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Graphs determined by the spectrum

▶ A graph G is said to be determined by its spectrum (DS) if every graph
cospectral with G is necessarily isomorphic to G.

▶ A graph is non-DS =⇒ Existence of cospectral graphs



Cospectral pairs

Figure: Two non-isomorphic, adjacency cospectral graphs

Spectrum: (−2, 0, 0, 0, 2).



Path is determined by the spectrum

Theorem. The path on n vertices is determined by the adjacency spectrum.

Proof. The eigenvalues of Pn are λi = 2 cos πi
n+1 , i = 1, . . . , n. Hence, the spectral

radius of Pn is less than 2.

▶ Suppose that there exists a graph G cospectral with Pn. Then G has n vertices
and n− 1 edges (as trace(A(G)2) =trace(A(Pn)

2)).

▶ Since 2 is an eigenvalue of any cycle, G cannot have a cycle as an induced
subgraph (by interlacing theorem).

▶ Thus, G is a tree.
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▶ Note that S5 has an eigenvalue 2, so S5 is not an induced subgraph of G.

▶ Further, any tree with the following structure has an eigenvalue 2 (can be seen
from the given eigenvector).

1

1

2 2 2 2

1

1



▶ Note that S5 has an eigenvalue 2, so S5 is not an induced subgraph of G.

▶ Further, any tree with the following structure has an eigenvalue 2 (can be seen
from the given eigenvector).

1

1

2 2 2 2

1

1



▶ Thus, G is a tree with no vertex of degree greater than 3, and at most one vertex
of degree 3.

▶ Two graphs G and H are cospectral, then trace(A(G)i) =trace(A(H)i). So, G
and H have the same number of closed walks of length i.

▶ Supoose v is a vertex of degree 3. Moving one branch at v to an endpoint of G,
changes G to Pn.

▶ Since G and Pn are cospectral, this operation should not change the number of
closed walks of length 4.
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▶ But clearly the number of closed walks of length 4 are not same in G and Pn.

▶ Hence, G has no vertex of degree 3, so G is isomorphic to Pn.



Construction of cospectral graphs

Theorem (Schwenk): Let G and H be two adjacency cospectral graphs. Suppose
that v ∈ V (G) and v′ ∈ V (H) are such that the vertex-deleted subgraphs G \ {v} and
H \ {v′} are also cospectral. Let Γ be any graph with a fixed vertex u. Then the
coalescence of G and Γ with respect to v and u is cospectral with the coalescence of
H and Γ with respect to v′ and u.



Example:

Let G = H be as given below. Then G \ {v} and H \ {v′} are isomorphic and hence,
cospectral.

v v′

Let Γ = P3 and let u be the vertex of degree 2.

v v′ v v′
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GM switching

Theorem (Schwenk). With respect to the adjacency matrix almost all trees are
non-DS.



GM switching

▶ Godsil and McKay (GM) switching: A more general version of Seidel switching
that gives precise conditions under which the adjacency spectrum remains
unchanged.

▶ Although GM switching was designed for the adjacency matrix, the same idea also
works for the Laplacian and signless Laplacian matrices.

1C. D. Godsil and B. D. McKay, Constructing cospectral graphs, Aequationes mathematicae, 25:257–268,

(1982).



Theorem (Godsil-McKay): Let N be a (0, 1) matrix of size b× c whose column
sums are 0, b, or b/2.

▶ Replace each column v of N with b/2 ones by its complement 1− v to obtain N ′.

▶ Let B be a symmetric b× b matrix with constant row (and column) sums.

▶ Let C be a symmetric c× c matrix.

Then the matrices M =

[
B N
NT C

]
and M ′ =

[
B N ′

N ′T C

]
are cospectral.

Proof. Let Q =

[
2
bJ − Ib 0

0 Ic

]
. Then M ′ = QMQ−1.

1C. D. Godsil and B. D. McKay, Constructing cospectral graphs, Aequationes mathematicae, 25:257–268,

(1982).
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▶ If one wants to apply GM switching to the Laplacian matrix L(G) of a graph G,
define M = −L.

▶ The requirement that B has constant row sums means that N must have constant
row sum, that is, the vertices of B all have the same number of neighbours in C.



Ecample:

The graph H can be obtained from the graph G through GM switching and are
Laplacian cospectral.

1 2 3 4 1 2 3 4

5 6 7 8 5 6 7 8

G H

−L(G) =


−3 1 0 0 1 0 0 1
1 −3 0 0 1 1 0 0
0 0 −2 0 0 1 1 0
0 0 0 −2 0 0 1 1
1 1 0 0 −3 1 0 0
0 1 1 0 1 −3 0 0
0 0 1 1 0 0 −2 0
1 0 0 1 0 0 0 −2

 ,−L(H) =


−3 1 0 0 0 1 1 0
1 −3 0 0 0 0 1 1
0 0 −2 0 1 0 0 1
0 0 0 −2 1 1 0 0
0 0 1 1 −3 1 0 0
1 0 0 1 1 −3 0 0
1 1 0 0 0 0 −2 0
0 1 1 0 0 0 0 −2

 .



Union, join and complement

Theorem: Let G and H be two vertex disjoint graphs on n and m vertices
respectively. Let σL(G) = (0, λ2, . . . , λn) and σL(H) = (0, µ2, . . . , µm). Then

(i) Eigenvalues of L(G ∪H) are 0, 0, λ2, . . . , λn, µ2, . . . , µm.

(ii) Eigenvalues of L(G ∨H) are
0, λ2 +m, . . . , λn +m,µ2 + n, . . . , µm + n, n+m.

(iii) Eigenvalues of L(Gc) are 0, n− λ2, . . . , n− λn.



Laplacian integral graphs

Definition A graph G is said to be Laplacian integral if the spectrum of L(G) consists
entirely of integers.

▶ The complete graph Kn is Laplacian integral for each n ≥ 1.

S(Kn) = (0, n, . . . , n)

▶ A tree is Laplacian integral if and only if it is a star Sn.
Laplacian spectrum:

S(Sn) = (0, 1, . . . , 1, n)

▶ Both Kn and Sn are uniquely determined by the Laplacian spectrum.
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Cographs

A graph is called a cograph if it is constructed using the following rules:

▶ K1 is a cograph.

▶ The complement of a cograph is a cograph.

▶ The union of two vertex-disjoint cographs is a cograph.

Note that the definition gives a recursive procedure to construct a cograph.

• Cographs are Laplacian integral.
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Constructing Laplacian integral graphs

W. So: suggested a strategy for constructing Laplacian integral graphs by edge edition.

Faria vector: eij = ei − ej , i ̸= j.

Let G be a graphs on vertices 1, . . . , n. Let i, j be two nonadjacent vertices of G, and
let G+ e be the graph obtained from G by adding the edge e = {i, j}. Then

L(G+ e) = L(G) + eije
T
ij .

Thus,

0 = λ1(G) = λ1(G+ e) ≤ λ2(G) ≤ λ2(G+ e) ≤ · · · ≤ λn(G) ≤ λn(G+ e).
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Constructing Laplacian integral graphs

Note that
n∑

i=1

(λi(G+ e)− λi(G)) = 2.

Thus, if G is Laplacian integral, then G+ e will also be Laplacian integral if either

▶ n− 1 eigenvalues of L(G) and L(G+ e) coincide and one eigenvalue of L(G)
increases by 2, or

▶ n− 2 eigenvalues of L(G) and L(G+ e) coincide, and two eigenvalues of L(G)
increase by 1 each.



Spectral integral variation

Let G be a general graph of order n, and i and j are two nonadjacent vertices in G.
Let e = {i, j}. We say that

▶ the spectral integral variation of G occurs at one place by adding e if exactly one
eigenvalue of L(G) increases by 2 when the edge e is added to G.

▶ the spectral integral variation of G occur at two places by adding e if exactly two
eigenvalues of L(G)) increase by 1 each when e is added to G.



Spectral integral variation at one place

Theorem (Fan). Let G = (V,E) be a connected graph of order n, e = {i, j}, i ̸= j,
be an edge not in G. Then the following conditions are equivalent.

▶ The spectral integral variation of G occurs in one place by adding e.

▶ One eigenvector of L(G) is the Faria vector eij .

▶ N(i) = N(j).

• di is a Laplacian eigenvalue of G and di increases to di + 2.



Laplacian integral graphs

Observation Let G be a connected graph of order n and σL(G) = (0, λ2, . . . , λn).
Then 1 ≤ λi ≤ n.

▶ Question-1 Characterize the graphs with n as Laplacian eigenvalue.

▶ Question-2 Characterize the graphs with 1 as Laplacian eigenvalue.



Answer to Question 1

Theorem
Let G be connected graph on n vertices. Then n is an eigenvalue of L(G) if and only
if G is the join of two graphs.

Question 2 is still open for graphs.



Graphs with distinct integer Laplacian eigenvalues

Consider the set of integers
{0, 1, 2, . . . , n}.

Let S be a subset of {0, 1, 2, . . . , n} such that |S| = n.

We say S is Laplacian realizable if there is a graph G on n vertices whose Laplacian
specrum is S.

For n ≥ 2 and 1 ≤ i ≤ n, let

Si,n = {0, 1, 2, . . . , i− 1, i+ 1, . . . , n}.



Graphs with distinct integer Laplacian eigenvalues

Question-4 Does there exist a graph with the Laplacian spectrum Si,n.? That is,
whether Si,n is Laplacian realizable for each i, 1 ≤ i ≤ n?

If yes, the which are those graphs?

1S. M. Fallat, S. J. Kirkland, J. J. Molitierno, and M. Neumann, On graphs whose Laplacian matrices have

distinct integer eigenvalues, Journal of Graph Theory, 50:162–174, (2005).



Examples

▶ K2, with Laplacian spectrum S1,2 = {0, 2}.

▶ P3, with Laplacian spectrum S2,3 = {0, 1, 3}.

▶ K1 ∨ (K1 ∪K1), with Laplacian spectrum S2,4 = {0, 1, 3, 4}.

▶ (K1 ∪K1) ∨ (K1 ∪K2), with spectrum S1,5 = {0, 2, 3, 4, 5}.

▶ K1 ∨ (K1 ∪ P3), with spectrum S3,5 = {0, 1, 2, 4, 5}.



Si,n is Laplacian realizable if i ̸= n

Theorem: Suppose that G is a graph on n ≥ 6 vertices. Then G realizes S1,n if and
only if G is formed in one of the following two ways:

(i) G = (K1 ∪K1) ∨ (K1 ∪G1), where G1 is a graph on n− 3 vertices
that realizes Sn−4,n−3;

(ii) G = K1 ∨H, where H is a graph on n− 1 vertices that realizes
Sn−1,n−1.

1S. M. Fallat, S. J. Kirkland, J. J. Molitierno, and M. Neumann, On graphs whose Laplacian matrices have

distinct integer eigenvalues, Journal of Graph Theory, 50:162–174, (2005).



Si,n is Laplacian realizable if i ̸= n

Theorem Suppose that G is a graph on n ≥ 6 vertices. Then

(a) G realizes Sn−1,n if and only if G is formed in one of the following
two ways:

(i) G = K1 ∨ (K1 ∪G1), where G1 is a graph on n− 3
vertices that realizes S2,n−3;

(ii) G = K1 ∨ (K1 ∪H), where H is a graph on n− 2
vertices that realizes Sn−2,n−2.

(b) For 2 ≤ i ≤ n− 2, G realizes Si,n if and only if G = K1 ∨ (K1 ∪H∗),
where H∗ is a graph on n− 2 vertices that realizes Si−1,n−2.

1S. M. Fallat, S. J. Kirkland, J. J. Molitierno, and M. Neumann, On graphs whose Laplacian matrices have

distinct integer eigenvalues, Journal of Graph Theory, 50:162–174, (2005).



Laplacian realizability of Sn,n

Sn,n = {0,1,2, . . . ,n− 1}.

If a graph G exists that realizes Sn,n, then the characteristic polynomial of L(G) is the
falling factorial

P (x) = x(x− 1)(x− 2)(x− 3) · · · (x− (n− 1)),

whose coefficients are the Stirling numbers of the first kind.



Laplacian realizability of Sn,n

Conjecture 1: The set Sn,n is not Laplacian realizable for any n ≥ 2.

Conjecture 2: For n ≥ 2 and for each admissible i where 1 ≤ i ≤ n− 1, the set Si,n

is realized by a unique graph.

1S. M. Fallat, S. J. Kirkland, J. J. Molitierno, and M. Neumann, On graphs whose Laplacian matrices have

distinct integer eigenvalues, Journal of Graph Theory, 50:162–174, (2005).



Progress on the conjecture 1

Theorem The Conjecture 1 is true for n ≤ 11.

Theorem The Conjecture 1 is true for n ≥ 6, 649, 688, 933.

1S. M. Fallat, S. J. Kirkland, J. J. Molitierno, and M. Neumann, On graphs whose Laplacian matrices have

distinct integer eigenvalues, Journal of Graph Theory, 50:162–174, (2005).
2A. Goldberger and M. Neumann, On a conjecture on a Laplacian matrix with distinct integral spectrum,

Journal of Graph Theory, 72(2):178-208, (2013).



Necessary conditions for graphs realising Sn, n

▶ If Sn,n is Laplacian realizable, then n is not a prime.

▶ If Sn,n is Laplacian realizable, then n ≡ 0 mod 4 or n ≡ 1 mod 4.

▶ If Sn,n is Laplacian realizable, then 2 ≤ δ(G) ≤ ∆(G) ≤ n− 3.

▶ If Sn,n is Laplacian realizable, then both G and Gc have diameter 3.

1S. M. Fallat, S. J. Kirkland, J. J. Molitierno, and M. Neumann, On graphs whose Laplacian matrices have

distinct integer eigenvalues, Journal of Graph Theory, 50:162–174, (2005).
2K. C. Das, S.-G. Lee, and G.-S. Cheon, On the conjecture for certain Laplacian integral spectrum of

graphs, Journal of Graph Theory, 63:106-113, (2010).



Laplacian integral graphs

Consider

0
1 1

2 2 2
3 3

4

Let S4 = {0, 1, 1, 2, 2, 2, 3, 3, 4}.

Does there exist a graph on 9 vertices that realizes S4?



Laplacian integral graphs

Consider

0
1 1

2 2 2
...

...
...

n− 2 n− 2 . . . n− 2 n− 2
n− 1 n− 1 . . . n− 1 n− 1

n n . . . n n
...

...
...

2n− 4 2n− 4 2n− 4
2n− 3 2n− 3

2n− 2



Laplacian integral graphs

In general consider the set

S2n−2 = {0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4 . . . , 2n−4, 2n−4, 2n−4, 2n−3, 2n−3, 2n−2}.

Does there exist a graph on n2 vertices that realizes S2n−2?
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