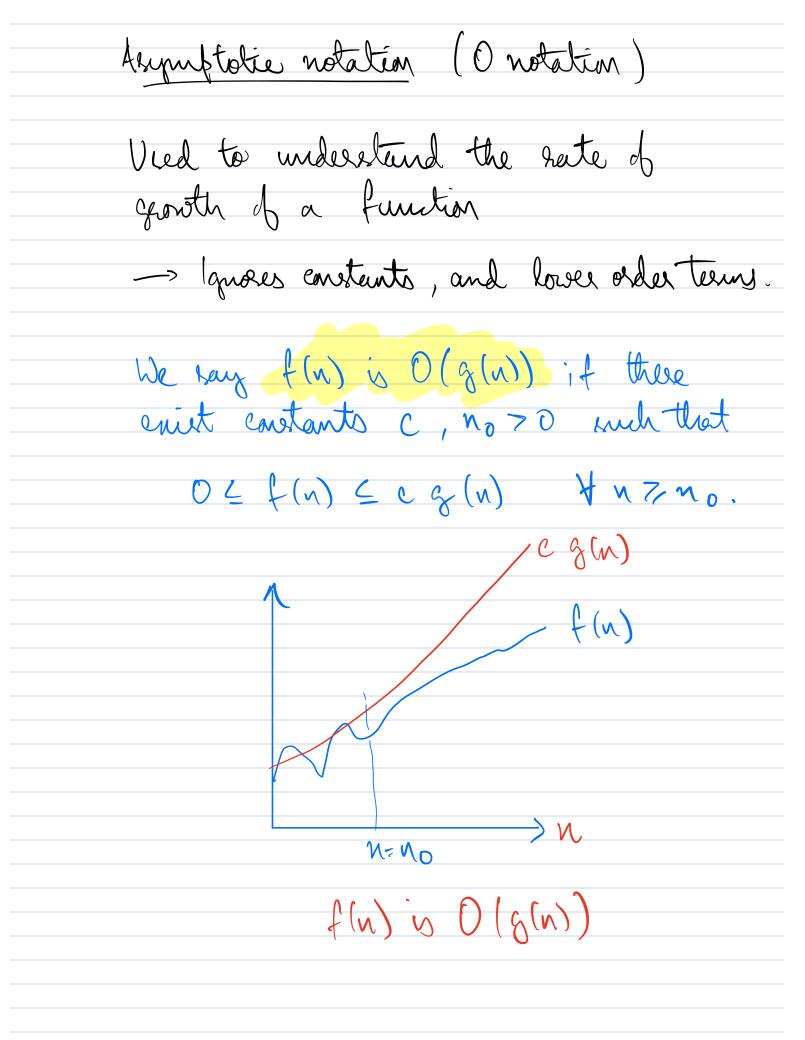
How do you measure the performance of algorithms?

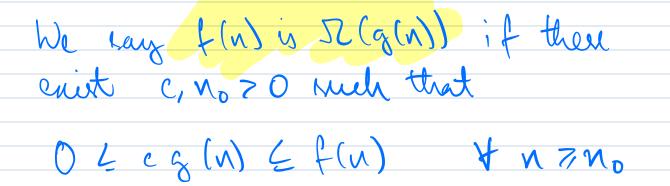
- -> An algorithm is a description of a process.
- -> The most common resorbies of conjutation are time and space.
- -> Fine will navy with hardware

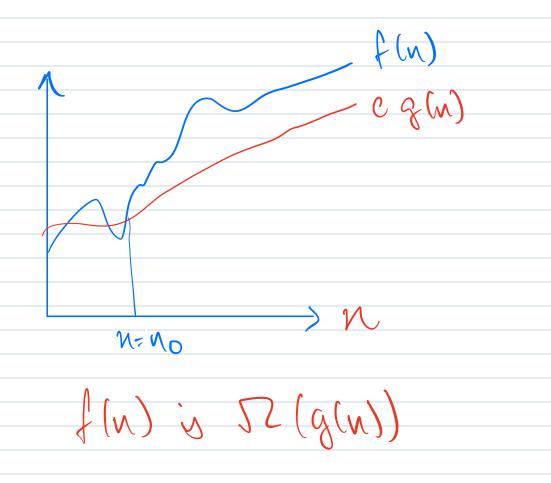
 (processor speed, for instance) and

 with input Size.

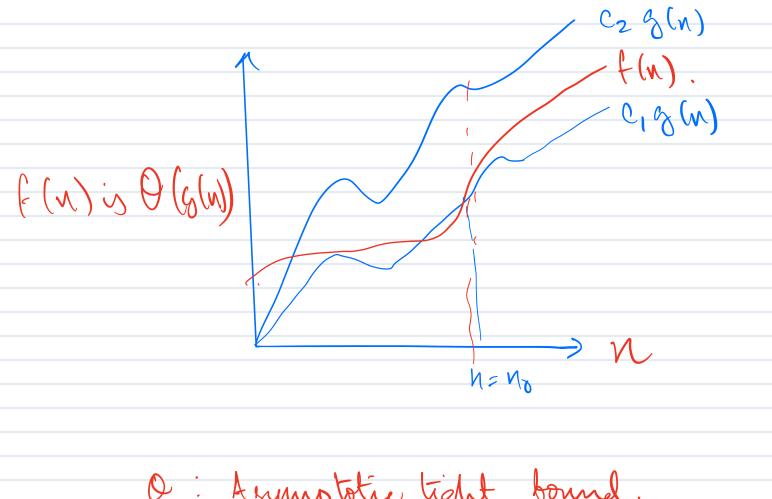
Say, ve want to sort numbers. Machine A: Can eneute 10' inst /see Running algorithm that take 2n2 met Machine B: 107 instructions (second. Running a more efficient algorithm that takes: 50 n logger instructions. How long does each machine take to not n= 107 numbers? Madine L: 2 * (107)2/100 = 20000 see = 5 1/2 hours (roughly) Madine B: 50 * 107 * log 107 ~ 11 b 3 see 107 (lees than 20 nin)







We say f(u) = O(g(u)) if there exist $C_1, C_2, N_0 > 0$ such that $O \neq C_1 \neq C_2 \neq C_1 \neq C_2 \neq C_2 \neq C_1 \neq C_2 \neq C_2 \neq C_2 \neq C_1 \neq C_2 \neq C_2$



A symptotic tight bound.

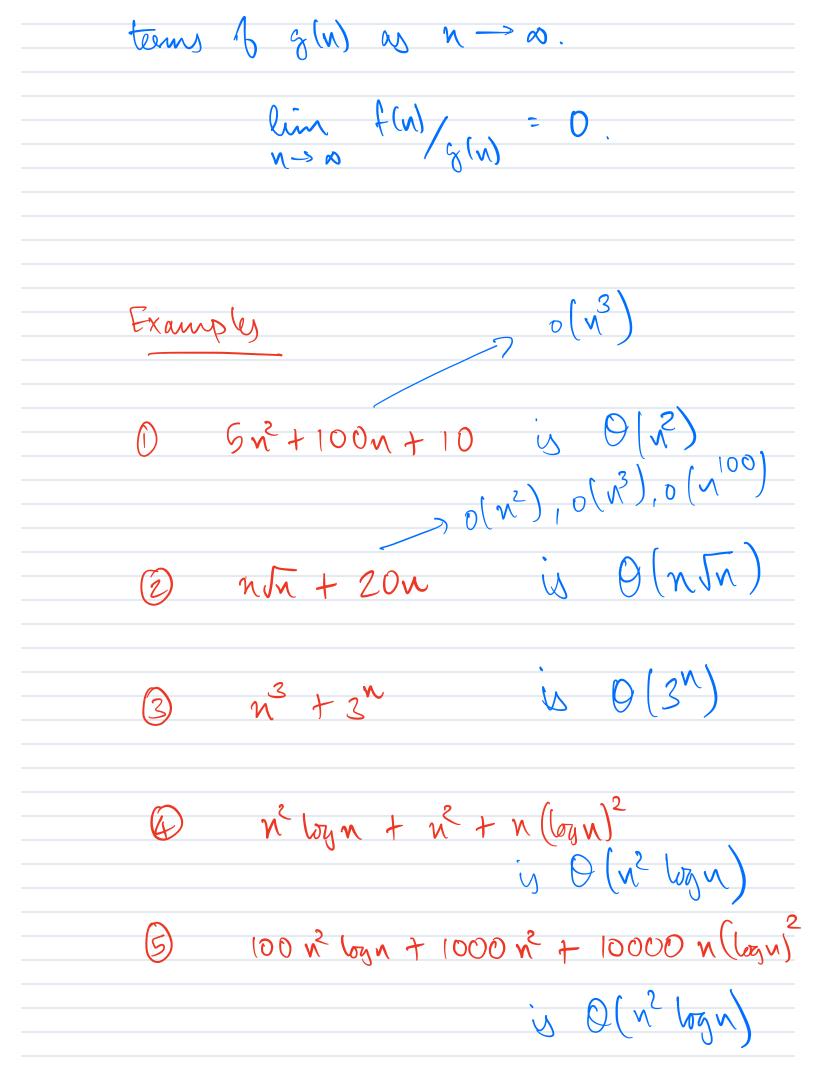
A symptotic upper bound

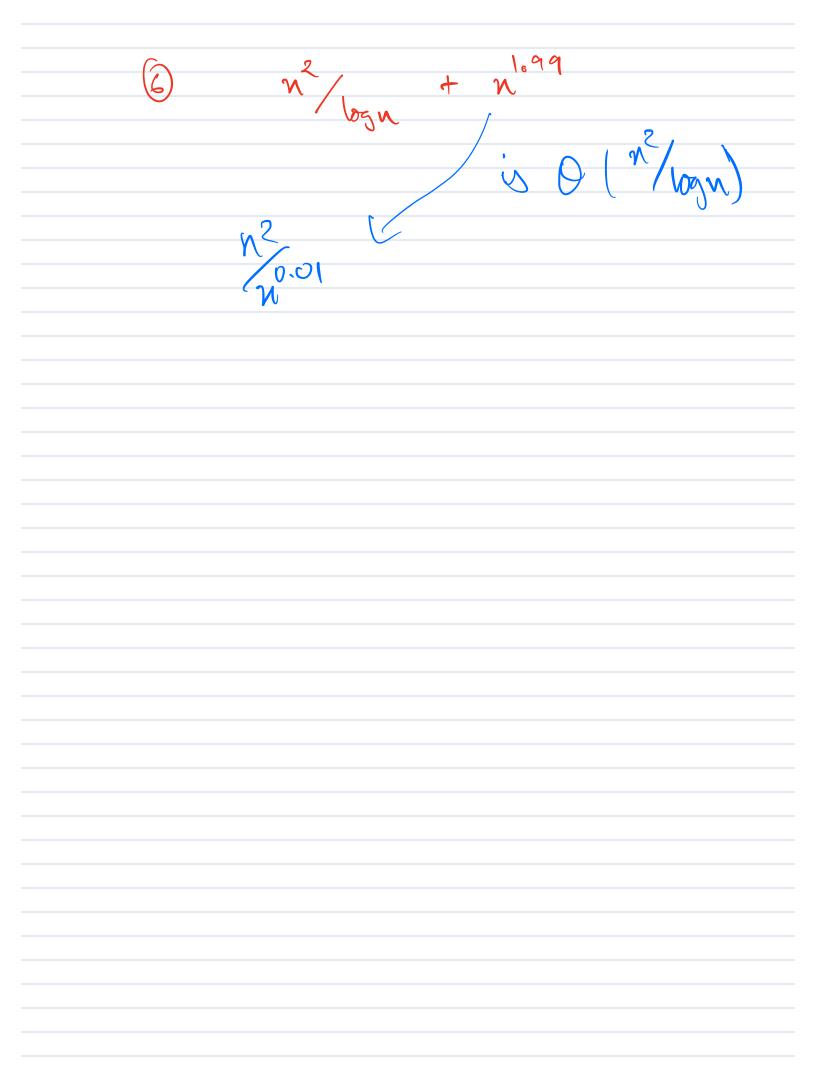
Acquiptatie love bound.

> Little o We say f(u) = o(zm)) if for any c>0, there is no 70 such that

 $0 \le f(n) \le cg(n) \quad \forall n > n_0$

Another way to think is in terms of limits: flu becomes mergrificant in





Graphy
We have $G = (V, E)$ a zeafth, where V is the set of vertices and E is the set of edges.
-> Directed geoffer! The edges are directed and are ordered pairs (x,y) where x, y & V
× y
> Undirected graph: The edges we
unordered paies {x,y} where x,y &V
× y
The application will distate whether the

graph is directed or undirected.

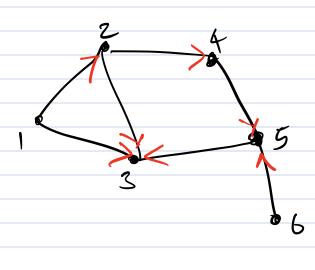
How do we represent graphs?	_
Adjusting matrix	
We have an nxn	_
mateix where n = 1VI.	_
The (i,j)th entery is I (i,j) EE	_
Else the light cutty is there is an edge from its	- - į
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 — — — — — — — — — — — — — — — — — — —
Adj mateix needs O(v2) space.	_
But we can unmediately say if (iji) is an else. > Done in O(1) time Constant	- - - - - -

The mateix A is symmetrie if and only if the graph is undirected.

What is the adjacency materix 1

To this directed

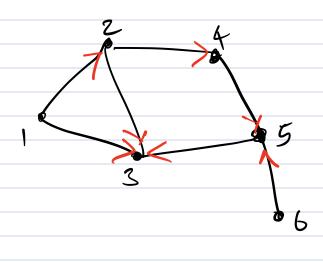
yath?



(i,i) there is there is an edge from retex is to realize of

Adjacency list to represent a Craph. Here we have n = 1V1 tinked lists, one for each nestex. Each one contains the list of (ont) neighbres of a neiter -> 2 -> 2) -> mll Hux no.d 2 3 4 edges in 3 -> 11 -> 2 -> 5 4 > 2 -> 5 an n viter 5 76 gall = (M) = N(N-1) 6 > 5 This takes O(IEI) space. In an undiscited graph, each edge appears two times). But cheeting if (i, i) is an edge may not be unmediate. It can take O(IVI) time.

What is the adjacency list of this directed yaple?



 $\frac{1}{2} \rightarrow \frac{3}{4}$ $\frac{2}{4} \rightarrow \frac{5}{5}$ $\frac{6}{5} \rightarrow \frac{3}{5}$

Which representation is better?

Adjacency mother takes $O(1VI) = O(n^2)$ space. But can immediately dreck adjacencies.

O(1) time

Adjusted takes only O(1E1) space but can take up to O(1VI) time to check adjustencies.

16 IEI is $O(1VI^2)$ then adjacency materix may be better as adj. list also takes $O(1EI) = O(1VI^2)$ space.

If we have a spacel graph, i.e.,
where O(IEI) = O(IVI) or O(IVI log IVI)

(corretting smaller than O(IVI²))

then it may help to use adj. list.

<i>C</i>	1	<u></u>		١ -
Greet	\mathcal{M}	FXP	locat	tun
v		1		

We first consider me of the simplest questions one can all about a graph.

Q'. If we start from a votex cEV, which other nectices are reachable?

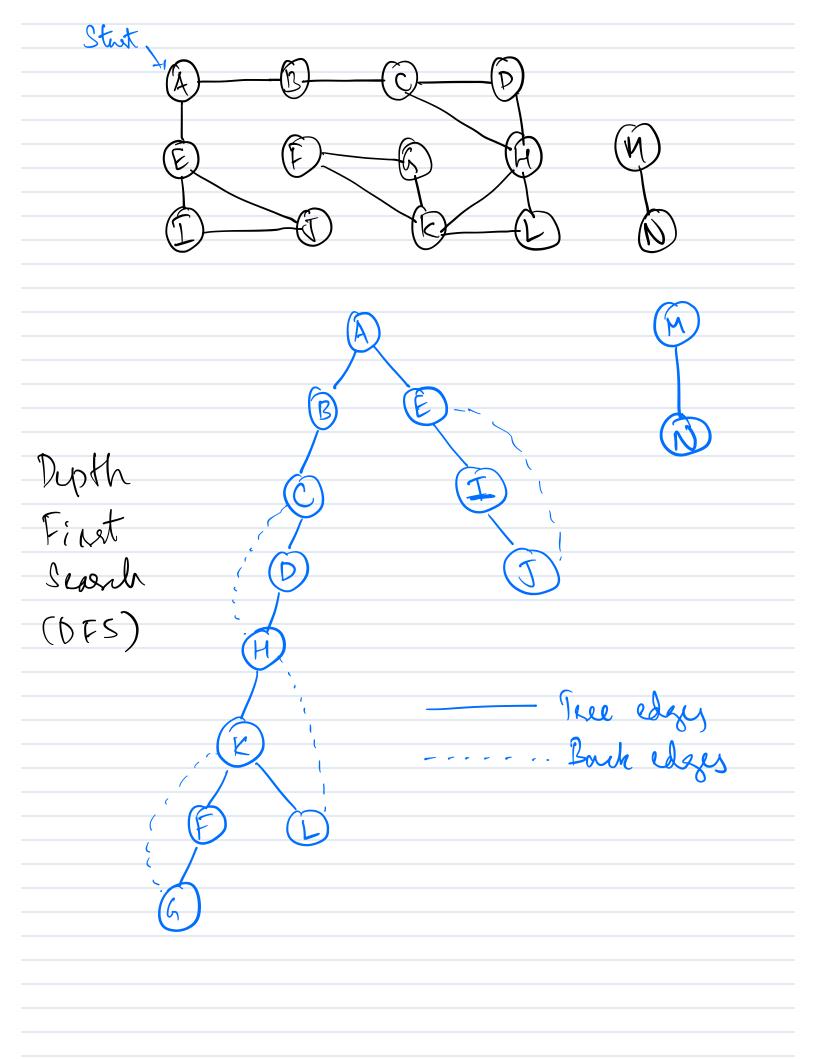
Suppose you are in a maze, how can you find which are the reachable nestices?

-> Rope and Challe

to return to streeting point

to made visited holes.

Can we do the same with a computer ?



Depth First Search (DFS) (We'll later see Brendth First Search For all VEV If visited (v) = false, Explose (v) Explore (w) >> Discovers all the reties that are reachable from w. Visited (w) = True Pre visit (w) for each edge (w,z) EE This will & be definedos If visited (z) = false, Explore (z) basedon Post visit (w) need

To execute this, we need an veray
visited
Visited # F F F F F 7
and a representation of the graph.

Explore (w) determines all the vertices reachable from w that have not already been explored.
Corectnes: We can prove the following
ving induction on k.
In Explose (w) all vertices that are reachable in $\leq k$ iters from w get minted.
Running time analysis.
Initializing all vertices as not nivited
: 0 (111)
Inside explore (w), (assume premient, to be O(1)
setting winted to Tene: O(1).
Each edge (x,y) in his checked exactly twice,

nee during enplose (x) and me
during explore (y). This takes O (IEI) time,
during explore (y). This takes O (IEI) time, ner the every of the DFS.
format, this takes O(1VI+IEI) time.
format, this takes O(1VI+1EI) time.
Why's this
needed ?
If his given as adj mateix,
we will need O(1412) time
NOC WALL TUDOS O (TIT) WALL

One application: Want to identify which volich voleted Component.

We modify DFS as follows. DFS (G) Forall VEV visited (v) = false CCmm(1) = Empty for all ve V If visited (v) = false CC = CC+ Explan (1) Explan (W) Visited (w) = True cenum (w) = cc For each edge (W, Z) EE If visited (z) = false, Explore (z)

The running time remains O(11/1+1E1)

Premint and Port nient orderings

Initially, we set a clock to one. Then we inexement it when we begin exploring a voltex and completing the exploration.

Explan (w)

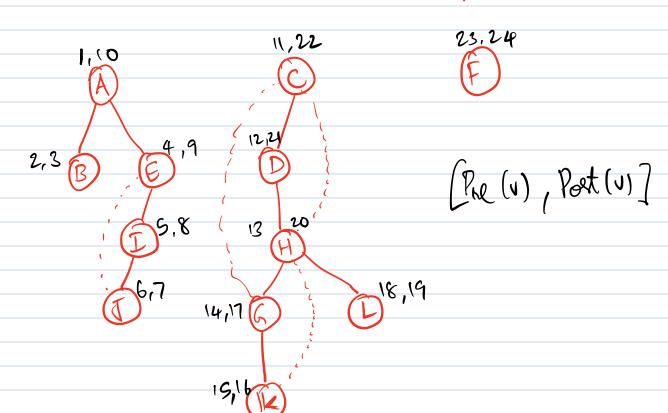
Visited (w) = True

Per visit (w): Per (w) = dork; clock = clock+1

for each edge (W, Z) EE

If visited(z) = false, Explose (z)

Post visit (w): Post(w) = clock, clock = clock+1



Observation: For any two u, v & V,

[Pre (u), Post (v)] and [Pre (v), Post (v)]

are either disjoint of one is contained
in the other.

Suphose WLOG, enplose (v) 'is willed after explose (w)

Either explore (v) is called as a descendant of emplore (w), of after emplore (v) is completed and emited.

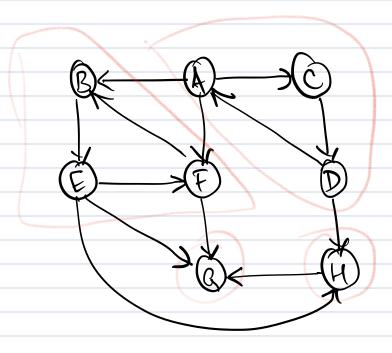
(In other words, is a still in the fecusion stack while explore (i) is called ?)

be contained in [Pre (v), Port (v)].

In the litter case, they will be disjoint.

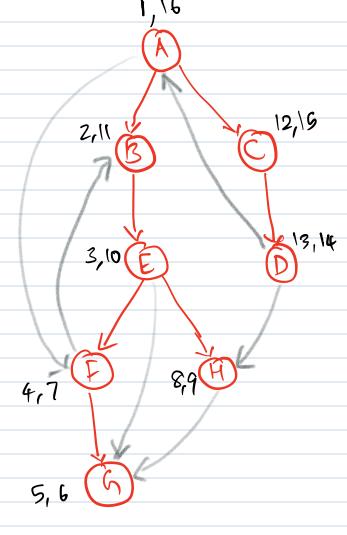
DFS in Directed Graphy

In undirected graphs, we just had DFS edges and back edges. Here we will have other type of edges.



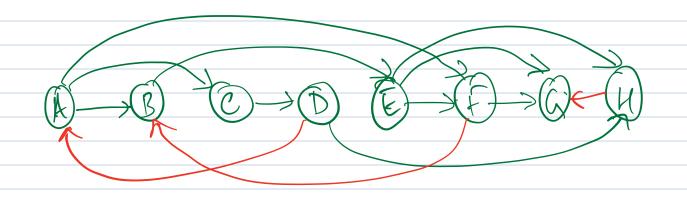
Types of other edgy

- O Forward edges. Ancestor to non child descendant
- D Backedys: Descendant to ancestor
- 3 Cross edges! To neither descendant not ancestor.



Tree edgy

O the edgy.



Question: Is there an obscine of the Vertices of this graph so that all the edges go from left to right? -> Such an ordering is alled topdoxical rot.

No. It is not possible for this graph, since it contains a upole. So we will need some edge that goes from hight to left.

What if a given graph G, does not have a cycle ?

Does & necessarily have a topological sort?

How can we identify the edge types?
O For edge (u,v), it is a forward edge of tree edge if
pre (u) < pre (v) < port (v) < port (v)
vis in u's subtree
@ Edge (u,y) is a back edge if
prelv) < pre(u) < post (v)
u is in v's subtace.
3 Edge (u,v) is a cross edge if
pre(1) < post(1) < pre (u) < post(u).
DFS cuits from v before it emplores u.

Property: It directed graph it has a cycle if and only if DFS tree has a back edge.

Proof! (=) Suppose DFS tree has a back edge (u,v). Then u is a descendant of v in the tree. The path from v to u along with edge (u,v) forms a cycle.

(=>) Suppose a has a cycle C. Suppose vis the fact nester in C to be employed by the DFS. So all the other vertices in C are derendants of in the SFS tree.

Suppose u is the volter in C that precedes vin the cycle. Then the edge (u,v) is a back edge in the DFS tree.

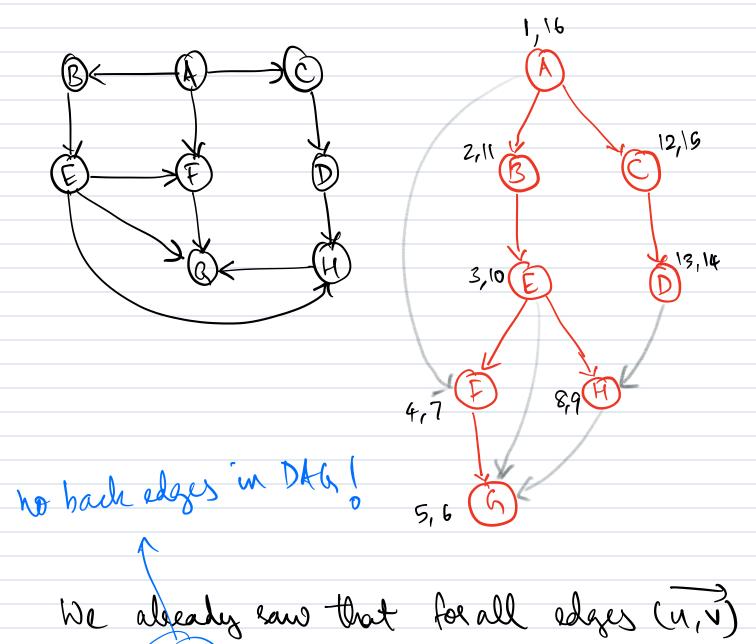
Want to determine if a given diserted graph has a ciple. What is a property that we can use?
Chie! look at the post numbers.
Property: If u,v's a tree edge, forward edge,
of cross edge, then port (v) < port (u) If u,v is a back edge, then port (u) < port (v)

To check if the directed graph has a cycle, we can just check if there is an edge (u,v) with port (u) < port (v).

Topological Lost.

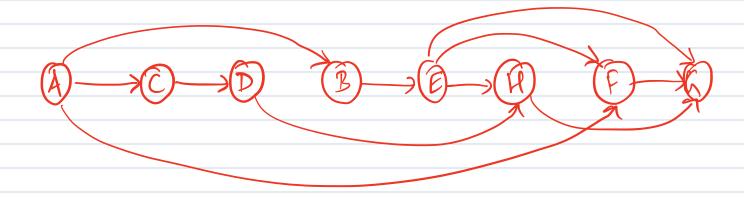
Given a DAG (Directed Acyclic Grafth), we want to order the vertices much that all the edges are from a vertex carlier in the ordering to a vertex later in the ordering.

HOW CAN WE DO THIS?



in a DAG, port (v) < port (u).

So we can sort in the descending order of port (.) numbers!



Note: This need not be unique. There may be other such orderings.

Strongly Connected Components

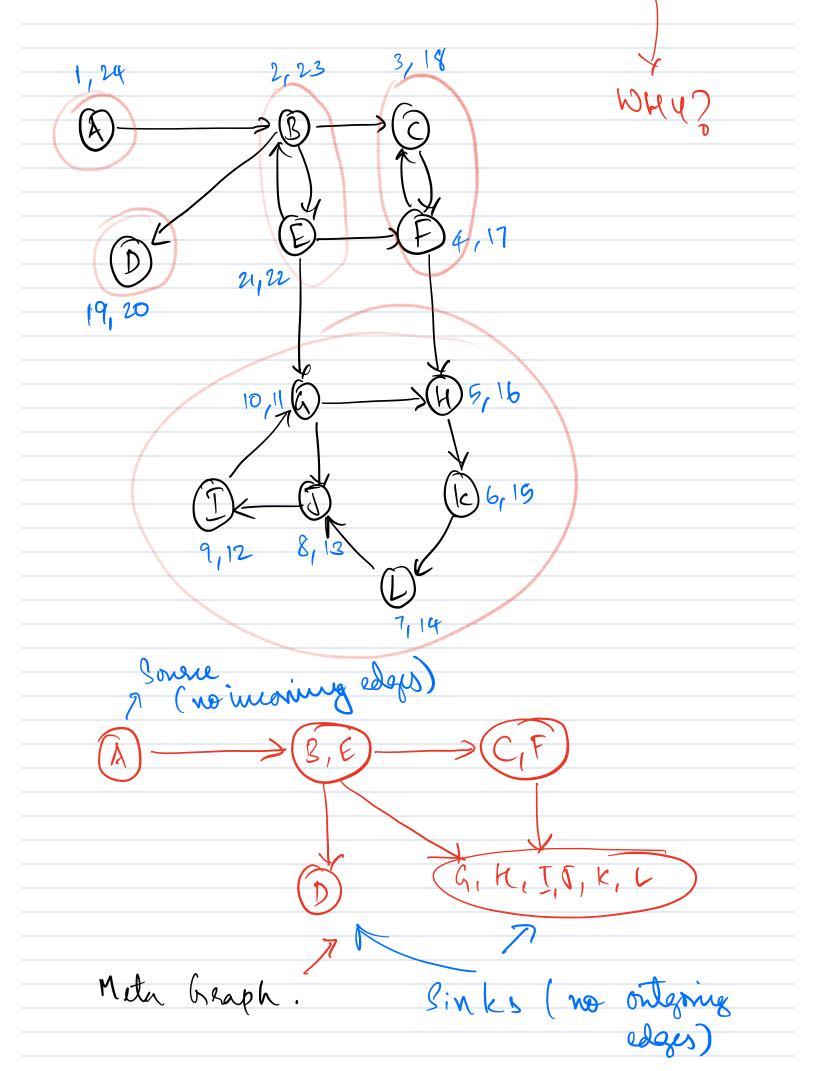
How can we generalize connected components for directed graphs I It is not as every or straightforward as undirected graphs.

He song a set SCV is strongly commeted if for any y, JES, there is a disented path from u to v AND there is a disented path from v to u.

Oring this, we can partition V into SCC's (Hengly conn. components).

Property: Every directed graph to a DAG.

of its standy connected components.



This meta graph consisting of SCC's as votices, and with an edge from SCC: C; to SCC: C; if and only if there exists u c C; and I & C; much that u, v & E(h). This meta graph is necessarily acyclic.

Questin: Can we recover the above structure efficiently?

This is possible wing DFS.

in O(IVI+161)
time

Q: What is a way to get one complete SCC? Answer: If we start explore from a vertex u in a sink SCC, then we will terminate once we captore the entire SCC which contains u.

But: How do we get such a vertex u in a sinh SCC?

Property! In an entire DFS of a directed

graph G, the next on that receives

the highest port () number must
be in a source SCC.

The above is a consequence of the following:

Property 2: If C and C' are SCC's of a directed graph a, and if there is an edge from C to C', then the highest post number of C is greater than the highest post number of C'.

Proof: There are two cas:

OPS nients C before C'. In this case

DFS will explose C' and emplete C'

before coming back and exiting from

C. So the first note rivited in C

will have a higher port number than

all of C'.

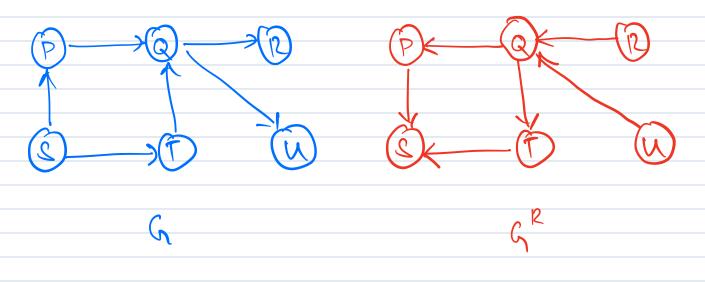
DFS wints C' before C. In this case,
DFS explores C' fully and exits before
discovering C. So all nestices in C
will have higher pre and post numbers
as compared to C'.

How do we use this?

Property I helps us recover a verter vin a source & CC. But we need a vertex in a suite!

Tenere graph

The solution is to run DFS on the renesse exaft he, which is the same as a but with all the edges senered.



S: Source S: Sink R, U are rinks R, U: Source

Question: 4 no can we constant GP in O(141+1E1) time?

Exercise!

Algorithm for SCC

1. Run DFS m GR.

Can be done in parallel to step.

- 2. Order the vertices in h in the decreasing order of the post numbers in step 1.
- 3. Run DFS on G where we use the order of the nextices obtained in step 2.

The connected components algorithms applied on this ordering will yield the 3CC/s.

2xDFS => O(IVI+IEI)

References D'Introduction to k Goeittmus by Comen, leiserson, Rinest, Stein

D'Algorithms by Dasqueta, Papidimitrion and Vaziram.