

Sasmita Barik

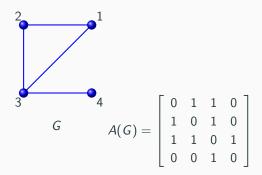
Indian Institute of Technology Bhubaneswar

October 3, 2025 Short-Term Program on "Graphs, Matrices and Applications" IIT Hyderabad

Background

Let G = (V, E) be a graph on n vertices.

The adjacency matrix A(G) is an $n \times n$ matrix where A(i,j) equals the number of edges between i and j.



Characteristic polynomial of A(G):

$$P(G;x) = x^{n} + c_{1}x^{n-1} + \cdots + c_{n-1}x + c_{n}.$$

• If G is simple, then A(G) is symmetric with zeros on the main diagonal.

• If G is simple, then A(G) is symmetric with zeros on the main diagonal.

• Sum of all entries of $A(G) = 2 \times |E(G)|$.

- If G is simple, then A(G) is symmetric with zeros on the main diagonal.
- Sum of all entries of $A(G) = 2 \times |E(G)|$.
- Sum of all 2×2 principal minors= -|E(G)|.

- If G is simple, then A(G) is symmetric with zeros on the main diagonal.
- Sum of all entries of $A(G) = 2 \times |E(G)|$.
- Sum of all 2×2 principal minors= -|E(G)|.
- Sum of all 3×3 principal minors= Twice the number of triangles in G.

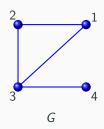
- If G is simple, then A(G) is symmetric with zeros on the main diagonal.
- Sum of all entries of $A(G) = 2 \times |E(G)|$.
- Sum of all 2×2 principal minors= -|E(G)|.
- Sum of all 3×3 principal minors= Twice the number of triangles in G.
- The ij-th entry of $A(G)^k$ = the number of walks of length k from vertex i to vertex j.

Spectrum: $\sigma(G) = (\lambda_1, \lambda_2, \dots, \lambda_n)$, where $\lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n$ are the eigenvalues of A(G).

By **eigenvalues of** G, we mean the eigenvalues of A(G).

We say G is **nonsingular** if A(G) is nonsingular.

Spectral radius of $G: \rho(G) \longrightarrow \text{the largest eigenvalue of } A(G)$



$$\sigma(G) = (-1.481, -1, 0.311, 2.170)$$

•
$$\lambda_1^2 + \lambda_2^2 + \cdots + \lambda_n^2 = 2 \times |E(G)|$$
.

•
$$\lambda_1^2 + \lambda_2^2 + \cdots + \lambda_n^2 = 2 \times |E(G)|$$
.

•
$$\lambda_1^3 + \lambda_2^3 + \dots + \lambda_n^3 = 6 \times$$
 number of triangles in G .

•
$$\lambda_1^2 + \lambda_2^2 + \cdots + \lambda_n^2 = 2 \times |E(G)|$$
.

•
$$\lambda_1^3 + \lambda_2^3 + \dots + \lambda_n^3 = 6 \times$$
 number of triangles in G .

• If $\lambda_{n-1} = -1$, then G is the complete graph K_n .

•
$$\lambda_1^2 + \lambda_2^2 + \cdots + \lambda_n^2 = 2 \times |E(G)|$$
.

•
$$\lambda_1^3 + \lambda_2^3 + \dots + \lambda_n^3 = 6 \times$$
 number of triangles in G .

- If $\lambda_{n-1} = -1$, then G is the complete graph K_n .
- If $\lambda_{n-1} = 0$, then G is complete multipartite.

•
$$\lambda_1^2 + \lambda_2^2 + \cdots + \lambda_n^2 = 2 \times |E(G)|$$
.

•
$$\lambda_1^3 + \lambda_2^3 + \dots + \lambda_n^3 = 6 \times$$
 number of triangles in G .

- ullet If $\lambda_{n-1}=-1$, then G is the complete graph \mathcal{K}_n .
- If $\lambda_{n-1} = 0$, then G is complete multipartite.
- If $\lambda_{n-2} < -1$, then *G* is isomorphic to P_3 .

•
$$\lambda_1^2 + \lambda_2^2 + \cdots + \lambda_n^2 = 2 \times |E(G)|$$
.

•
$$\lambda_1^3 + \lambda_2^3 + \cdots + \lambda_n^3 = 6 \times$$
 number of triangles in G .

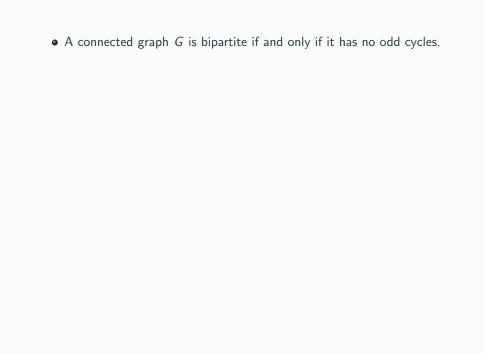
- If $\lambda_{n-1} = -1$, then G is the complete graph K_n .
- If $\lambda_{n-1} = 0$, then G is complete multipartite.
- If $\lambda_{n-2} < -1$, then G is isomorphic to P_3 .
- If $\lambda_{n-2} = -1$, then G^c is isomorphic to the union of a complete bipartite graph and some isolated vertices.

If T is a tree on n vertices, then

$$\rho(P_n) \leq \rho(T) \leq \rho(S_n),$$

with left hand equality if and only if $T \cong P_n$ and right hand equality if and only if $T \cong S_n$.

The spectral radius is closely related to the maximum degree of the graph and indicates the presence of a highly connected vertex.



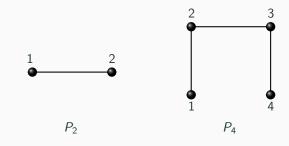
- A connected graph G is bipartite if and only if it has no odd cycles.
- A connected graph G is bipartite if and only if the negative of each eigenvalue of G is also an eigenvalue of G with the same multiplicity.

- A connected graph G is bipartite if and only if it has no odd cycles.
- A connected graph G is bipartite if and only if the negative of each eigenvalue of G is also an eigenvalue of G with the same multiplicity.
- A connected graph G is bipartite if and only if $-\rho(G)$ is also an eigenvalue G.

- A connected graph G is bipartite if and only if it has no odd cycles.
- A connected graph G is bipartite if and only if the negative of each eigenvalue of G is also an eigenvalue of G with the same multiplicity.
- A connected graph G is bipartite if and only if $-\rho(G)$ is also an eigenvalue G.
- A connected graph G is bipartite if and only if all the odd coefficients in P(G;x) are zeros.

- A connected graph G is bipartite if and only if it has no odd cycles.
- A connected graph G is bipartite if and only if the negative of each eigenvalue of G is also an eigenvalue of G with the same multiplicity.
- A connected graph G is bipartite if and only if $-\rho(G)$ is also an eigenvalue G.
- A connected graph G is bipartite if and only if all the odd coefficients in P(G;x) are zeros.
- If G is a **nonsingular bipartite graph** on n = 2m vertices, then

$$\sigma(G) = (-\lambda_m, \ldots, -\lambda_1, \lambda_1, \ldots, \lambda_m).$$



$$P_2$$
 P_4

 $\sigma(P_2) = (-1,1), \quad \sigma(P_4) = (\frac{-1-\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2})$

Question

Characterize the graphs that satisfy the property that the reciprocal of each eigenvalue is also an eigenvalue.

• A graph G is said to have the **reciprocal eigenvalue property** (property (R)) if $\frac{1}{\lambda}$ is an eigenvalue of G whenever λ is an eigenvalue of G.

¹D. M. Cvetković, I. Gutman and S. K. Simić, On self pseudo-inverse graphs, *Univ. Beograd. Publ. Elektrotehn. Fak.*, (1978).

²C. D. Godsil and B. D. McKay, A new graph product and its spectrum, *Bull Aust Math Soc.*, (1978).

- A graph G is said to have the **reciprocal eigenvalue property** (property (R)) if $\frac{1}{\lambda}$ is an eigenvalue of G whenever λ is an eigenvalue of G.
- Further, if λ and $\frac{1}{\lambda}$ have the same multiplicity, for each eigenvalue λ then it is said to have the **strong reciprocal eigenvalue property** (property (SR)).

¹D. M. Cvetković, I. Gutman and S. K. Simić, On self pseudo-inverse graphs, *Univ. Beograd. Publ. Elektrotehn, Fak.*, (1978).

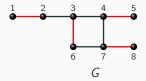
 $^{^2}$ C. D. Godsil and B. D. McKay, A new graph product and its spectrum, *Bull Aust Math Soc.*, (1978).

- A graph G is said to have the **reciprocal eigenvalue property** (property (R)) if $\frac{1}{\lambda}$ is an eigenvalue of G whenever λ is an eigenvalue of G.
- Further, if λ and $\frac{1}{\lambda}$ have the same multiplicity, for each eigenvalue λ then it is said to have the **strong reciprocal eigenvalue property** (property (SR)).
- Cvetković, Gutman and Simić ¹: Property (SR) was termed as property C.
- Godsil and Mckay ²: Property (SR) was termed as symmetry property.

¹D. M. Cvetković, I. Gutman and S. K. Simić, On self pseudo-inverse graphs, *Univ. Beograd. Publ. Elektrotehn, Fak.*, (1978).

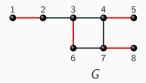
²C. D. Godsil and B. D. McKay, A new graph product and its spectrum, *Bull Aust Math Soc.*, (1978).

A **perfect matching** in a graph G is a collection of vertex disjoint edges that covers every vertex.



- A graph in general can have more than one perfect matchings.
- If a tree has a perfect matching, it is unique and such trees are precisely the trees which are nonsingular.
- In general, any graph with a unique perfect matching is nonsingular.

Alternating path: Let G be a graph with a unique perfect matching. A path $P(i,j) = [i = i_1, i_2, \ldots, i_{2k} = j]$ is said to be an **alternating path** if the edges $\{i_1, i_2\}, \{i_3, i_4\}, \ldots, \{i_{2k-1}, i_{2k}\}$ are edges in the perfect matching.



The path P = [1, 2, 3, 6] is an alternating path.

Corona: A corona of a graph G, denoted by \hat{G} , is the graph obtained from G by adding a new pendant vertex at each vertex of G.

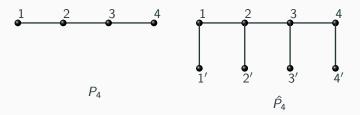
Example:

Corona: A corona of a graph G, denoted by \hat{G} , is the graph obtained from G by adding a new pendant vertex at each vertex of G.

Example:

Corona: A corona of a graph G, denoted by \hat{G} , is the graph obtained from G by adding a new pendant vertex at each vertex of G.

Example:



Lemma: If $G = \hat{G}_1$, a corona of G_1 , then λ is an eigenvalue of G if and only if $\frac{-1}{\lambda}$ is an eigenvalue of G. Furthermore, if G_1 is bipartite then G has strong reciprocal eigenvalue property.

^{15.} Barik, S. Pati, and B. K. Sarma, The spectrum of the corona of two graphs, SIAM J. Discrete Math., (2007).

Lemma: If $G = \hat{G}_1$, a corona of G_1 , then λ is an eigenvalue of G if and only if $\frac{-1}{\lambda}$ is an eigenvalue of G. Furthermore, if G_1 is bipartite then G has strong reciprocal eigenvalue property.

$$A(\hat{G}_1) = \begin{bmatrix} A(G_1) & I \\ I & \mathbf{0} \end{bmatrix}$$

 $^{^{1}}$ S. Barik, S. Pati, and B. K. Sarma, The spectrum of the corona of two graphs, SIAM J. Discrete Math., (2007).

Lemma: If $G = \hat{G}_1$, a corona of G_1 , then λ is an eigenvalue of G if and only if $\frac{-1}{\lambda}$ is an eigenvalue of G. Furthermore, if G_1 is bipartite then G has strong reciprocal eigenvalue property.

$$A(\hat{G}_1) = \begin{bmatrix} A(G_1) & I \\ I & \mathbf{0} \end{bmatrix}$$

• If $\mu_1, \mu_2, \dots, \mu_n$ are eigenvalues of G_1 , then

$$\frac{\mu_1+\sqrt{\mu_1^2+4}}{2}, \frac{\mu_1-\sqrt{\mu_1^2+4}}{2}, \ldots, \frac{\mu_n+\sqrt{\mu_n^2+4}}{2}, \frac{\mu_n-\sqrt{\mu_n^2+4}}{2}$$

are eigenvalues of \hat{G}_1 .

 $^{^{1}}$ S. Barik, S. Pati, and B. K. Sarma, The spectrum of the corona of two graphs, SIAM J. Discrete Math., (2007).

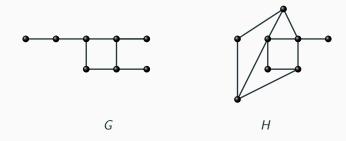


Figure 1: Non-corona graphs with property (SR)

$$P(G;x) = x^8 - 8x^6 + 15x^4 - 8x^2 + 1$$

$$P(H;x) = x^8 - 11x^6 - 2x^5 + 24x^4 - 2x^3 - 11x^2 + 1$$

Trees with property (SR)/ (R)

Definition: A polynomial $P(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n$ of degree n with real coefficients is called *self-reciprocal* or *palindromic* if $P(x) = x^n P(\frac{1}{x})$, that is, $a_i = a_{n-i}$, for $i = 0, 1, \ldots, n$. It is called *anti-palindromic* if $P(x) = -x^n P(\frac{1}{x})$.

¹V. Pless, *Introduction to the theory of error-correcting codes*, New York: Wiley-Interscience Pub., (1990).

Definition: A polynomial $P(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n$ of degree n with real coefficients is called *self-reciprocal* or *palindromic* if $P(x) = x^n P(\frac{1}{x})$, that is, $a_i = a_{n-i}$, for $i = 0, 1, \dots, n$. It is called *anti-palindromic* if $P(x) = -x^n P(\frac{1}{x})$.

Pless¹: If α is a root of a polynomial P(x) that is either palindromic or anti-palindromic, then $\frac{1}{\alpha}$ is also a root of P(x) and they both have the same multiplicity.

¹V. Pless, *Introduction to the theory of error-correcting codes*, New York: Wiley-Interscience Pub., (1990).

Lemma: Let G be a graph on n vertices with property (SR) and

$$P(G; x) = x^{n} + c_{1}x^{n-1} + \cdots + c_{n-1}x + c_{n}.$$

Then
$$P(x) = -x^n P(\frac{1}{x})$$
 and hence, $|c_i| = |c_{n-i}|$ for $i = 1, 2, \dots, n-1$ and $|c_n| = 1$.

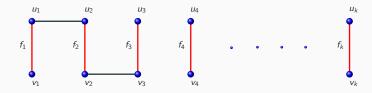
• If G satisfies property (SR), then $|\det A(G)| = 1$.

¹S. Barik, S. Pati, and B. K. Sarma, The spectrum of the corona of two graphs, SIAM J. Discrete Math., (2007).

Theorem: Let T be a tree on n = 2k vertices. Then T has property (SR) if and only if T is a corona tree.

 $^{^{1}}$ S. Barik, S. Pati, and B. K. Sarma, The spectrum of the corona of two graphs, SIAM J. Discrete Math., (2007).

Theorem: Let T be a tree on n = 2k vertices. Then T has property (SR) if and only if T is a corona tree.



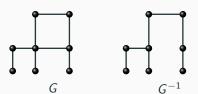
- c_2 = number of edges = 2k 1
- c_{2k-2} = the number of pairwise disjoint edge subsets of size $k-1=k+k-1+1>c_2$.

¹S. Barik, S. Pati, and B. K. Sarma, The spectrum of the corona of two graphs, SIAM J. Discrete Math., (2007).

Graph inverse: Let G be a nonsingular graph. If there is a signature matrix S such that $SA(G)^{-1}S$ is nonnegative, then G is said to be invertible and the weighted associated with the matrix $SA(G)^{-1}S$ is called the inverse graph of G and is denoted by G^{-1} .

¹C. D. Godsil, Inverses of trees, *Combinatorica*, 5:33–39, (1985).

Graph inverse: Let G be a nonsingular graph. If there is a signature matrix S such that $SA(G)^{-1}S$ is nonnegative, then G is said to be invertible and the weighted associated with the matrix $SA(G)^{-1}S$ is called the inverse graph of G and is denoted by G^{-1} .



¹C. D. Godsil, Inverses of trees, *Combinatorica*, 5:33–39, (1985).

Problem (1985): (Godsil) Characterize the graphs G such that G^{-1} is isomorphic to G.

Theorem: Let G be a bipartite connected graph on n vertices with a unique perfect matching \mathcal{M} and \mathcal{P}_G denote the collection of all alternating paths in G. Let $B = [b_{ij}]$, where

$$b_{ij} = \begin{cases} \sum_{P(i,j) \in \mathcal{P}_G} (-1)^{\frac{|P(i,j)|-1}{2}}, & \text{if at least one } P(i,j) \in \mathcal{P}_G, \\ 0, & \text{otherwise.} \end{cases}$$

Then $B = A(G)^{-1}$.

¹C. D. Godsil, Inverses of trees, *Combinatorica*, (1985).

²S. Barik, M. Neumann, and S. Pati, On nonsingular trees and a reciprocal eigenvalue property, *Linear Multilinear Algebra*, (2006).

Example:

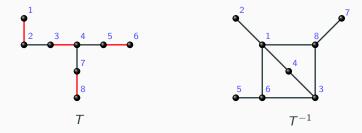


Figure 2: A nonsingular tree and its inverse

Observation: Given a nonsingular tree T, $A(T)^{-1}$ is diagonally similar

to the adjacency matrix of some graph.

Observation: Given a nonsingular tree T, $A(T)^{-1}$ is diagonally similar to the adjacency matrix of some graph.

Lemma: Let T be a nonsingular tree. Then T^{-1} is connected.

Observation: Given a nonsingular tree T, $A(T)^{-1}$ is diagonally similar to the adjacency matrix of some graph.

Lemma: Let T be a nonsingular tree. Then T^{-1} is connected.

Lemma: Let T be a nonsingular tree. Then T^{-1} is bipartite.

Theorem: Let T be a nonsingular tree on n = 2k vertices. Then the following are equivalent.

- (i) T has property (SR).
- (ii) T has property (R).
- (iii) T is a corona tree.
- (iv) $|\mathcal{P}_T| = 2k 1$.
- (v) T^{-1} is a tree.
- (vi) T^{-1} is isomorphic to T.

¹S. Barik, M. Neumann, and S. Pati, On nonsingular trees and a reciprocal eigenvalue property, *Linear Multiliear Algebra*, (2006).

Unicyclic graphs with property (SR)

If G is a unicyclic graph with an even cycle and is also a simple corona, then G satisfies property (SR).

Let us ask the converse. Suppose that we have a unicyclic graph with property (SR). Is it necessarily bipartite? Is it necessarily a corona?

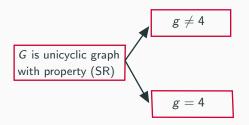
¹S. Barik, M. Nath, S. Pati, and B. K. Sarma, Unicyclic graphs with strong reciprocal eigenvalue property, *Electron. J. Linear Algebra*, (2008).

²R.B. Bapat, S.K. Panda, and S. Pati, Self-inverse unicyclic graphs and strong reciprocal eigenvalue property, *Linear Algebra Appl.*, (2017).

G is unicyclic graph with property (SR)

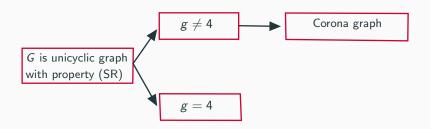
^{15.} Barik, M. Nath, S. Pati, and B. K. Sarma, Unicyclic graphs with strong reciprocal eigenvalue property. *Electron. J. Linear Algebra*. (2008).

²R.B. Bapat, S.K. Panda, and S. Pati, Self-inverse unicyclic graphs and strong reciprocal eigenvalue property, *Linear Algebra Appl.*, (2017).



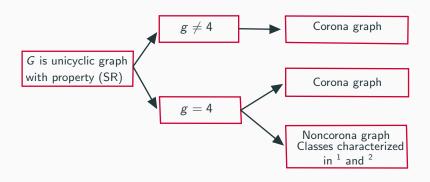
¹S. Barik, M. Nath, S. Pati, and B. K. Sarma, Unicyclic graphs with strong reciprocal eigenvalue property, *Electron. J. Linear Algebra*, (2008).

²R.B. Bapat, S.K. Panda, and S. Pati, Self-inverse unicyclic graphs and strong reciprocal eigenvalue property, *Linear Algebra Appl.*, (2017).



¹S. Barik, M. Nath, S. Pati, and B. K. Sarma, Unicyclic graphs with strong reciprocal eigenvalue property, *Electron. J. Linear Algebra*, (2008).

²R.B. Bapat, S.K. Panda, and S. Pati, Self-inverse unicyclic graphs and strong reciprocal eigenvalue property, *Linear Algebra Appl.*, (2017).

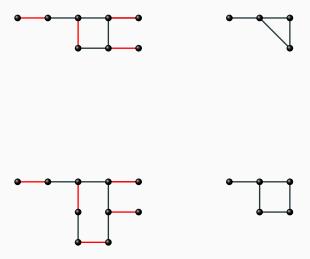


¹S. Barik, M. Nath, S. Pati, and B. K. Sarma, Unicyclic graphs with strong reciprocal eigenvalue property, *Electron. J. Linear Algebra*, (2008).

²R.B. Bapat, S.K. Panda, and S. Pati, Self-inverse unicyclic graphs and strong reciprocal eigenvalue property, *Linear Algebra Appl.*, (2017).

Bipartite graphs with property (SR)

Contraction of matching edges:



Theorem (Panda and Pati, Simion and Cao): Let G be a connected bipartite graph with a unique perfect matching such that the graph obtained by contracting the matching edges is also bipartite. Then the following conditions are equivalent.

- (i) The reciprocal of the largest eigenvalue is the smallest positive eigenvalue of G.
- (ii) G^{-1} exists and is isomorphic to G.
- (iii) G satisfies property (R).
- (iv) G satisfies property (SR).
- (v) G is a simple corona of some bipartite graph.

¹S. Panda and S. Pati, On some graphs which satisfy reciprocal eigenvalue properties, *Linear Algebra Appl.*, (2017).

²R. Simion and D. S. Cao, Solution to a problem of C. D. Godsil regarding bipartite graphs with unique perfect matching, *Combinatorica*, (1989).

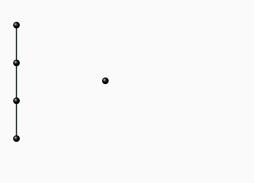
• Propery (R) \Longrightarrow property (SR) in the classes we discussed.

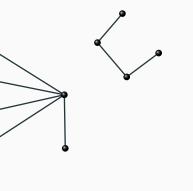
ullet Propery (R) \Longrightarrow property (SR) in the classes we discussed.

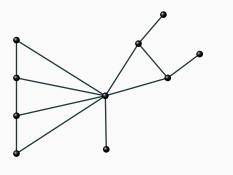
• Whether this is true in general?

 \bullet Propery (R) \Longrightarrow property (SR) in the classes we discussed.

- Whether this is true in general?
- Probably in bipartite case.







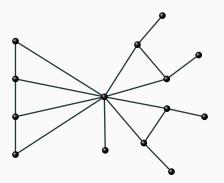
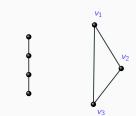
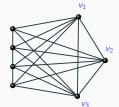
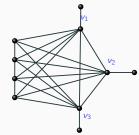


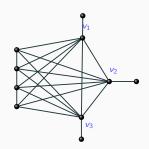
Figure 3: A graph satisfying property (R) but not (SR)

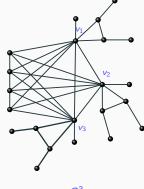
$$\left(\begin{array}{cccccc} \frac{-3-\sqrt{5}}{2}, & \frac{-1-\sqrt{5}}{2}, & \frac{1-\sqrt{5}}{2}, & \frac{-3+\sqrt{5}}{2}, & 2-\sqrt{3}, & \frac{-1+\sqrt{5}}{2}, & \frac{1+\sqrt{5}}{2}, & 2+\sqrt{3} \\ \\ 1 & 3 & 2 & 1 & 1 & \textbf{3} & \textbf{2} & 1 \end{array}\right)$$











 H_v

Theorem: The graph G_n^n satisfies property (R) but not (SR).

In $P(\mathbf{G_n^n}; x)$, the power of $(x^2 + x - 1)$ is n more than the power of $(x^2 - x - 1)$. Thus, $\mathbf{G_n^n}$ does not satisfy property (SR).

¹S. Barik and S. Pati, Classes of nonbipartite graphs with reciprocal eigenvalue property, *Linear Algebra Appl.*, (2023).

reciprocal eigenvalue property

Singular graphs and the

Graphs with the weak reciprocal eigenvalue property.

Graphs with the weak reciprocal eigenvalue property.

Trivial example: K_1 , $\sigma(K_1) = (0)$

Graphs with the weak reciprocal eigenvalue property.

Trivial example: K_1 , $\sigma(K_1) = (0)$

Nontrivial graph?

Graphs with the weak reciprocal eigenvalue property.

Trivial example: K_1 , $\sigma(K_1) = (0)$

Nontrivial graph?

Nontrivial tree?

Direct Product: Let F and H be two graphs with disjoint vertex sets $V(F) = \{u_1, \ldots, u_m\}$ and $V(H) = \{v_1, \ldots, v_n\}$, respectively.

The direct product of F and H, denoted by $F \times H$, is the graph with the vertex set $V(F) \times V(H)$, and

 $(u_i, v_i) \sim (u_r, v_s)$ in $F \times H$ if $u_i \sim u_r$ in F and $v_i \sim v_s$ in H.

¹P. M. Weichsel, The Kronecker product of graphs, Proc. Am. Math. Soc., (1962).

Direct Product: Let F and H be two graphs with disjoint vertex sets $V(F) = \{u_1, \ldots, u_m\}$ and $V(H) = \{v_1, \ldots, v_n\}$, respectively.

The direct product of F and H, denoted by $F \times H$, is the graph with the vertex set $V(F) \times V(H)$, and

 $(u_i, v_i) \sim (u_r, v_s)$ in $F \times H$ if $u_i \sim u_r$ in F and $v_i \sim v_s$ in H.

¹P. M. Weichsel, The Kronecker product of graphs, Proc. Am. Math. Soc., (1962).

Direct Product: Let F and H be two graphs with disjoint vertex sets $V(F) = \{u_1, \ldots, u_m\}$ and $V(H) = \{v_1, \ldots, v_n\}$, respectively.

The direct product of F and H, denoted by $F \times H$, is the graph with the vertex set $V(F) \times V(H)$, and

$$(u_i, v_j) \sim (u_r, v_s)$$
 in $F \times H$ if $u_i \sim u_r$ in F and $v_j \sim v_s$ in H .

Theorem (Weichsel's Theorem): $F \times H$ is connected if and only if both F and H are connected and at least one of them is non-bipartite. Furthermore, if both F and H are connected and bipartite, then $F \times H$ has exactly two connected components.

• The direct product a bipartite graph with any bipartite graph is always bipartite.

¹P. M. Weichsel, The Kronecker product of graphs, *Proc. Am. Math. Soc.*, (1962).

Lemma¹: Let F and H be two graphs of order m and n, respectively. Suppose that $\lambda_1, \lambda_2, \ldots, \lambda_m$ are the eigenvalues of F and $\mu_1, \mu_2, \ldots, \mu_n$ are the eigenvalues of H, then the eigenvalues of $F \times H$ are

$$\lambda_i \mu_i$$
, $i = 1, 2, ..., m$; $j = 1, 2, ..., n$.

¹D. M. Cvetković, M. Doob and H. Sachs, Spectra of graphs: Theory and application, (1980).

²S. Barik, D. Mondal, and S. Pati, Trees with the reciprocal eigenvalue property, *Linear Multilinear Algebra*, (2022).

Lemma¹: Let F and H be two graphs of order m and n, respectively. Suppose that $\lambda_1, \lambda_2, \ldots, \lambda_m$ are the eigenvalues of F and $\mu_1, \mu_2, \ldots, \mu_n$ are the eigenvalues of H, then the eigenvalues of $F \times H$ are

$$\lambda_i \mu_j$$
, $i = 1, 2, ..., m$; $j = 1, 2, ..., n$.

Lemma: Let F and H be two connected graphs. If F and H both satisfy property (R), then $F \times H$ satisfies property (R).

¹D. M. Cvetković, M. Doob and H. Sachs, Spectra of graphs: Theory and application, (1980).

²S. Barik, D. Mondal, and S. Pati, Trees with the reciprocal eigenvalue property, *Linear Multilinear Algebra*, (2022).

Lemma¹: Let F and H be two graphs of order m and n, respectively. Suppose that $\lambda_1, \lambda_2, \ldots, \lambda_m$ are the eigenvalues of F and $\mu_1, \mu_2, \ldots, \mu_n$ are the eigenvalues of H, then the eigenvalues of $F \times H$ are

$$\lambda_i \mu_j, \quad i = 1, 2, \dots, m; \quad j = 1, 2, \dots, n.$$

Lemma: Let F and H be two connected graphs. If F and H both satisfy property (R), then $F \times H$ satisfies property (R).

(Note: The converse is not true.)

¹D. M. Cvetković, M. Doob and H. Sachs, *Spectra of graphs: Theory and application*, (1980).

²S. Barik, D. Mondal, and S. Pati, Trees with the reciprocal eigenvalue property, *Linear Multilinear Algebra*, (2022).

 $^{^{1}}$ S. Barik, D. Mondal, and S. Pati, Trees with the reciprocal eigenvalue property, *Linear and Multilinear Algebra*, (2022).

• Let G be a graph with property (R) and $\sigma(G) = (\lambda_1, \lambda_2, \dots, \lambda_n)$.

 $^{^{1}}$ S. Barik, D. Mondal, and S. Pati, Trees with the reciprocal eigenvalue property, *Linear and Multilinear Algebra*, (2022).

- Let G be a graph with property (R) and $\sigma(G) = (\lambda_1, \lambda_2, \dots, \lambda_n)$.
- Suppose that det(A(G)) = m, for some integer m.

¹S. Barik, D. Mondal, and S. Pati, Trees with the reciprocal eigenvalue property, *Linear and Multilinear Algebra*, (2022).

- Let G be a graph with property (R) and $\sigma(G) = (\lambda_1, \lambda_2, \dots, \lambda_n)$.
- Suppose that det(A(G)) = m, for some integer m.
- Consider $H = G \times G \times \cdots \times G$ (*n*-times).

¹S. Barik, D. Mondal, and S. Pati, Trees with the reciprocal eigenvalue property, *Linear and Multilinear Algebra*, (2022).

- Let G be a graph with property (R) and $\sigma(G) = (\lambda_1, \lambda_2, \dots, \lambda_n)$.
- Suppose that det(A(G)) = m, for some integer m.
- Consider $H = G \times G \times \cdots \times G$ (*n*-times).
- The n^n eigenvalues of H are of the form

$$\lambda_{i_1}\lambda_{i_2}\cdots\lambda_{i_n}$$
, where $i_1,i_2,\ldots,i_n\in\{1,2,\ldots,n\}$.

¹S. Barik, D. Mondal, and S. Pati, Trees with the reciprocal eigenvalue property, *Linear and Multilinear Algebra*, (2022).

- Let G be a graph with property (R) and $\sigma(G) = (\lambda_1, \lambda_2, \dots, \lambda_n)$.
- Suppose that det(A(G)) = m, for some integer m.
- Consider $H = G \times G \times \cdots \times G$ (*n*-times).
- The n^n eigenvalues of H are of the form

$$\lambda_{i_1}\lambda_{i_2}\cdots\lambda_{i_n}$$
, where $i_1,i_2,\ldots,i_n\in\{1,2,\ldots,n\}$.

• In particular, $\lambda_1 \lambda_2 \cdots \lambda_n$ is an eigenvalue of H.

¹S. Barik, D. Mondal, and S. Pati, Trees with the reciprocal eigenvalue property, *Linear and Multilinear Algebra*, (2022).

- Let G be a graph with property (R) and $\sigma(G) = (\lambda_1, \lambda_2, \dots, \lambda_n)$.
- Suppose that det(A(G)) = m, for some integer m.
- Consider $H = G \times G \times \cdots \times G$ (*n*-times).
- The n^n eigenvalues of H are of the form

$$\lambda_{i_1}\lambda_{i_2}\cdots\lambda_{i_n}$$
, where $i_1,i_2,\ldots,i_n\in\{1,2,\ldots,n\}$.

- In particular, $\lambda_1 \lambda_2 \cdots \lambda_n$ is an eigenvalue of H.
- Further, since G satisfies property (R), $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}$ are eigenvalues of G. Thus, $\frac{1}{m} = \frac{1}{\lambda_1 \lambda_2 \dots \lambda_n}$ is also an eigenvalue of H.

¹S. Barik, D. Mondal, and S. Pati, Trees with the reciprocal eigenvalue property, *Linear and Multilinear Algebra*, (2022).

- Let G be a graph with property (R) and $\sigma(G) = (\lambda_1, \lambda_2, \dots, \lambda_n)$.
- Suppose that det(A(G)) = m, for some integer m.
- Consider $H = G \times G \times \cdots \times G$ (*n*-times).
- The n^n eigenvalues of H are of the form

$$\lambda_{i_1}\lambda_{i_2}\cdots\lambda_{i_n}$$
, where $i_1,i_2,\ldots,i_n\in\{1,2,\ldots,n\}$.

- In particular, $\lambda_1 \lambda_2 \cdots \lambda_n$ is an eigenvalue of H.
- Further, since G satisfies property (R), $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}$ are eigenvalues of G. Thus, $\frac{1}{m} = \frac{1}{\lambda_1 \lambda_2 \dots \lambda_n}$ is also an eigenvalue of H.
- By RRT, $\frac{1}{m} = \pm 1 \implies m = \pm 1$.

¹S. Barik, D. Mondal, and S. Pati, Trees with the reciprocal eigenvalue property, *Linear and Multilinear Algebra*, (2022).

Remark: Let G be a connected graph on n vertices and $P(G;x) = x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n$. If G satisfies property (R), then $|a_n| = 1$.

 $^{^{1}}$ S. Barik, D. Mondal and S. Pati, Trees with the reciprocal eigenvalue property, *Linear and Multilinear Algebra*, (2022).

Remark: Let G be a connected graph on n vertices and $P(G;x)=x^n+a_1x^{n-1}+\cdots+a_{n-1}x+a_n$. If G satisfies property (R), then $|a_n|=1$.

Theorem: Let T a singular tree of order $n \ge 2$. Then its nonzero eigenvalues cannot satisfy the reciprocal eigenvalue property.

¹S. Barik, D. Mondal and S. Pati, Trees with the reciprocal eigenvalue property, *Linear and Multilinear Algebra*, (2022).

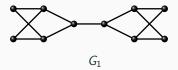
Can there be a nontrivial graph with weak reciprocal eigenvalue property?

Let G be a singular graph with $P(G;x) = x^{n-k}(x^k + a_1x^{k-1} + \cdots + a_k)$.

Let rank(A(G)) = k. So, $|a_k| \neq 0$.

Question: Can we ever have $|a_k| = 1$?

Example:



$$P(G_1; x) = x^4 (x^6 - 13x^4 + 44x^2 - 16).$$

Theorem: Let G be a connected singular bipartite graph of order $n \ge 2$. Assume that A(G) has rank k. Let

 $P(G;x) = x^{n-k}(x^k + a_1x^{k-1} + \cdots + a_k)$ be the characteristic polynomial of G. Then $|a_k| \neq 1$.

¹S. Barik, D. Mondal, S. Pati, and K. Sarma, Singular graphs and the reciprocal eigenvalue property, *Discrete Math.*, (2024).

Theorem: Let G be a connected singular bipartite graph of order $n \ge 2$. Assume that A(G) has rank k. Let

 $P(G; x) = x^{n-k}(x^k + a_1x^{k-1} + \cdots + a_k)$ be the characteristic polynomial of G. Then $|a_k| \neq 1$.

• Let (R, C) be a bipartition of V(G) such that $R = \{v_1, \dots, v_p\}$, $C = \{v_{p+1}, \dots, v_{p+q}\}$ and $p + q = n \ (p \le q)$.

¹S. Barik, D. Mondal, S. Pati, and K. Sarma, Singular graphs and the reciprocal eigenvalue property, *Discrete Math.*, (2024).

Theorem: Let G be a connected singular bipartite graph of order $n \ge 2$.

Assume that A(G) has rank k. Let

$$P(G;x) = x^{n-k}(x^k + a_1x^{k-1} + \cdots + a_k)$$
 be the characteristic polynomial of G . Then $|a_k| \neq 1$.

- Let (R, C) be a bipartition of V(G) such that $R = \{v_1, \dots, v_p\}$, $C = \{v_{p+1}, \dots, v_{p+q}\}$ and $p + q = n \ (p \le q)$.
- Then

$$A(G) = \left[\begin{array}{cc} \mathbf{0} & B \\ B^t & \mathbf{0} \end{array} \right],$$

where B is of order $p \times q$.

¹S. Barik, D. Mondal, S. Pati, and K. Sarma, Singular graphs and the reciprocal eigenvalue property, *Discrete Math.*, (2024).

Theorem: Let G be a connected singular bipartite graph of order $n \ge 2$.

Assume that A(G) has rank k. Let

$$P(G;x) = x^{n-k}(x^k + a_1x^{k-1} + \cdots + a_k)$$
 be the characteristic polynomial of G . Then $|a_k| \neq 1$.

- Let (R, C) be a bipartition of V(G) such that $R = \{v_1, \dots, v_p\}$, $C = \{v_{p+1}, \dots, v_{p+q}\}$ and $p + q = n \ (p \le q)$.
- Then

$$A(G) = \left[\begin{array}{cc} \mathbf{0} & B \\ B^t & \mathbf{0} \end{array} \right],$$

where B is of order $p \times q$.

• Since G is bipartite, k is even. Let k = 2r.

¹S. Barik, D. Mondal, S. Pati, and K. Sarma, Singular graphs and the reciprocal eigenvalue property, *Discrete Math.*, (2024).

Theorem: Let G be a connected singular bipartite graph of order $n \ge 2$.

Assume that A(G) has rank k. Let $P(G;x) = x^{n-k}(x^k + a_1x^{k-1} + \cdots + a_k)$ be the characteristic polynomial of G. Then $|a_k| \neq 1$.

- Let (R, C) be a bipartition of V(G) such that $R = \{v_1, \dots, v_p\}$, $C = \{v_{p+1}, \dots, v_{p+q}\}$ and $p + q = n \ (p \le q)$.
- Then

$$A(G) = \left[\begin{array}{cc} \mathbf{0} & B \\ B^t & \mathbf{0} \end{array} \right],$$

where B is of order $p \times q$.

- Since G is bipartite, k is even. Let k = 2r.
- Then $P(G; x) = x^n + a_2 x^{n-2} + a_4 x^{n-4} + \dots + a_{2r} x^{n-2r}$.

¹S. Barik, D. Mondal, S. Pati, and K. Sarma, Singular graphs and the reciprocal eigenvalue property, *Discrete Math.*, (2024).

Note that

$$P(BB^{t};x) = x^{p} + a_{2}x^{p-1} + a_{4}x^{p-2} + \dots + a_{2r}x^{p-r}$$

and $rank(B) = rank(BB^t) = r$.

¹Singular graphs and the reciprocal eigenvalue property, *Communicated*, (2023).

Note that

$$P(BB^{t};x) = x^{p} + a_{2}x^{p-1} + a_{4}x^{p-2} + \dots + a_{2r}x^{p-r}$$
 and rank(B) = rank(BB^t) = r.

Then

$$a_{2r} = (-1)^r \sum_{\substack{S \subseteq \{1,2,...,p\} \ |S|=r}} \det(BB^t [S,S]).$$

¹Singular graphs and the reciprocal eigenvalue property, *Communicated*, (2023).

$$a_{2r} = (-1)^r \sum_{\substack{S \subseteq \{1,2,\dots,p\} \\ |S|=r}} \sum_{\substack{T \subseteq \{1,2,\dots,q\} \\ |T|=r}} \det(B\left[S,T\right]) \det(B^t\left[T,S\right]).$$

¹S. Barik, D. Mondal, S. Pati, and K. Sarma, Singular graphs and the reciprocal eigenvalue property, *Discrete Math.*, (2024).

$$a_{2r} = (-1)^r \sum_{\substack{S \subseteq \{1,2,...,p\} \ |S|=r}} \sum_{\substack{T \subseteq \{1,2,...,q\} \ |T|=r}} \det(B[S,T]) \det(B^t[T,S]).$$

Thus,

$$|a_{2r}| = \sum_{\substack{S \subseteq \{1,2,...,p\} \ |S|=r}} \sum_{\substack{T \subseteq \{1,2,...,q\} \ |T|=r}} (\det(B[S,T]))^2.$$

¹S. Barik, D. Mondal, S. Pati, and K. Sarma, Singular graphs and the reciprocal eigenvalue property, *Discrete Math.*, (2024).

$$a_{2r} = (-1)^r \sum_{\substack{S \subseteq \{1,2,...,p\} \ |S|=r}} \sum_{\substack{T \subseteq \{1,2,...,q\} \ |T|=r}} \det(B[S,T]) \det(B^t[T,S]).$$

Thus,

$$|a_{2r}| = \sum_{\substack{S \subseteq \{1,2,...,p\} \ |S|=r}} \sum_{\substack{T \subseteq \{1,2,...,q\} \ |T|=r}} (\det(B[S,T]))^2.$$

• There exist at least two $r \times r$ submatrices of B, say B_1 and B_2 such that $det(B_1) \neq 0$ and $det(B_2) \neq 0$.

¹S. Barik, D. Mondal, S. Pati, and K. Sarma, Singular graphs and the reciprocal eigenvalue property, *Discrete Math.*, (2024).

$$a_{2r} = (-1)^r \sum_{\substack{S \subseteq \{1,2,\dots,p\} \\ |S|=r}} \sum_{\substack{T \subseteq \{1,2,\dots,q\} \\ |T|=r}} \det(B\left[S,T\right]) \det(B^t\left[T,S\right]).$$

Thus,

$$|a_{2r}| = \sum_{\substack{S \subseteq \{1,2,...,p\} \ |S|=r}} \sum_{\substack{T \subseteq \{1,2,...,q\} \ |T|=r}} (\det(B[S,T]))^2.$$

- There exist at least two $r \times r$ submatrices of B, say B_1 and B_2 such that $det(B_1) \neq 0$ and $det(B_2) \neq 0$.
- Thus, $|a_{2r}| > 1$

¹S. Barik, D. Mondal, S. Pati, and K. Sarma, Singular graphs and the reciprocal eigenvalue property, *Discrete Math.*, (2024).

¹S. Barik, D. Mondal, S. Pati, and K. Sarma, Singular graphs and the reciprocal eigenvalue property, *Discrete Math.*, (2024).

• If *G* is bipartite, then the proof follows.

¹S. Barik, D. Mondal, S. Pati, and K. Sarma, Singular graphs and the reciprocal eigenvalue property, *Discrete Math.*, (2024).

- If *G* is bipartite, then the proof follows.
- Let G be a connected singular non-bipartite graph.

¹S. Barik, D. Mondal, S. Pati, and K. Sarma, Singular graphs and the reciprocal eigenvalue property, *Discrete Math.*, (2024).

- If *G* is bipartite, then the proof follows.
- Let G be a connected singular non-bipartite graph.
- Then the graph $G \times P_2$ is a connected bipartite graph.

¹S. Barik, D. Mondal, S. Pati, and K. Sarma, Singular graphs and the reciprocal eigenvalue property, *Discrete Math.*, (2024).

- If *G* is bipartite, then the proof follows.
- Let *G* be a connected singular non-bipartite graph.
- Then the graph $G \times P_2$ is a connected bipartite graph.
- If $\sigma(G) = (\lambda_1, \dots, \lambda_n)$, then the eigenvalues of $G \times P_2$ are $-\lambda_n, \dots, -\lambda_2, -\lambda_1, \lambda_1, \lambda_2, \dots, \lambda_n$.

¹S. Barik, D. Mondal, S. Pati, and K. Sarma, Singular graphs and the reciprocal eigenvalue property, *Discrete Math.*, (2024).

- ullet If G is bipartite, then the proof follows.
- Let G be a connected singular non-bipartite graph.
- Then the graph $G \times P_2$ is a connected bipartite graph.
- If $\sigma(G) = (\lambda_1, \dots, \lambda_n)$, then the eigenvalues of $G \times P_2$ are $-\lambda_n, \dots, -\lambda_2, -\lambda_1, \lambda_1, \lambda_2, \dots, \lambda_n$.
- Applying the previous result to $G \times P_2$, we have $|a_{n-k}|^2 \neq 1$ and hence $|a_{n-k}| \neq 1$.

¹S. Barik, D. Mondal, S. Pati, and K. Sarma, Singular graphs and the reciprocal eigenvalue property, *Discrete Math.*, (2024).

Theorem: Let G be a connected singular graph with $n \ge 2$ vertices. Then it cannot satisfy the weak reciprocal eigenvalue property.

¹S. Barik, D. Mondal, S. Pati, and K. Sarma, Singular graphs and the reciprocal eigenvalue property, *Discrete Math.*, (2024).

Theorem: Let A be symmetric $n \times n$ matrix with integer entries. Suppose that rank A = k < n and A has at least k + 1 nonzero rows. Let

Suppose that rankA = k < n and A has at least k + 1 nonzero rows. Le $P_A(x) = x^{n-k}(x^k + a_1x^{k-1} + \cdots + a_k)$ be the characteristic polynomial of A. Then $|a_k| \neq 1$.

¹S. Barik, D. Mondal, S. Pati, and K. Sarma, Singular graphs and the reciprocal eigenvalue property, *Discrete Math.*, (2024).

The pseudo-determinant Det(A) of a square matrix A is defined as the product of the nonzero eigenvalues of A.

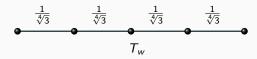
Theorem: Let A be symmetric $n \times n$ matrix with integer entries. Suppose that $\operatorname{rank} A = k < n$ and A has at least k+1 nonzero rows. Then $\operatorname{Det}^2(A) \neq 1$.

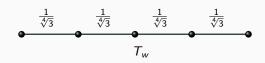
²S. Barik, D. Mondal, S. Pati, and K. Sarma, Singular graphs and the reciprocal eigenvalue property, *Discrete Math.*, (2024).

Does there exist a nontrivial weighted graph with the weak
reciprocal eigenvalue property?

Does there exist a nontrivial weighted graph with the weak reciprocal eigenvalue property?

 $w: E(G) \to (0, \infty)$ is the weight function.





$$\sigma(T_w) = \left(-\sqrt[4]{3}, -\frac{1}{\sqrt[4]{3}}, 0, \frac{1}{\sqrt[4]{3}}, \sqrt[4]{3}\right)$$
 and hence T_w satisfies the weak reciprocal eigenvalue property.

Theorem: Let G be a connected singular bipartite graph on n vertices with rank(G) = 2 or 4. Suppose that

$$P(G;x) = x^{n-4}(x^4 + a_2x^2 + a_4).$$

Let G_w be the weighted graph obtained from G by assigning weight

(i)
$$\frac{1}{\sqrt{-a_2}}$$
 to each edge if rank(G) = 2 and

(iI)
$$\frac{1}{\sqrt[4]{a_4}}$$
 to each edge if $\operatorname{rank}(G) = 4$, respectively.

Then, G_w satisfies the weak reciprocal eigenvalue property.

¹S. Barik, D. Mondal, S. Pati, and K. Sarma, Singular graphs and the reciprocal eigenvalue property, *Discrete Math.*, (2024).

 $w: E(G) \rightarrow [1, \infty)$

¹S. Barik, D. Mondal, S. Pati, and K. Sarma, Singular graphs and the reciprocal eigenvalue property, *Discrete Math.*, (2024).

 $w: E(G) \rightarrow [1, \infty)$

Theorem: Let T_w be a weighted singular tree such that the weight of each edge is at least 1. Then T_w can not satisfy the weak reciprocal eigenvalue property.

¹S. Barik, D. Mondal, S. Pati, and K. Sarma, Singular graphs and the reciprocal eigenvalue property, *Discrete Math.*, (2024).

• Characterization of unicyclic graphs with property (R)

- Characterization of unicyclic graphs with property (R)
- Characterization of bipartite graphs with property (SR)

- Characterization of unicyclic graphs with property (R)
- Characterization of bipartite graphs with property (SR)
- For a bipartite graph, whether property (R) implies property (SR)?

- Characterization of unicyclic graphs with property (R)
- Characterization of bipartite graphs with property (SR)
- For a bipartite graph, whether property (R) implies property (SR)?
- Characterization of weighted graphs with weak reciprocal eigenvalue property

- Characterization of unicyclic graphs with property (R)
- Characterization of bipartite graphs with property (SR)
- For a bipartite graph, whether property (R) implies property (SR)?
- Characterization of weighted graphs with weak reciprocal eigenvalue property
- To look for other equivalent properties of graphs with property (R)

- Characterization of unicyclic graphs with property (R)
- Characterization of bipartite graphs with property (SR)
- For a bipartite graph, whether property (R) implies property (SR)?
- Characterization of weighted graphs with weak reciprocal eigenvalue property
- To look for other equivalent properties of graphs with property (R)
- Characterization of graphs with the anti-reciprocal eigenvalue property

