LAPLACIAN MATRIX OF GRAPHS AND THE MATRIX-TREE
THEOREM

Sasmita Barik

Indian Institute of Technology Bhubaneswar

October 1, 2025
Short-Term Program on ‘Graphs, Matrices and Applications’, IIT Hyderabad



Outline

» Laplacian matrix

» Laplacian eigenvalues

» Matrix-tree theorem

» Related problems and references



Laplacian matrix

Let G be a graph on vertices 1,2,...,n. The Laplacian matrix of GG is defined as
L(G) = [l;;], where
d; ifi =7,
lij=4q -1 ifin~yj,

0 otherwise.
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Laplacian matrix

The Laplacian matrix L(G) = D(G) — A(G), where D(G) is diagonal matrix with
main diagonal entries as vertex degrees.



Laplacian matrix

The Laplacian matrix L(G) = D(G) — A(G), where D(G) is diagonal matrix with
main diagonal entries as vertex degrees.

2 1
3 4
G
2 -1 -1 0 2 0 0 0 0110
1 2 -1 0 0200 1010
L(G) -1 -1 3 -1 003 0| (1101
0 0 -1 1 000 1 0010



Incidence matrix
The vertex-edge incidence matrix of an oriented graph of GG is defined as an n x m
matrix Q(G) = [gi;], where
1 if e; originates at ¢,
qi; = § —1 if e; terminates at 1,

0 otherwise.



Incidence matrix

The vertex-edge incidence matrix of an oriented graph of GG is defined as an n x m

matrix Q(G) = [gi;], where

1 if e; originates at ¢,
qi; = § —1 if e; terminates at 1,
0 otherwise.
2 €1 1
€3 €2
3 €4 4 1 1 0
G | -1 0 -1









1 1 0 0 2 -1 -1 0
-1 0 -1 0 -1 2 -1 0
QG) = 0 -1 1 1 LG -1 -1 3 -1
0 0 -1 0O 0 -1 1

e L(G) is positive semidefinite and 0 is one eigenvalue of L(G) with corresponding
eigenvector 1.
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Lemma 1. If G is a connected graph on n vertices, then rank@Q(G) =n — 1.
Proof. Suppose that x is a vector in the left null space of Q(G). Then z; —2; =0

whenever i ~ j. It follows that x; = x; if there is a path between i and j.
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Since G is connected, ©1 = 9 = -+ = . Thus, the left null space of Q(G) is
one-dimensional and therefore rank@Q(G) > n — 1.



Lemma 1. If G is a connected graph on n vertices, then rank@Q(G) =n — 1.

Proof. Suppose that x is a vector in the left null space of Q(G). Then z; —2; =0
whenever i ~ j. It follows that x; = x; if there is a path between i and j.

0
.’L'TQ(G) = [1'1 T2 X3 364] -1 0 -1 ?

=z —z2 x1—x3 T3—T2 T3— T4

0 0 0 -1

Since G is connected, ©1 = 9 = -+ = . Thus, the left null space of Q(G) is
one-dimensional and therefore rank@Q(G) > n — 1.

Also, as Q(G) has n rows and they are linearly dependent, therefore rank
Q(G) <n—1. Thus, rankQ(G) =n — 1. .



Theorem 1. If G is a graph on n vertices and has k components, then
rankQ(G) =n — k.



Theorem 1. If G is a graph on n vertices and has k components, then
rankQ(G) =n — k.

Let GG1, ..., Gy be the connected components of G. Then
Q(Gh) 0 0
ac-| 0 Qe o
0 0 .. QG

rank(Q(G)) = rank(Q(G1)) + rank(Q(G2)) + - - - + rank(Q(Gy))



Lemma 2. Q(G) is totally unimodular (determinant of any square submatrix is either
0 or £1).
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consider a k x k submatrix B of Q(G).



Lemma 2. Q(G) is totally unimodular (determinant of any square submatrix is either
0 or £1).

Proof. (Using method of induction on k, the size of the submatrix.)

For k£ = 1, the statement holds. Assume that the statement holds for £ — 1 and
consider a k x k submatrix B of Q(G).

If each column of B has a 1 and a —1, then det(B) = 0. Also, if B has a zero column,
then det(B) = 0.



Lemma 2. Q(G) is totally unimodular (determinant of any square submatrix is either
0 or £1).

Proof. (Using method of induction on k, the size of the submatrix.)

For k£ = 1, the statement holds. Assume that the statement holds for £ — 1 and
consider a k x k submatrix B of Q(G).

If each column of B has a 1 and a —1, then det(B) = 0. Also, if B has a zero column,
then det(B) = 0.

Suppose that B has a column with only one nonzero entry, which must be 1. Expand
the determinant of B along that column and use induction hypothesis to conclude that
det B must be 0 or £1. u



Lemma 3. Let G be a tree on n vertices. Then any submatrix of Q(G) of order n — 1
is nonsingular.
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Lemma 3. Let G be a tree on n vertices. Then any submatrix of Q(G) of order n — 1
is nonsingular.

Proof. Consider the submatrix X of Q(G) formed by the rows 1,2,...,n — 1. If we
add all the rows of X to the last row, then the last row of X becomes the negative of

the last row of Q(G).

2 1 1 0 0
0O -1 0
G) =
€1 €9 Q( ) -1 1 1
0 -1
3 es 4



Thus, if Y denotes the submatrix of Q(G) formed by the rows 1,...,n — 2,n, then
det X =detY. Thus, if det X = 0, then detY = 0.
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Continuing this way we can show that if det X = 0 then each (n — 1) x (n — 1)
submatrix of Q(G) must be singular. In fact, if any one of the (n — 1) x (n — 1)
submatrices of Q(G) is singular, then all of them must be so.



Thus, if Y denotes the submatrix of Q(G) formed by the rows 1,...,n — 2,n, then
det X =detY. Thus, if det X = 0, then detY = 0.

Continuing this way we can show that if det X = 0 then each (n — 1) x (n — 1)
submatrix of Q(G) must be singular. In fact, if any one of the (n — 1) x (n — 1)
submatrices of Q(G) is singular, then all of them must be so.

But, rank@Q(G) = n — 1. Thus, at least one of the (n — 1) x (n — 1) submatrices of
Q(G) must be nonsingular.



Properties of the Laplacian matrix

Lemma 4. Let G be a graph with V(G) = {1,...,n} and E(G) =e1,...,emn. Then
the following statements hold.

(i) L(G) is a symmetric, positive semidefinite matrix.
(ii) If G has k connected components, then rank L(G) =n — k.

(iii) For any vector z,

T LGz = Z(mz — )%

i~vJ

(iv) The row and column sums of L(G) are zero.

(v) The cofactors of any two elements of L(G) are equal.



Properties of the Laplacian matrix

Proof of (iii).
2 -1 -1 0 1
-1 2 -1 0 T
T _ 2
' L(G)x = [xl Ty T3 :B4] 1 -1 3 -1 5
0 0 -1 1 T4
1
= [2$1 — X9 —x3 —x1+2x9—2x3 —x1—T9+3r3—x4 —x3+ x4] iz
X4

= 230% — X1T2 — T1T3 — T1T2 + 21:% — X993 — T1T3 — Tox3 + 3x§ — X3T4 — T3T4 + @21



Properties of the Laplacian matrix

2

‘ 2
= x% —2x129 + x% + x% —2x1x3 + m% + x% — 2xox3 + ajg + x5 — 2w3w4 + T

= (z1— 22)” + (w1 — @3)” + (w2 — 3) + (03 — 24)".



Properties of the Laplacian matrix

Proof of (v). Note that all the row and column sums of L = L(G) are zero. Let
L(i]j) := the matrix obtained by deleting row i and column j of L.



Properties of the Laplacian matrix

Proof of (v). Note that all the row and column sums of L = L(G) are zero. Let
L(i]j) := the matrix obtained by deleting row i and column j of L.

det(L(1]1)) = det

= det

lag  la3
l32 33

[—lo1 los
—l31 33

__lnl ln3

lon log 4+ +1lap o3
l3n lgg + -+ 13, 33
= det . )
lnn ln2 + -+ lnn ln3
l2n
l?m

= det(L(1]2))

lnn

l2n
l3n

A similar argument shows that the cofactor of /;; equals that of l;;, for any ¢, j, k.
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Laplacian spectrum

S(G) = ()\1,)\2, ey An>, where 0 = A1 < A9 < --- <\, are the eigenvalues of L(G).

Theorem (Fiedler, 1973). X\, > 0 if and only if G is connected.

A2 is known as the algebraic connectivity of G and is denoted by a(G). The
corresponding eigenvectors are known as Fiedler vectors of G.

The complete graph K,, which may be regarded as “highly connected” has

Ag == Ay =7
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Matrix-tree theorem

Cayley’s Theorem. There are n"~2 distinct labeled trees on n vertices. (The number
of spanning trees of K,, equals n"2.)

Kirchhoff’s Matrix-tree theorem (1847).

Let G be a graph on n vertices. Then the cofactor of any element of L(G) is equal to
the number of spanning trees in G.

Theorem 2. The number of spanning trees of a graph G equals

AoAs - A

n



Laplacian spectrum

G

S(G) = (0,2,4,4). The number of spanning trees= 1.2.4.4 = 8.
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Proof of matrix-tree theorem

det(L(1[1))
= det((QQ™)(11))

= Z (det Q[2,3...,n|Z])* (Using Cauchy-Binet formula)

ZCE(G)
|Z|=n—1



Proof of matrix-tree theorem

det(L(1[1))
= det((QQ™)(11))

= Z (det Q[2,3...,n|Z])* (Using Cauchy-Binet formula)

ZCE(G)
|Z]=n—1

1 3
Example: Let A = [4 5

ﬂ and B =

1 3
—1 2/, then

4 5

s} 1 ol 3L ool A



Proof of matrix-tree theorem

Since @ is unimodular, and det(L(1|1)) equals the number of nonsingular submatrices
of () with rows 2,...,n.



Proof of matrix-tree theorem

Since @ is unimodular, and det(L(1|1)) equals the number of nonsingular submatrices
of () with rows 2,...,n.

Notice that det Q[2,3...,n|Z] is nonsingular if and only if the corresponding edges
form a tree. Hence, there is a one-to-one correspondence between nonsingular
submatrices of () of size n — 1 and spanning trees of G. "



The number of spanning trees

Theorem. The number of spanning trees of a graph G

A3 A
===

#HG)
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Proof. Recall that the sum of the principal minors of L(G) of order n — 1 equals the
sum of the products of the eigenvalues, taken n — 1 at a time.
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The number of spanning trees

Theorem. The number of spanning trees of a graph G

A3 A
===

HG)

Proof. Recall that the sum of the principal minors of L(G) of order n — 1 equals the
sum of the products of the eigenvalues, taken n — 1 at a time.

det L(1|1) + det L(2]|2) 4+ --- +det L(n|n) = A1+~ A1+ -+ Ao Ay

Thus,
nXxt(G) =Xy A\p.

Since Ay = 0, the sum of the products of the eigenvalues, taken n — 1 at a time,
equals Ag - -+ Ay,



Generalization

A generalization of the matrix-tree theorem was obtained by Kel'mans which gives a
combinatorial interpretation to all the coefficients of ¢(L(G);x) in terms of the
numbers of certain subforests of the graph.

Theorem. Let G be a graph on n vertices and the characteristic polynomial of L(G)
be

H(L(G);z) =" +crz™ + -+ eprz.
Then

a=(-1)" Y tG),
SCV(Q)
|S|=n—i

where t(G;) is the number of spanning trees of H, and G is obtained from G by
identifying all vertices of S to a single vertex.



Home work

Problem 1. Let GG be a graph on n vertices and L be the Laplacian matrix of G.

Then show that 1
tG) = 2 det(L + J),

where J is the n x n matrix with all entries equal to 1.

Problem 2. Let GG be a graph on n vertices and m edges. Then show that

Ha) < & ( 2m )nl.

n
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Brouwer's Conjecture

Let the Laplacian eigenvalues of G be \{ > Ao > --- > X, = 0.

For k € {1,...,n}, let

Conjugate degrees: df = |{v € V(G) : d, > k}|

2 1

3 4

AdG) = (dy =2,dy=2,ds =3,dy =1). df =4,d; =3,d5=1,d; =0, ...



Brouwer's Conjecture

Grone-Merris! Conjecture: For any graph G on n vertices and for each
ke{l,...,n}

k
Sk(G) <) di (@)
=1

It is currently known as the Grone-Merris-Bai theorem.

Conjecture [Brouwer3, 2012]: For any graph G on n vertices and for each
ke{l,...,n}

Sk(G) < |E(G)| + (k; 1).

'R. Grone and R. Merris, The Laplacian spectrum of a graph Il, SIAM J. Discrete Math., 7:221-229, (1994).
2H. Bai, The Grone-Merris conjecture, Trans. Amer. Math. Soc., 363:4463-4474, (2011).
3A. E. Brouwer and W. H. Haemers, Spectra of graphs, Springer-Verlag, New York; 2012.



Brouwer’s conjecture

» A1 <n. Thus, the conjecture is true for £ = 1 for any connected graph.

1W. H. Haemers, A. Mohammadian, and B. Tayfeh-Rezaie, On the sum of Laplacian eigenvalues of graphs,
Linear Algebra Appl., 432:2214-2221, (2010).

2X. Chen, On Brouwer's conjecture for the sum of k largest Laplacian eigenvalues of graphs, Linear Algebra
Appl., 578:402-410, (2019).
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Brouwer’s conjecture

» A1 <n. Thus, the conjecture is true for £ = 1 for any connected graph.

> Spo1 =5, =2e(G) <e(G)+ (5). Thus, the conjecture is true for k = n and
k=n-—1

» When k = 2, Haemers et al.l proved that the conjecture holds.

» Chen? showed that if the conjecture holds for all graphs when
Ek=p(1<p< an) then it also holds for k =n —p — 1.

» Thus, the conjecture also holds for all graphs when k =n — 2 and k =n — 3.

1W. H. Haemers, A. Mohammadian, and B. Tayfeh-Rezaie, On the sum of Laplacian eigenvalues of graphs,
Linear Algebra Appl., 432:2214-2221, (2010).

2X. Chen, On Brouwer's conjecture for the sum of k largest Laplacian eigenvalues of graphs, Linear Algebra
Appl., 578:402-410, (2019).



Brouwer’s conjecture

The Brouwer's conjecture is true for several classes of graphs (for all k € {1,...,n}):
» Trees and threshold graphs (Haemers?)
» Unicyclic graphs and bicyclic graphs (Du and Zhou ?)

» Regular graphs and split graphs (Mayank3).

W. H. Haemers, A. Mohammadian, and B. Tayfeh-Rezaie, On the sum of Laplacian eigenvalues of graphs,
Linear Algebra Appl., 432:2214-2221, (2010).

27. Du, B. Zhou, Upper bounds for the sum of Laplacian eigenvalues of graphs, Linear Algebra Appl.,
436:3672-3683, (2012).

3l\/Iayank, On Variants of the Grone-Merris Conjecture, Master's thesis, Eindhoven University of Technology,
2010.
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