LAPLACIAN INTEGRAL GRAPHS

Sasmita Barik

Indian Institute of Technology Bhubaneswar

October 2, 2025 Short-Term Program on "Graphs, Matrices and Applications", IIT Hyderabad

Outline

► Graphs determined by the spectrum and cospectral graphs

► Laplacian integral graphs

► Related problems and references

Graphs determined by the spectrum

A graph G is said to be **determined by its spectrum (DS)** if every graph cospectral with G is necessarily isomorphic to G.

ightharpoonup A graph is non-DS \implies Existence of cospectral graphs

Cospectral pairs



Figure: Two non-isomorphic, adjacency cospectral graphs

Spectrum: (-2, 0, 0, 0, 2).

Theorem. The path on n vertices is determined by the adjacency spectrum.

Theorem. The path on n vertices is determined by the adjacency spectrum.

Proof. The eigenvalues of P_n are $\lambda_i = 2\cos\frac{\pi i}{n+1}$, $i = 1, \ldots, n$. Hence, the spectral radius of P_n is less than 2.

Theorem. The path on n vertices is determined by the adjacency spectrum.

Proof. The eigenvalues of P_n are $\lambda_i = 2\cos\frac{\pi i}{n+1}$, $i = 1, \ldots, n$. Hence, the spectral radius of P_n is less than 2.

Suppose that there exists a graph G cospectral with P_n . Then G has n vertices and n-1 edges (as $\operatorname{trace}(A(G)^2)=\operatorname{trace}(A(P_n)^2)$).

Theorem. The path on n vertices is determined by the adjacency spectrum.

Proof. The eigenvalues of P_n are $\lambda_i = 2\cos\frac{\pi i}{n+1}$, $i = 1, \ldots, n$. Hence, the spectral radius of P_n is less than 2.

- Suppose that there exists a graph G cospectral with P_n . Then G has n vertices and n-1 edges (as $\operatorname{trace}(A(G)^2)=\operatorname{trace}(A(P_n)^2)$).
- ightharpoonup Since 2 is an eigenvalue of any cycle, G cannot have a cycle as an induced subgraph (by interlacing theorem).

Theorem. The path on n vertices is determined by the adjacency spectrum.

Proof. The eigenvalues of P_n are $\lambda_i = 2\cos\frac{\pi i}{n+1}$, $i = 1, \ldots, n$. Hence, the spectral radius of P_n is less than 2.

- Suppose that there exists a graph G cospectral with P_n . Then G has n vertices and n-1 edges (as $\operatorname{trace}(A(G)^2)=\operatorname{trace}(A(P_n)^2)$).
- ightharpoonup Since 2 is an eigenvalue of any cycle, G cannot have a cycle as an induced subgraph (by interlacing theorem).
- ▶ Thus, *G* is a tree.

Note that S_5 has an eigenvalue 2, so S_5 is not an induced subgraph of G.

Note that S_5 has an eigenvalue 2, so S_5 is not an induced subgraph of G.

► Further, any tree with the following structure has an eigenvalue 2 (can be seen from the given eigenvector).

lacktriangle Thus, G is a tree with no vertex of degree greater than 3, and at most one vertex of degree 3.

▶ Two graphs G and H are cospectral, then $\operatorname{trace}(A(G)^i) = \operatorname{trace}(A(H)^i)$. So, G and H have the same number of closed walks of length i.

▶ Thus, G is a tree with no vertex of degree greater than 3, and at most one vertex of degree 3.

▶ Two graphs G and H are cospectral, then $\operatorname{trace}(A(G)^i) = \operatorname{trace}(A(H)^i)$. So, G and H have the same number of closed walks of length i.

Suppose v is a vertex of degree 3. Moving one branch at v to an endpoint of G, changes G to P_n .

▶ Since G and P_n are cospectral, this operation should not change the number of closed walks of length 4.

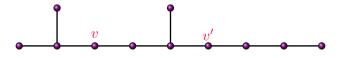
▶ But clearly the number of closed walks of length 4 are not same in G and P_n .

▶ Hence, G has no vertex of degree 3, so G is isomorphic to P_n .

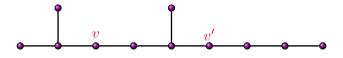
Construction of cospectral graphs

Theorem (Schwenk): Let G and H be two adjacency cospectral graphs. Suppose that $v \in V(G)$ and $v' \in V(H)$ are such that the vertex-deleted subgraphs $G \setminus \{v\}$ and $H \setminus \{v'\}$ are also cospectral. Let Γ be any graph with a fixed vertex u. Then the coalescence of G and Γ with respect to v and u is cospectral with the coalescence of H and Γ with respect to v' and u.

Let G=H be as given below. Then $G\setminus \{v\}$ and $H\setminus \{v'\}$ are isomorphic and hence, cospectral.

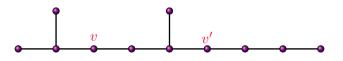


Let G=H be as given below. Then $G\setminus \{v\}$ and $H\setminus \{v'\}$ are isomorphic and hence, cospectral.

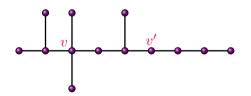


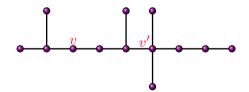
Let $\Gamma = P_3$ and let u be the vertex of degree 2.

Let G=H be as given below. Then $G\setminus \{v\}$ and $H\setminus \{v'\}$ are isomorphic and hence, cospectral.



Let $\Gamma = P_3$ and let u be the vertex of degree 2.





GM switching

Theorem (Schwenk). With respect to the adjacency matrix almost all trees are non-DS.

GM switching

▶ Godsil and McKay (GM) switching: A more general version of Seidel switching that gives precise conditions under which the adjacency spectrum remains unchanged.

► Although GM switching was designed for the adjacency matrix, the same idea also works for the Laplacian and signless Laplacian matrices.

¹C. D. Godsil and B. D. McKay, Constructing cospectral graphs, *Aequationes mathematicae*, 25:257–268,

(1982).

Theorem (Godsil-McKay): Let N be a (0,1) matrix of size $b \times c$ whose column sums are 0, b, or b/2.

- ▶ Replace each column v of N with b/2 ones by its complement 1-v to obtain N'.
- Let B be a symmetric $b \times b$ matrix with constant row (and column) sums.
- ▶ Let C be a symmetric $c \times c$ matrix.

Then the matrices
$$M=\begin{bmatrix} B & N \\ N^T & C \end{bmatrix}$$
 and $M'=\begin{bmatrix} B & N' \\ N'^T & C \end{bmatrix}$ are cospectral.

¹C. D. Godsil and B. D. McKay, Constructing cospectral graphs, *Aequationes mathematicae*, 25:257–268, (1982).

Theorem (Godsil-McKay): Let N be a (0,1) matrix of size $b \times c$ whose column sums are 0, b, or b/2.

- ▶ Replace each column v of N with b/2 ones by its complement 1-v to obtain N'.
- Let B be a symmetric $b \times b$ matrix with constant row (and column) sums.
- ▶ Let C be a symmetric $c \times c$ matrix.

Then the matrices
$$M=\begin{bmatrix} B & N \\ N^T & C \end{bmatrix}$$
 and $M'=\begin{bmatrix} B & N' \\ N'^T & C \end{bmatrix}$ are cospectral.

Proof. Let
$$Q = \begin{bmatrix} \frac{2}{b}J - I_b & \mathbf{0} \\ \mathbf{0} & I_c \end{bmatrix}$$
. Then $M' = QMQ^{-1}$.

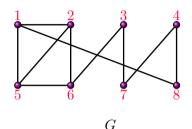
¹C. D. Godsil and B. D. McKay, Constructing cospectral graphs, *Aequationes mathematicae*, 25:257–268, (1982).

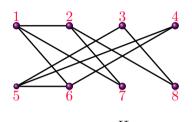
If one wants to apply GM switching to the Laplacian matrix L(G) of a graph G, define M=-L.

The requirement that B has constant row sums means that N must have constant row sum, that is, the vertices of B all have the same number of neighbours in C.

Ecample:

The graph H can be obtained from the graph G through $\operatorname{\mathbf{GM}}$ switching and are Laplacian cospectral.





$$-L(G) = \begin{bmatrix} \begin{smallmatrix} -3 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & -3 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -2 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -2 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & -3 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & -3 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & -2 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -2 \end{bmatrix}, -L(H) = \begin{bmatrix} -3 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & -3 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & -2 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -2 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & -3 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & -3 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & -2 \end{bmatrix}.$$

4□▶ 4□▶ 4 亘 ▶ 4 亘 ▶ 9 ♀ ○

Union, join and complement

Theorem: Let G and H be two vertex disjoint graphs on n and m vertices respectively. Let $\sigma_L(G) = (0, \lambda_2, \dots, \lambda_n)$ and $\sigma_L(H) = (0, \mu_2, \dots, \mu_m)$. Then

- (i) Eigenvalues of $L(G \cup H)$ are $0, 0, \lambda_2, \dots, \lambda_n, \mu_2, \dots, \mu_m$.
- (ii) Eigenvalues of $L(G\vee H)$ are $0,\lambda_2+m,\ldots,\lambda_n+m,\mu_2+n,\ldots,\mu_m+n,n+m.$

(iii) Eigenvalues of $L(G^c)$ are $0, n - \lambda_2, \dots, n - \lambda_n$.

Laplacian integral graphs

Definition A graph G is said to be Laplacian integral if the spectrum of L(G) consists entirely of integers.

▶ The complete graph K_n is Laplacian integral for each $n \ge 1$.

$$S(K_n) = (0, n, \dots, n)$$

Laplacian integral graphs

Definition A graph G is said to be Laplacian integral if the spectrum of L(G) consists entirely of integers.

▶ The complete graph K_n is Laplacian integral for each $n \ge 1$.

$$S(K_n) = (0, n, \dots, n)$$

A tree is Laplacian integral if and only if it is a star S_n . Laplacian spectrum:

$$S(S_n) = (0, 1, \dots, 1, n)$$

Laplacian integral graphs

Definition A graph G is said to be Laplacian integral if the spectrum of L(G) consists entirely of integers.

▶ The complete graph K_n is Laplacian integral for each $n \ge 1$.

$$S(K_n) = (0, n, \dots, n)$$

A tree is Laplacian integral if and only if it is a star S_n . Laplacian spectrum:

$$S(S_n) = (0, 1, \dots, 1, n)$$

▶ Both K_n and S_n are uniquely determined by the Laplacian spectrum.

Cographs

A graph is called a cograph if it is constructed using the following rules:

- $ightharpoonup K_1$ is a cograph.
- ▶ The complement of a cograph is a cograph.
- ▶ The union of two vertex-disjoint cographs is a cograph.

Cographs

A graph is called a cograph if it is constructed using the following rules:

- $ightharpoonup K_1$ is a cograph.
- ▶ The complement of a cograph is a cograph.
- ▶ The union of two vertex-disjoint cographs is a cograph.

Note that the definition gives a recursive procedure to construct a cograph.

Cographs

A graph is called a cograph if it is constructed using the following rules:

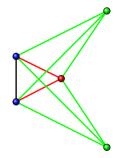
- $ightharpoonup K_1$ is a cograph.
- ▶ The complement of a cograph is a cograph.
- ▶ The union of two vertex-disjoint cographs is a cograph.

Note that the definition gives a recursive procedure to construct a cograph.

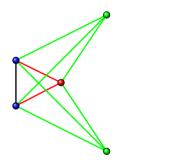
• Cographs are Laplacian integral.

0

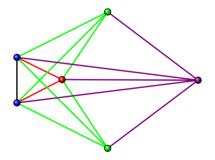
Example



Example



Example



W. So: suggested a strategy for constructing Laplacian integral graphs by edge edition.

W. So: suggested a strategy for constructing Laplacian integral graphs by edge edition.

Faria vector: $e_{ij} = e_i - e_j$, $i \neq j$.

W. So: suggested a strategy for constructing Laplacian integral graphs by edge edition.

Faria vector: $e_{ij} = e_i - e_j$, $i \neq j$.

Let G be a graphs on vertices $1,\ldots,n$. Let i,j be two nonadjacent vertices of G, and let G+e be the graph obtained from G by adding the edge $e=\{i,j\}$. Then

$$L(G+e) = L(G) + e_{ij}e_{ij}^{T}.$$

W. So: suggested a strategy for constructing Laplacian integral graphs by edge edition.

Faria vector: $e_{ij} = e_i - e_j$, $i \neq j$.

Let G be a graphs on vertices $1, \ldots, n$. Let i, j be two nonadjacent vertices of G, and let G + e be the graph obtained from G by adding the edge $e = \{i, j\}$. Then

$$L(G+e) = L(G) + e_{ij}e_{ij}^{T}.$$

Thus,

$$0 = \lambda_1(G) = \lambda_1(G + e) \le \lambda_2(G) \le \lambda_2(G + e) \le \dots \le \lambda_n(G) \le \lambda_n(G + e).$$

Note that

$$\sum_{i=1}^{n} (\lambda_i(G+e) - \lambda_i(G)) = 2.$$

Thus, if G is Laplacian integral, then G+e will also be Laplacian integral if either

▶ n-1 eigenvalues of L(G) and L(G+e) coincide and one eigenvalue of L(G) increases by 2, or

▶ n-2 eigenvalues of L(G) and L(G+e) coincide, and two eigenvalues of L(G) increase by 1 each.

Spectral integral variation

Let G be a general graph of order n, and i and j are two nonadjacent vertices in G. Let $e=\{i,j\}$. We say that

▶ the spectral integral variation of G occurs at one place by adding e if exactly one eigenvalue of L(G) increases by 2 when the edge e is added to G.

▶ the spectral integral variation of G occur at two places by adding e if exactly two eigenvalues of L(G)) increase by 1 each when e is added to G.

Spectral integral variation at one place

Theorem (Fan). Let G=(V,E) be a connected graph of order n, $e=\{i,j\}$, $i\neq j$, be an edge not in G. Then the following conditions are equivalent.

- lacktriangle The spectral integral variation of G occurs in one place by adding e.
- ▶ One eigenvector of L(G) is the Faria vector e_{ij} .
- N(i) = N(j).
- d_i is a Laplacian eigenvalue of G and d_i increases to $d_i + 2$.

Observation Let G be a connected graph of order n and $\sigma_L(G)=(0,\lambda_2,\ldots,\lambda_n)$. Then $1\leq \lambda_i\leq n$.

Question-1 Characterize the graphs with n as Laplacian eigenvalue.

▶ Question-2 Characterize the graphs with 1 as Laplacian eigenvalue.

Answer to Question 1

Theorem

Let G be connected graph on n vertices. Then n is an eigenvalue of L(G) if and only if G is the join of two graphs.

Question 2 is still open for graphs.

Graphs with distinct integer Laplacian eigenvalues

Consider the set of integers

$$\{0, 1, 2, \dots, n\}.$$

Let S be a subset of $\{0, 1, 2, \dots, n\}$ such that |S| = n.

We say S is Laplacian realizable if there is a graph G on n vertices whose Laplacian specrum is S.

For $n \geq 2$ and $1 \leq i \leq n$, let

$$S_{i,n} = \{0, 1, 2, \dots, i - 1, i + 1, \dots, n\}.$$

Graphs with distinct integer Laplacian eigenvalues

Question-4 Does there exist a graph with the Laplacian spectrum $S_{i,n}$? That is, whether $S_{i,n}$ is Laplacian realizable for each i, $1 \le i \le n$?

If yes, the which are those graphs?

¹S. M. Fallat, S. J. Kirkland, J. J. Molitierno, and M. Neumann, On graphs whose Laplacian matrices have distinct integer eigenvalues, *Journal of Graph Theory*, 50:162–174, (2005).

Examples

- K_2 , with Laplacian spectrum $S_{1,2} = \{0, 2\}$.
- ▶ P_3 , with Laplacian spectrum $S_{2,3} = \{0, 1, 3\}$.
- ▶ $K_1 \lor (K_1 \cup K_1)$, with Laplacian spectrum $S_{2,4} = \{0, 1, 3, 4\}$.
- $ightharpoonup (K_1 \cup K_1) \lor (K_1 \cup K_2)$, with spectrum $S_{1,5} = \{0, 2, 3, 4, 5\}$.
- ► $K_1 \vee (K_1 \cup P_3)$, with spectrum $S_{3,5} = \{0, 1, 2, 4, 5\}$.

$S_{i,n}$ is Laplacian realizable if $i \neq n$

Theorem: Suppose that G is a graph on $n \ge 6$ vertices. Then G realizes $S_{1,n}$ if and only if G is formed in one of the following two ways:

(i) $G=(K_1\cup K_1)\vee (K_1\cup G_1)$, where G_1 is a graph on n-3 vertices that realizes $S_{n-4,n-3}$;

(ii) $G=K_1\vee H$, where H is a graph on n-1 vertices that realizes $S_{n-1,n-1}.$

¹S. M. Fallat, S. J. Kirkland, J. J. Molitierno, and M. Neumann, On graphs whose Laplacian matrices have distinct integer eigenvalues, *Journal of Graph Theory*, 50:162–174, (2005).

$S_{i,n}$ is Laplacian realizable if $i \neq n$

Theorem Suppose that G is a graph on $n \ge 6$ vertices. Then

- (a) G realizes $S_{n-1,n}$ if and only if G is formed in one of the following two ways:
 - (i) $G = K_1 \vee (K_1 \cup G_1)$, where G_1 is a graph on n-3 vertices that realizes $S_{2,n-3}$;
 - (ii) $G = K_1 \vee (K_1 \cup H)$, where H is a graph on n-2 vertices that realizes $S_{n-2,n-2}$.
- (b) For $2 \le i \le n-2$, G realizes $S_{i,n}$ if and only if $G = K_1 \lor (K_1 \cup H^*)$, where H^* is a graph on n-2 vertices that realizes $S_{i-1,n-2}$.

¹S. M. Fallat, S. J. Kirkland, J. J. Molitierno, and M. Neumann, On graphs whose Laplacian matrices have distinct integer eigenvalues, *Journal of Graph Theory*, 50:162–174, (2005).

Laplacian realizability of $S_{n,n}$

$$S_{n,n} = \{0, 1, 2, \dots, n-1\}.$$

If a graph G exists that realizes $S_{n,n}$, then the characteristic polynomial of L(G) is the falling factorial

$$P(x) = x(x-1)(x-2)(x-3)\cdots(x-(n-1)),$$

whose coefficients are the Stirling numbers of the first kind.

Laplacian realizability of $S_{n,n}$

Conjecture 1: The set $S_{n,n}$ is not Laplacian realizable for any $n \geq 2$.

Conjecture 2: For $n \ge 2$ and for each admissible i where $1 \le i \le n-1$, the set $S_{i,n}$ is realized by a unique graph.

¹S. M. Fallat, S. J. Kirkland, J. J. Molitierno, and M. Neumann, On graphs whose Laplacian matrices have distinct integer eigenvalues, *Journal of Graph Theory*, 50:162–174, (2005).

Progress on the conjecture 1

Theorem The Conjecture 1 is true for $n \leq 11$.

Theorem The Conjecture 1 is true for $n \ge 6,649,688,933$.

¹S. M. Fallat, S. J. Kirkland, J. J. Molitierno, and M. Neumann, On graphs whose Laplacian matrices have distinct integer eigenvalues, *Journal of Graph Theory*, 50:162–174, (2005).

²A. Goldberger and M. Neumann, On a conjecture on a Laplacian matrix with distinct integral spectrum,

Journal of Graph Theory, 72(2):178-208, (2013).

Necessary conditions for graphs realising Sn, n

- ▶ If $S_{n,n}$ is Laplacian realizable, then n is not a prime.
- ▶ If $S_{n,n}$ is Laplacian realizable, then $n \equiv 0 \mod 4$ or $n \equiv 1 \mod 4$.
- ▶ If $S_{n,n}$ is Laplacian realizable, then $2 \le \delta(G) \le \Delta(G) \le n-3$.
- ▶ If $S_{n,n}$ is Laplacian realizable, then both G and G^c have diameter 3.

¹S. M. Fallat, S. J. Kirkland, J. J. Molitierno, and M. Neumann, On graphs whose Laplacian matrices have distinct integer eigenvalues, *Journal of Graph Theory*, 50:162–174, (2005).

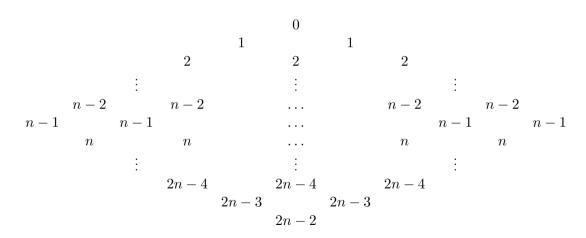
²K. C. Das, S.-G. Lee, and G.-S. Cheon, On the conjecture for certain Laplacian integral spectrum of graphs, *Journal of Graph Theory*, 63:106-113, (2010).

Consider

Let
$$S_4 = \{0, 1, 1, 2, 2, 2, 3, 3, 4\}.$$

Does there exist a graph on 9 vertices that realizes S_4 ?

Consider



In general consider the set

$$S_{2n-2} = \{0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, \dots, 2n-4, 2n-4, 2n-4, 2n-3, 2n-3, 2n-2\}.$$

Does there exist a graph on n^2 vertices that realizes S_{2n-2} ?

References

- 1. R. B. Bapat, Graphs and Matrices, (2010).
- 2. E. R. van Dam and W. H. Haemers, Which graphs are determined by their spectrum?, *Linear Algebra and its Applications*, 373:241-272, (2003).
- 3. Y.-Z. Fan, On spectral integral variations of graphs, *Linear and Multilinear Algebra*, 50(2):133-142, (2002).
- 4. S. Kirkland, A characterization of spectral integral variation in two places for laplacian matrices, *Linear and Multilinear Algebra*, 52(2):79-98, (2004).
- 5. W. So, Rank one perturbation and its application to Laplacian spectrum of a graph, *Linear and Multilinear Algebra*, 46:193-198, (1999).

THANK YOU