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Background



Let G = (V ,E ) be a graph on n vertices.

The adjacency matrix A(G ) is an n × n matrix where A(i , j) equals the

number of edges between i and j .

G

12

3 4

A(G ) =


0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0


Characteristic polynomial of A(G ):

P(G ; x) = xn + c1x
n−1 + · · ·+ cn−1x + cn.



Properties of the adjacency matrix:

• If G is simple, then A(G ) is symmetric with zeros on the main

diagonal.

• Sum of all entries of A(G ) = 2× |E (G )|.

• Sum of all 2× 2 principal minors= −|E (G )|.

• Sum of all 3× 3 principal minors= Twice the number of triangles in

G .

• The ij-th entry of A(G )k= the number of walks of length k from

vertex i to vertex j .
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Spectrum: σ(G ) =
(
λ1, λ2, . . . , λn

)
, where λ1 ≤ λ2 ≤ · · · ≤ λn are the

eigenvalues of A(G ).

By eigenvalues of G , we mean the eigenvalues of A(G ).

We say G is nonsingular if A(G ) is nonsingular.

Spectral radius of G : ρ(G) −→ the largest eigenvalue of A(G )

G

12

3 4

σ(G ) = (−1.481,−1, 0.311, 2.170)



Spectral properties:

• λ2
1 + λ2

2 + · · ·+ λ2
n = 2× |E (G )|.

• λ3
1 + λ3

2 + · · ·+ λ3
n = 6× number of triangles in G .

• If λn−1 = −1, then G is the complete graph Kn.

• If λn−1 = 0, then G is complete multipartite.

• If λn−2 < −1, then G is isomorphic to P3.

• If λn−2 = −1, then G c is isomorphic to the union of a complete

bipartite graph and some isolated vertices.
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If T is a tree on n vertices, then

ρ(Pn) ≤ ρ(T ) ≤ ρ(Sn),

with left hand equality if and only if T ∼= Pn and right hand equality if

and only if T ∼= Sn.

The spectral radius is closely related to the maximum degree of

the graph and indicates the presence of a highly connected vertex.



A connected graph G is bipartite if and only if it has no odd cycles.

A connected graph G is bipartite if and only if the negative of each

eigenvalue of G is also an eigenvalue of G with the same multiplicity.

A connected graph G is bipartite if and only if −ρ(G ) is also an

eigenvalue G .

A connected graph G is bipartite if and only if all the odd

coefficients in P(G ; x) are zeros.

If G is a nonsingular bipartite graph on n = 2m vertices, then

σ(G ) =
(
−λm, . . . ,−λ1, λ1, . . . , λm

)
.
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σ(P2) = (−1, 1), σ(P4) = (
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√
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√
5
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√
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√
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Question

Characterize the graphs that satisfy the property that the reciprocal of

each eigenvalue is also an eigenvalue.



• A graph G is said to have the reciprocal eigenvalue property

(property (R)) if 1
λ is an eigenvalue of G whenever λ is an

eigenvalue of G .

• Further, if λ and 1
λ have the same multiplicity, for each eigenvalue λ

then it is said to have the strong reciprocal eigenvalue property

(property (SR)).

• Cvetković, Gutman and Simić 1: Property (SR) was termed as

property C .

• Godsil and Mckay 2: Property (SR) was termed as symmetry

property.

1D. M. Cvetković, I. Gutman and S. K. Simić, On self pseudo-inverse graphs, Univ. Beograd.

Publ. Elektrotehn. Fak., (1978).
2C. D. Godsil and B. D. McKay, A new graph product and its spectrum, Bull Aust Math Soc.,

(1978).
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A perfect matching in a graph G is a collection of vertex disjoint edges

that covers every vertex.

G

1 2 3 4 5

6 7 8

A graph in general can have more than one perfect matchings.

If a tree has a perfect matching, it is unique and such trees are

precisely the trees which are nonsingular.

In general, any graph with a unique perfect matching is nonsingular.



Alternating path: Let G be a graph with a unique perfect matching. A

path P(i , j) = [i = i1, i2, . . . , i2k = j ] is said to be an alternating path if

the edges {i1, i2}, {i3, i4}, . . . , {i2k−1, i2k} are edges in the perfect

matching.

G

1 2 3 4 5

6 7 8

The path P = [1, 2, 3, 6] is an alternating path.



Corona: A corona of a graph G , denoted by Ĝ , is the graph obtained

from G by adding a new pendant vertex at each vertex of G .

Example:

1 2 3 4

P4

1 2 3 4

1′ 2′ 3′ 4′

P̂4
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Lemma: If G = Ĝ1, a corona of G1, then λ is an eigenvalue of G if and

only if −1
λ is an eigenvalue of G . Furthermore, if G1 is bipartite then G

has strong reciprocal eigenvalue property.

A(Ĝ1) =

[
A(G1) I

I 0

]

• If µ1, µ2, . . . , µn are eigenvalues of G1, then

µ1 +
√
µ2
1 + 4

2
,
µ1 −

√
µ2
1 + 4

2
, . . . ,

µn +
√
µ2
n + 4

2
,
µn −

√
µ2
n + 4

2

are eigenvalues of Ĝ1.

1S. Barik, S. Pati, and B. K. Sarma, The spectrum of the corona of two graphs, SIAM J. Discrete

Math., (2007).
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Lemma: If G = Ĝ1, a corona of G1, then λ is an eigenvalue of G if and

only if −1
λ is an eigenvalue of G . Furthermore, if G1 is bipartite then G

has strong reciprocal eigenvalue property.
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G H

Figure 1: Non-corona graphs with property (SR)

P(G ; x) = x8 − 8x6 + 15x4 − 8x2 + 1

P(H; x) = x8 − 11x6 − 2x5 + 24x4 − 2x3 − 11x2 + 1



Trees with property (SR)/ (R)



Definition: A polynomial P(x) = a0x
n + a1x

n−1 + · · ·+ an−1x + an of

degree n with real coefficients is called self-reciprocal or palindromic if

P(x) = xnP( 1x ), that is, ai = an−i , for i = 0, 1, . . . , n. It is called

anti-palindromic if P(x) = −xnP( 1x ).

Pless1: If α is a root of a polynomial P(x) that is either palindromic or

anti-palindromic, then 1
α is also a root of P(x) and they both have the

same multiplicity.

1V. Pless, Introduction to the theory of error-correcting codes, New York: Wiley-Interscience

Pub., (1990).
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Lemma: Let G be a graph on n vertices with property (SR) and

P(G ; x) = xn + c1x
n−1 + · · ·+ cn−1x + cn.

Then P(x) = −xnP( 1x ) and hence, |ci | = |cn−i | for i = 1, 2, . . . , n − 1

and |cn| = 1.

• If G satisfies property (SR), then | detA(G )| = 1.

1S. Barik, S. Pati, and B. K. Sarma, The spectrum of the corona of two graphs, SIAM J. Discrete

Math., (2007).



Theorem: Let T be a tree on n = 2k vertices. Then T has property

(SR) if and only if T is a corona tree.

u1

f1 f2 f3 f4 fk

v1

u2

v2

u3

v3

u4

v4

uk

vk

• c2 = number of edges = 2k − 1

• c2k−2 = the number of pairwise disjoint edge subsets of size

k − 1 = k + k − 1 + 1 > c2.

1S. Barik, S. Pati, and B. K. Sarma, The spectrum of the corona of two graphs, SIAM J. Discrete

Math., (2007).
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Graph inverse: Let G be a nonsingular graph. If there is a signature

matrix S such that SA(G )−1S is nonnegative, then G is said to be

invertible and the weighted associated with the matrix SA(G )−1S is

called the inverse graph of G and is denoted by G−1.

G G−1

1C. D. Godsil, Inverses of trees, Combinatorica, 5:33–39, (1985).
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Problem (1985): (Godsil) Characterize the graphs G such that G−1 is

isomorphic to G .

Theorem: Let G be a bipartite connected graph on n vertices with a

unique perfect matching M and PG denote the collection of all

alternating paths in G . Let B = [bij ], where

bij =


∑

P(i,j)∈PG

(−1)
|P(i,j)|−1

2 , if at least one P(i , j) ∈ PG ,

0, otherwise.

Then B = A(G )−1.

1C. D. Godsil, Inverses of trees, Combinatorica, (1985).
2S. Barik, M. Neumann, and S. Pati, On nonsingular trees and a reciprocal eigenvalue property,

Linear Multilinear Algebra, (2006).



Example:

T T−1

1

2 3 4 5 6

7

8

2

1 8

4

365

7

Figure 2: A nonsingular tree and its inverse



Observation: Given a nonsingular tree T , A(T )−1 is diagonally similar

to the adjacency matrix of some graph.

Lemma: Let T be a nonsingular tree. Then T−1 is connected.

Lemma: Let T be a nonsingular tree. Then T−1 is bipartite.
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Lemma: Let T be a nonsingular tree. Then T−1 is bipartite.



Theorem: Let T be a nonsingular tree on n = 2k vertices. Then the

following are equivalent.

(i) T has property (SR).

(ii) T has property (R).

(iii) T is a corona tree.

(iv) |PT | = 2k − 1.

(v) T−1 is a tree.

(vi) T−1 is isomorphic to T .

1S. Barik, M. Neumann, and S. Pati, On nonsingular trees and a reciprocal eigenvalue property,

Linear Multiliear Algebra, (2006).



Unicyclic graphs with property

(SR)



If G is a unicyclic graph with an even cycle and is also a simple corona,

then G satisfies property (SR).

Let us ask the converse. Suppose that we have a unicyclic graph with

property (SR). Is it necessarily bipartite? Is it necessarily a corona?



Lemma: Let G be a unicyclic graph with property (SR) with cycle length

g . Then g is even.

G is unicyclic graph

with property (SR)

g ̸= 4

g = 4

Corona graph

Corona graph

Noncorona graph
Classes characterized

in 1 and 2

1S. Barik, M. Nath, S. Pati, and B. K. Sarma, Unicyclic graphs with strong reciprocal eigenvalue

property, Electron. J. Linear Algebra, (2008).
2R.B. Bapat, S.K. Panda, and S. Pati, Self-inverse unicyclic graphs and strong reciprocal

eigenvalue property, Linear Algebra Appl., (2017).
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Bipartite graphs with property

(SR)



Contraction of matching edges:



Theorem (Panda and Pati, Simion and Cao): Let G be a connected

bipartite graph with a unique perfect matching such that the graph

obtained by contracting the matching edges is also bipartite. Then the

following conditions are equivalent.

(i) The reciprocal of the largest eigenvalue is the smallest

positive eigenvalue of G .

(ii) G−1 exists and is isomorphic to G .

(iii) G satisfies property (R).

(iv) G satisfies property (SR).

(v) G is a simple corona of some bipartite graph.

1S. Panda and S. Pati, On some graphs which satisfy reciprocal eigenvalue properties, Linear

Algebra Appl., (2017).
2R. Simion and D. S. Cao, Solution to a problem of C. D. Godsil regarding bipartite graphs with

unique perfect matching, Combinatorica, (1989).



• Propery (R) =⇒ property (SR) in the classes we discussed.
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Theorem: The graph Gn
n satifies property (R) but not (SR).

In P(Gn
n; x), the power of (x2 + x − 1) is n more than the power of

(x2 − x − 1). Thus, Gn
n does not satisfy property (SR).

1S. Barik and S. Pati, Classes of nonbipartite graphs with reciprocal eigenvalue property, Linear

Algebra Appl., (2023).



Singular graphs and the

reciprocal eigenvalue property



Can there exist a graph which has at least one zero eigenvalue and

whose nonzero eigenvalues satisfy the reciprocal eigenvalue

property?

Graphs with the weak reciprocal eigenvalue property.

Trivial example: K1, σ(K1) = (0)

Nontrivial graph?

Nontrivial tree?



Can there exist a graph which has at least one zero eigenvalue and

whose nonzero eigenvalues satisfy the reciprocal eigenvalue

property?

Graphs with the weak reciprocal eigenvalue property.

Trivial example: K1, σ(K1) = (0)

Nontrivial graph?

Nontrivial tree?



Can there exist a graph which has at least one zero eigenvalue and

whose nonzero eigenvalues satisfy the reciprocal eigenvalue

property?

Graphs with the weak reciprocal eigenvalue property.

Trivial example: K1, σ(K1) = (0)

Nontrivial graph?

Nontrivial tree?



Can there exist a graph which has at least one zero eigenvalue and

whose nonzero eigenvalues satisfy the reciprocal eigenvalue

property?

Graphs with the weak reciprocal eigenvalue property.

Trivial example: K1, σ(K1) = (0)

Nontrivial graph?

Nontrivial tree?



Can there exist a graph which has at least one zero eigenvalue and

whose nonzero eigenvalues satisfy the reciprocal eigenvalue

property?

Graphs with the weak reciprocal eigenvalue property.

Trivial example: K1, σ(K1) = (0)

Nontrivial graph?

Nontrivial tree?



Direct Product: Let F and H be two graphs with disjoint vertex sets

V (F ) = {u1, . . . , um} and V (H) = {v1 . . . , vn}, respectively.

The direct product of F and H, denoted by F × H, is the graph with the

vertex set V (F )× V (H), and

(ui , vj) ∼ (ur , vs) in F × H if ui ∼ ur in F and vj ∼ vs in H.

Theorem (Weichsel’s Theorem): F × H is connected if and only if

both F and H are connected and at least one of them is non-bipartite.

Furthermore, if both F and H are connected and bipartite, then F × H

has exactly two connected components.

• The direct product a bipartite graph with any bipartite graph is always

bipartite.

1P. M. Weichsel, The Kronecker product of graphs, Proc. Am. Math. Soc., (1962).
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Lemma1: Let F and H be two graphs of order m and n, respectively.

Suppose that λ1, λ2, . . . , λm are the eigenvalues of F and µ1, µ2, . . . , µn

are the eigenvalues of H, then the eigenvalues of F × H are

λiµj , i = 1, 2, . . . ,m; j = 1, 2, . . . , n.

Lemma: Let F and H be two connected graphs. If F and H both satisfy

property (R), then F × H satisfies property (R).

(Note: The converse is not true.)

1D. M. Cvetković, M. Doob and H. Sachs, Spectra of graphs: Theory and application, (1980).
2S. Barik, D. Mondal, and S. Pati, Trees with the reciprocal eigenvalue property, Linear

Multilinear Algebra, (2022).
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Theorem Let G be a connected graph with property (R). Then

| detA(G )| = 1.

• Let G be a graph with property (R) and σ(G ) = (λ1, λ2, . . . , λn).

• Suppose that det(A(G )) = m, for some integer m.

• Consider H = G × G × · · · × G (n-times).

• The nn eigenvalues of H are of the form

λi1λi2 · · ·λin , where i1, i2, . . . , in ∈ {1, 2, . . . , n}.

• In particular, λ1λ2 · · ·λn is an eigenvalue of H.

• Further, since G satisfies property (R), 1
λ1
, 1
λ2
, . . . , 1

λn
are eigenvalues

of G . Thus, 1
m = 1

λ1λ2···λn
is also an eigenvalue of H.

• By RRT, 1
m = ±1 =⇒ m = ±1.

1S. Barik, D. Mondal, and S. Pati, Trees with the reciprocal eigenvalue property, Linear and

Multilinear Algebra, (2022).
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Remark: Let G be a connected graph on n vertices and

P(G ; x) = xn + a1x
n−1 + · · ·+ an−1x + an. If G satisfies property (R),

then |an| = 1.

Theorem: Let T a singular tree of order n ≥ 2. Then its nonzero

eigenvalues cannot satisfy the reciprocal eigenvalue property.

1S. Barik, D. Mondal and S. Pati, Trees with the reciprocal eigenvalue property, Linear and

Multilinear Algebra, (2022).
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Can there be a nontrivial graph with weak reciprocal eigenvalue

property?



Let G be a singular graph with P(G ; x) = xn−k(xk + a1x
k−1 + · · ·+ ak).

Let rank(A(G )) = k. So, |ak | ≠ 0.

Question: Can we ever have |ak | = 1?

Example:

G1

P(G1; x) = x4
(
x6 − 13x4 + 44x2 − 16

)
.



Theorem: Let G be a connected singular bipartite graph of order n ≥ 2.

Assume that A(G ) has rank k . Let

P(G ; x) = xn−k(xk + a1x
k−1 + · · ·+ ak) be the characteristic polynomial

of G . Then |ak | ≠ 1.

• Let (R,C ) be a bipartition of V (G ) such that R = {v1, . . . , vp},
C = {vp+1, . . . , vp+q} and p + q = n (p ≤ q).

• Then

A(G ) =

[
0 B

B t 0

]
,

where B is of order p × q.

• Since G is bipartite, k is even. Let k = 2r .

• Then P(G ; x) = xn + a2x
n−2 + a4x

n−4 + · · ·+ a2rx
n−2r .

1S. Barik, D. Mondal, S. Pati, and K. Sarma, Singular graphs and the reciprocal eigenvalue

property, Discrete Math., (2024).
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• Note that

P(BB t ; x) = xp + a2x
p−1 + a4x

p−2 + · · ·+ a2rx
p−r

and rank(B) = rank(BB t) = r .

• Then

a2r = (−1)r
∑

S⊆{1,2,...,p}
|S|=r

det(BB t [S ,S ]).

1Singular graphs and the reciprocal eigenvalue property, Communicated, (2023).
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• Using Cauchy-Binet formula,

a2r = (−1)r
∑

S⊆{1,2,...,p}
|S|=r

∑
T⊆{1,2,...,q}

|T |=r

det(B [S ,T ]) det(B t [T ,S ]).

• Thus,

|a2r | =
∑

S⊆{1,2,...,p}
|S|=r

∑
T⊆{1,2,...,q}

|T |=r

(det(B [S ,T ]))2.

• There exist at least two r × r submatrices of B, say B1 and B2 such

that det(B1) ̸= 0 and det(B2) ̸= 0.

• Thus, |a2r | > 1

1S. Barik, D. Mondal, S. Pati, and K. Sarma, Singular graphs and the reciprocal eigenvalue

property, Discrete Math., (2024).
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a2r = (−1)r
∑

S⊆{1,2,...,p}
|S|=r

∑
T⊆{1,2,...,q}

|T |=r

det(B [S ,T ]) det(B t [T ,S ]).

• Thus,

|a2r | =
∑

S⊆{1,2,...,p}
|S|=r

∑
T⊆{1,2,...,q}

|T |=r

(det(B [S ,T ]))2.

• There exist at least two r × r submatrices of B, say B1 and B2 such

that det(B1) ̸= 0 and det(B2) ̸= 0.

• Thus, |a2r | > 1
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Theorem: Let G be a connected singular graph of order n ≥ 2. Assume

that A(G ) has rank k . Let P(G ; x) = xn−k(xk + a1x
k−1 + · · ·+ ak) be

the characteristic polynomial of G . Then |ak | ≠ 1.

• If G is bipartite, then the proof follows.

• Let G be a connected singular non-bipartite graph.

• Then the graph G × P2 is a connected bipartite graph.

• If σ(G ) = (λ1, . . . , λn), then the eigenvalues of G × P2 are

−λn, . . . ,−λ2,−λ1, λ1, λ2, . . . , λn.

• Applying the previous result to G × P2, we have |an−k |2 ̸= 1 and

hence |an−k | ≠ 1.

1S. Barik, D. Mondal, S. Pati, and K. Sarma, Singular graphs and the reciprocal eigenvalue

property, Discrete Math., (2024).



Theorem: Let G be a connected singular graph of order n ≥ 2. Assume

that A(G ) has rank k . Let P(G ; x) = xn−k(xk + a1x
k−1 + · · ·+ ak) be

the characteristic polynomial of G . Then |ak | ≠ 1.
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Theorem: Let G be a connected singular graph with n ≥ 2 vertices.

Then it cannot satisfy the weak reciprocal eigenvalue property.
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Theorem: Let A be symmetric n × n matrix with integer entries.

Suppose that rankA = k < n and A has at least k + 1 nonzero rows. Let

PA(x) = xn−k(xk + a1x
k−1 + · · ·+ ak) be the characteristic polynomial

of A. Then |ak | ≠ 1.
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The pseudo-determinant Det(A) of a square matrix A is defined as the

product of the nonzero eigenvalues of A.

Theorem: Let A be symmetric n × n matrix with integer entries.

Suppose that rankA = k < n and A has at least k + 1 nonzero rows.

Then Det2(A) ̸= 1.
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Does there exist a nontrivial weighted graph with the weak

reciprocal eigenvalue property?

w : E (G ) → (0,∞) is the weight function.
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Let Tw be a weighted tree whose underline graph T = P5 and the weight

of each edge is 1
4√3
.

1
4√3

1
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1
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Tw

σ(Tw ) =
(
− 4
√
3,− 1

4√3
, 0, 1

4√3
, 4
√
3
)
and hence Tw satisfies the weak

reciprocal eigenvalue property.
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Theorem: Let G be a connected singular bipartite graph on n vertices

with rank(G ) = 2 or 4. Suppose that

P(G ; x) = xn−4(x4 + a2x
2 + a4).

Let Gw be the weighted graph obtained from G by assigning weight

(i) 1√
−a2

to each edge if rank(G ) = 2 and

(iI) 1
4
√
a4

to each edge if rank(G ) = 4, respectively.

Then, Gw satisfies the weak reciprocal eigenvalue property.
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w : E (G ) → [1,∞)

Theorem: Let Tw be a weighted singular tree such that the weight of

each edge is at least 1. Then Tw can not satisfy the weak reciprocal

eigenvalue property.
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Future research:

• Characterization of unicyclic graphs with property (R)

• Characterization of bipartite graphs with property (SR)

• For a bipartite graph, whether property (R) implies property (SR)?

• Characterization of weighted graphs with weak reciprocal eigenvalue

property

• To look for other equivalent properties of graphs with property (R)

• Characterization of graphs with the anti-reciprocal eigenvalue

property
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