Laplacian Matrix of Graphs and the Matrix-Tree Theorem

Sasmita Barik

Indian Institute of Technology Bhubaneswar

October 1, 2025 Short-Term Program on 'Graphs, Matrices and Applications', IIT Hyderabad

Outline

► Laplacian matrix

► Laplacian eigenvalues

► Matrix-tree theorem

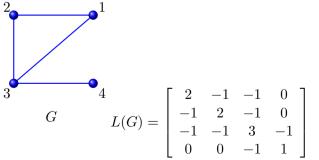
► Related problems and references

Let G be a graph on vertices $1, 2, \ldots, n$. The **Laplacian matrix** of G is defined as $L(G) = [l_{ij}]$, where

$$l_{ij} = egin{cases} d_i & ext{if } i=j, \ -1 & ext{if } i\sim j, \ 0 & ext{otherwise}. \end{cases}$$

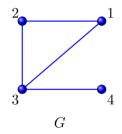
Let G be a graph on vertices $1, 2, \dots, n$. The **Laplacian matrix** of G is defined as $L(G) = [l_{ij}]$, where

$$l_{ij} = \begin{cases} d_i & \text{if } i = j, \\ -1 & \text{if } i \sim j, \\ 0 & \text{otherwise.} \end{cases}$$



The Laplacian matrix L(G) = D(G) - A(G), where D(G) is diagonal matrix with main diagonal entries as vertex degrees.

The Laplacian matrix L(G) = D(G) - A(G), where D(G) is diagonal matrix with main diagonal entries as vertex degrees.



$$L(G) = \begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

Incidence matrix

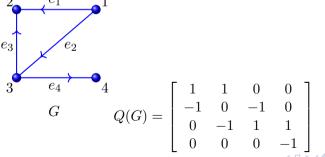
The vertex-edge incidence matrix of an oriented graph of G is defined as an $n \times m$ matrix $Q(G) = [q_{ij}]$, where

$$q_{ij} = \begin{cases} 1 & \text{if } e_j \text{ originates at } i, \\ -1 & \text{if } e_j \text{ terminates at } i, \\ 0 & \text{otherwise.} \end{cases}$$

Incidence matrix

The vertex-edge incidence matrix of an oriented graph of G is defined as an $n \times m$ matrix $Q(G) = [q_{ij}]$, where

$$q_{ij} = \begin{cases} 1 & \text{if } e_j \text{ originates at } i, \\ -1 & \text{if } e_j \text{ terminates at } i, \\ 0 & \text{otherwise.} \end{cases}$$



$$L(G) = Q(G)Q(G)^{T}.$$

$$L(G) = Q(G)Q(G)^{T}.$$

$$Q(G) = \begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & 0 & -1 & 0 \\ 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix}, \quad L(G) = \begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}.$$

$$L(G) = Q(G)Q(G)^{T}.$$

$$Q(G) = \begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & 0 & -1 & 0 \\ 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix}, \quad L(G) = \begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}.$$

ullet L(G) is positive semidefinite and 0 is one eigenvalue of L(G) with corresponding eigenvector ${f 1}$.

Proof. Suppose that x is a vector in the left null space of Q(G). Then $x_i - x_j = 0$ whenever $i \sim j$. It follows that $x_i = x_j$ if there is a path between i and j.

Proof. Suppose that x is a vector in the left null space of Q(G). Then $x_i - x_j = 0$ whenever $i \sim j$. It follows that $x_i = x_j$ if there is a path between i and j.

$$x^{T}Q(G) = \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & 0 & -1 & 0 \\ 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} x_{1} - x_{2} & x_{1} - x_{3} & x_{3} - x_{2} & x_{3} - x_{4} \end{bmatrix}$$

Proof. Suppose that x is a vector in the left null space of Q(G). Then $x_i - x_j = 0$ whenever $i \sim j$. It follows that $x_i = x_j$ if there is a path between i and j.

$$x^{T}Q(G) = \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & 0 & -1 & 0 \\ 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} x_{1} - x_{2} & x_{1} - x_{3} & x_{3} - x_{2} & x_{3} - x_{4} \end{bmatrix}$$

Since G is connected, $x_1 = x_2 = \cdots = x_n$. Thus, the left null space of Q(G) is one-dimensional and therefore rank $Q(G) \ge n - 1$.

Proof. Suppose that x is a vector in the left null space of Q(G). Then $x_i - x_j = 0$ whenever $i \sim j$. It follows that $x_i = x_j$ if there is a path between i and j.

$$x^{T}Q(G) = \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & 0 & -1 & 0 \\ 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} x_{1} - x_{2} & x_{1} - x_{3} & x_{3} - x_{2} & x_{3} - x_{4} \end{bmatrix}$$

Since G is connected, $x_1 = x_2 = \cdots = x_n$. Thus, the left null space of Q(G) is one-dimensional and therefore rank $Q(G) \ge n - 1$.

Also, as Q(G) has n rows and they are linearly dependent, therefore rank $Q(G) \leq n-1$. Thus, ${\rm rank}Q(G)=n-1$.

Theorem 1. If G is a graph on n vertices and has k components, then $\mathrm{rank}Q(G)=n-k$.

Theorem 1. If G is a graph on n vertices and has k components, then $\operatorname{rank} Q(G) = n - k$.

Let G_1, \ldots, G_k be the connected components of G. Then

$$Q(G) = \left[egin{array}{cccc} Q(G_1) & {f 0} & \dots & {f 0} \\ {f 0} & Q(G_2) & {f 0} \\ dots & \ddots & dots \\ {f 0} & {f 0} & \dots & Q(G_k) \end{array}
ight].$$

$$rank(Q(G)) = rank(Q(G_1)) + rank(Q(G_2)) + \cdots + rank(Q(G_k))$$

Proof. (Using method of induction on k, the size of the submatrix.)

For k=1, the statement holds. Assume that the statement holds for k-1 and consider a $k \times k$ submatrix B of Q(G).

Proof. (Using method of induction on k, the size of the submatrix.)

For k=1, the statement holds. Assume that the statement holds for k-1 and consider a $k \times k$ submatrix B of Q(G).

If each column of B has a 1 and a -1, then $\det(B)=0$. Also, if B has a zero column, then $\det(B)=0$.

Proof. (Using method of induction on k, the size of the submatrix.)

For k=1, the statement holds. Assume that the statement holds for k-1 and consider a $k \times k$ submatrix B of Q(G).

If each column of B has a 1 and a -1, then det(B)=0. Also, if B has a zero column, then det(B)=0.

Suppose that B has a column with only one nonzero entry, which must be ± 1 . Expand the determinant of B along that column and use induction hypothesis to conclude that $\det B$ must be 0 or ± 1 .

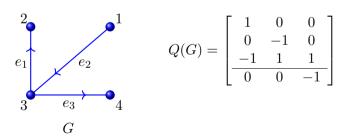
Lemma 3. Let G be a tree on n vertices. Then any submatrix of Q(G) of order n-1 is nonsingular.

Lemma 3. Let G be a tree on n vertices. Then any submatrix of Q(G) of order n-1 is nonsingular.

Proof. Consider the submatrix X of Q(G) formed by the rows $1, 2, \ldots, n-1$. If we add all the rows of X to the last row, then the last row of X becomes the negative of the last row of Q(G).

Lemma 3. Let G be a tree on n vertices. Then any submatrix of Q(G) of order n-1 is nonsingular.

Proof. Consider the submatrix X of Q(G) formed by the rows $1, 2, \ldots, n-1$. If we add all the rows of X to the last row, then the last row of X becomes the negative of the last row of Q(G).



Thus, if Y denotes the submatrix of Q(G) formed by the rows $1, \ldots, n-2, n$, then $\det X = \det Y$. Thus, if $\det X = 0$, then $\det Y = 0$.

Thus, if Y denotes the submatrix of Q(G) formed by the rows $1, \ldots, n-2, n$, then $\det X = \det Y$. Thus, if $\det X = 0$, then $\det Y = 0$.

Continuing this way we can show that if $\det X=0$ then each $(n-1)\times (n-1)$ submatrix of Q(G) must be singular. In fact, if any one of the $(n-1)\times (n-1)$ submatrices of Q(G) is singular, then all of them must be so.

Thus, if Y denotes the submatrix of Q(G) formed by the rows $1, \ldots, n-2, n$, then $\det X = \det Y$. Thus, if $\det X = 0$, then $\det Y = 0$.

Continuing this way we can show that if $\det X=0$ then each $(n-1)\times (n-1)$ submatrix of Q(G) must be singular. In fact, if any one of the $(n-1)\times (n-1)$ submatrices of Q(G) is singular, then all of them must be so.

But, ${\rm rank}Q(G)=n-1.$ Thus, at least one of the $(n-1)\times (n-1)$ submatrices of Q(G) must be nonsingular.

Lemma 4. Let G be a graph with $V(G)=\{1,\ldots,n\}$ and $E(G)=e_1,\ldots,e_m$. Then the following statements hold.

- (i) L(G) is a symmetric, positive semidefinite matrix.
- (ii) If G has k connected components, then rank L(G)=n-k.
- (iii) For any vector x,

$$x^T L(G)x = \sum_{i \sim j} (x_i - x_j)^2.$$

- (iv) The row and column sums of L(G) are zero.
- (v) The cofactors of any two elements of ${\cal L}(G)$ are equal.

Proof of (iii).

$$x^{T}L(G)x = \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} \end{bmatrix} \begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix}$$

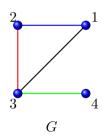
$$= \begin{bmatrix} 2x_{1} - x_{2} - x_{3} & -x_{1} + 2x_{2} - x_{3} & -x_{1} - x_{2} + 3x_{3} - x_{4} & -x_{3} + x_{4} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix}$$

$$= 2x_{1}^{2} - x_{1}x_{2} - x_{1}x_{3} - x_{1}x_{2} + 2x_{2}^{2} - x_{2}x_{3} - x_{1}x_{3} - x_{2}x_{3} + 3x_{3}^{2} - x_{3}x_{4} - x_{3}x_{4} + x_{4}^{2}$$

$$= 2x_{1}^{2} - x_{1}x_{2} - x_{1}x_{3} - x_{1}x_{2} + 2x_{2}^{2} - x_{2}x_{3} - x_{1}x_{3} - x_{2}x_{3} + 3x_{3}^{2} - x_{3}x_{4} - x_{3}x_{4} + x_{4}^{2}$$

$$= x_1^2 - 2x_1x_2 + x_2^2 + x_1^2 - 2x_1x_3 + x_3^2 + x_2^2 - 2x_2x_3 + x_3^2 + x_3^2 - 2x_3x_4 + x_4^2$$

= $(x_1 - x_2)^2 + (x_1 - x_3)^2 + (x_2 - x_3)^2 + (x_3 - x_4)^2$.



Proof of (v). Note that all the row and column sums of L=L(G) are zero. Let L(i|j):= the matrix obtained by deleting row i and column j of L.

Proof of (v). Note that all the row and column sums of L=L(G) are zero. Let L(i|j):= the matrix obtained by deleting row i and column j of L.

$$\det(L(1|1)) = \det\begin{bmatrix} l_{22} & l_{23} & \dots & l_{2n} \\ l_{32} & l_{33} & \dots & l_{3n} \\ \vdots & \ddots & \vdots \\ l_{n2} & l_{n3} & \dots & l_{nn} \end{bmatrix} = \det\begin{bmatrix} l_{22} + \dots + l_{2n} & l_{23} & \dots & l_{2n} \\ l_{32} + \dots + l_{3n} & l_{33} & \dots & l_{3n} \\ \vdots & \ddots & \vdots \\ l_{n2} + \dots + l_{nn} & l_{n3} & \dots & l_{nn} \end{bmatrix}$$
$$= \det\begin{bmatrix} -l_{21} & l_{23} & \dots & l_{2n} \\ -l_{31} & l_{33} & \dots & l_{3n} \\ \vdots & \ddots & \vdots \\ -l_{n1} & l_{n3} & \dots & l_{nn} \end{bmatrix} = \det(L(1|2))$$

A similar argument shows that the cofactor of l_{ij} equals that of l_{ik} , for any i, j, k.

Laplacian spectrum

$$S(G) = (\lambda_1, \lambda_2, \dots, \lambda_n)$$
, where $0 = \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$ are the eigenvalues of $L(G)$.

Laplacian spectrum

$$S(G) = (\lambda_1, \lambda_2, \dots, \lambda_n)$$
, where $0 = \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$ are the eigenvalues of $L(G)$.

Theorem (Fiedler, 1973). $\lambda_2 > 0$ if and only if G is connected.

Laplacian spectrum

$$S(G) = (\lambda_1, \lambda_2, \dots, \lambda_n)$$
, where $0 = \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$ are the eigenvalues of $L(G)$.

Theorem (Fiedler, 1973). $\lambda_2 > 0$ if and only if G is connected.

 λ_2 is known as the **algebraic connectivity** of G and is denoted by a(G). The corresponding eigenvectors are known as **Fiedler vectors** of G.

Laplacian spectrum

$$S(G) = (\lambda_1, \lambda_2, \dots, \lambda_n)$$
, where $0 = \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$ are the eigenvalues of $L(G)$.

Theorem (Fiedler, 1973). $\lambda_2 > 0$ if and only if G is connected.

 λ_2 is known as the **algebraic connectivity** of G and is denoted by a(G). The corresponding eigenvectors are known as **Fiedler vectors** of G.

The complete graph K_n which may be regarded as "highly connected" has

$$\lambda_2 = \cdots = \lambda_n = n.$$

Cayley's Theorem. There are n^{n-2} distinct labeled trees on n vertices. (The number of spanning trees of K_n equals n^{n-2} .)

Cayley's Theorem. There are n^{n-2} distinct labeled trees on n vertices. (The number of spanning trees of K_n equals n^{n-2} .)

Kirchhoff's Matrix-tree theorem (1847).

Let G be a graph on n vertices. Then the cofactor of any element of L(G) is equal to the number of spanning trees in G.

Cayley's Theorem. There are n^{n-2} distinct labeled trees on n vertices. (The number of spanning trees of K_n equals n^{n-2} .)

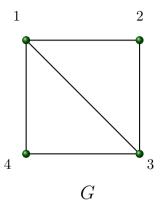
Kirchhoff's Matrix-tree theorem (1847).

Let G be a graph on n vertices. Then the cofactor of any element of L(G) is equal to the number of spanning trees in G.

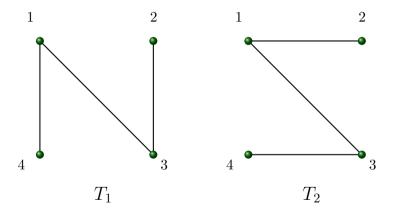
Theorem 2. The number of spanning trees of a graph G equals

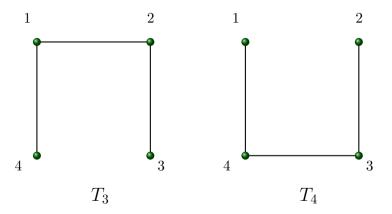
$$\frac{\lambda_2\lambda_3\cdots\lambda_n}{n}$$

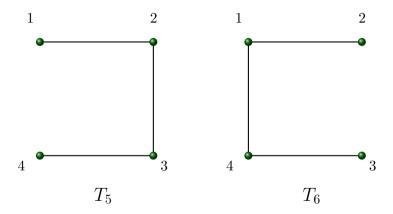
Laplacian spectrum

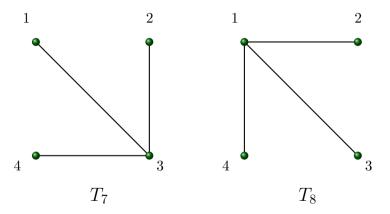


S(G) = (0, 2, 4, 4). The number of spanning trees $= \frac{1}{4} \cdot 2 \cdot 4 \cdot 4 = 8$.









```
\begin{split} &\det(L(1|1))\\ &=\det((QQ^T)(1|1))\\ &=\sum_{\substack{Z\subset E(G)\\|Z|=n-1}} (\det Q[2,3\dots,n|Z])^2 \quad \text{(Using Cauchy-Binet formula)} \end{split}
```

$$\begin{split} &\det(L(1|1))\\ &=\det((QQ^T)(1|1))\\ &=\sum_{\substack{Z\subset E(G)\\|Z|=n-1}}(\det Q[2,3\ldots,n|Z])^2 \ \ \text{(Using Cauchy-Binet formula)} \end{split}$$

Example: Let
$$A=\begin{bmatrix}1&3&2\\4&5&1\end{bmatrix}$$
 and $B=\begin{bmatrix}1&3\\-1&2\\4&5\end{bmatrix}$, then

$$\det(AB) = \det\begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix} + \det\begin{bmatrix} 1 & 2 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix} + \det\begin{bmatrix} 3 & 2 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 4 & 5 \end{bmatrix}$$

Since Q is unimodular, and $\det(L(1|1))$ equals the number of nonsingular submatrices of Q with rows $2, \ldots, n$.

Since Q is unimodular, and $\det(L(1|1))$ equals the number of nonsingular submatrices of Q with rows $2, \ldots, n$.

Notice that $\det Q[2,3\dots,n|Z]$ is nonsingular if and only if the corresponding edges form a tree. Hence, there is a one-to-one correspondence between nonsingular submatrices of Q of size n-1 and spanning trees of G.

Theorem. The number of spanning trees of a graph ${\cal G}$

$$t(G) = \frac{\lambda_2 \lambda_3 \cdots \lambda_n}{n}.$$

Theorem. The number of spanning trees of a graph G

$$t(G) = \frac{\lambda_2 \lambda_3 \cdots \lambda_n}{n}.$$

Proof. Recall that the sum of the principal minors of L(G) of order n-1 equals the sum of the products of the eigenvalues, taken n-1 at a time.

Theorem. The number of spanning trees of a graph G

$$t(G) = \frac{\lambda_2 \lambda_3 \cdots \lambda_n}{n}.$$

Proof. Recall that the sum of the principal minors of L(G) of order n-1 equals the sum of the products of the eigenvalues, taken n-1 at a time.

$$\det L(1|1) + \det L(2|2) + \dots + \det L(n|n) = \lambda_1 \dots \lambda_{n-1} + \dots + \lambda_2 \dots \lambda_n.$$

Theorem. The number of spanning trees of a graph G

$$t(G) = \frac{\lambda_2 \lambda_3 \cdots \lambda_n}{n}.$$

Proof. Recall that the sum of the principal minors of L(G) of order n-1 equals the sum of the products of the eigenvalues, taken n-1 at a time.

$$\det L(1|1) + \det L(2|2) + \dots + \det L(n|n) = \lambda_1 \dots \lambda_{n-1} + \dots + \lambda_2 \dots \lambda_n.$$

Thus,

$$n \times t(G) = \lambda_2 \cdots \lambda_n.$$

Theorem. The number of spanning trees of a graph G

$$t(G) = \frac{\lambda_2 \lambda_3 \cdots \lambda_n}{n}.$$

Proof. Recall that the sum of the principal minors of L(G) of order n-1 equals the sum of the products of the eigenvalues, taken n-1 at a time.

$$\det L(1|1) + \det L(2|2) + \dots + \det L(n|n) = \lambda_1 \dots \lambda_{n-1} + \dots + \lambda_2 \dots \lambda_n.$$

Thus,

$$n \times t(G) = \lambda_2 \cdots \lambda_n.$$

Since $\lambda_1=0$, the sum of the products of the eigenvalues, taken n-1 at a time, equals $\lambda_2\cdots\lambda_n$.

Generalization

A generalization of the matrix-tree theorem was obtained by Kel'mans which gives a combinatorial interpretation to all the coefficients of $\phi(L(G);x)$ in terms of the numbers of certain subforests of the graph.

Theorem. Let G be a graph on n vertices and the characteristic polynomial of L(G) be

$$\phi(L(G); x) = x^{n} + c_1 x^{n-1} + \dots + c_{n-1} x.$$

Then

$$c_i = (-1)^i \sum_{\substack{S \subset V(G) \\ |S| = n - i}} t(G_s),$$

where $t(G_s)$ is the number of spanning trees of H, and G_S is obtained from G by identifying all vertices of S to a single vertex.

Home work

Problem 1. Let G be a graph on n vertices and L be the Laplacian matrix of G. Then show that

$$t(G) = \frac{1}{n^2} \det(L + J),$$

where J is the $n \times n$ matrix with all entries equal to 1.

Problem 2. Let G be a graph on n vertices and m edges. Then show that

$$t(G) \le \frac{1}{n} \left(\frac{2m}{n-1} \right)^{n-1}.$$

Let the Laplacian eigenvalues of G be $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n = 0$.

For $k \in \{1, \ldots, n\}$, let

$$S_k(G) = \sum_{i=1}^k \lambda_i(G).$$

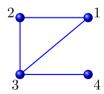
Conjugate degrees: $d_k^* = |\{v \in V(G) : d_v \ge k\}|$

Let the Laplacian eigenvalues of G be $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n = 0$.

For $k \in \{1, \ldots, n\}$, let

$$S_k(G) = \sum_{i=1}^k \lambda_i(G).$$

Conjugate degrees: $d_k^* = |\{v \in V(G) : d_v \ge k\}|$



$$d(G) = (d_1 = 2, d_2 = 2, d_3 = 3, d_4 = 1).$$
 $d_1^* = 4, d_2^* = 3, d_3^* = 1, d_4^* = 0, \dots$

Grone-Merris¹ **Conjecture:** For any graph G on n vertices and for each $k \in \{1, \ldots, n\}$

$$S_k(G) \le \sum_{i=1}^k d_i^*(G)$$

It is currently known as the **Grone-Merris-Bai** theorem.

Conjecture [Brouwer³, 2012]: For any graph G on n vertices and for each $k \in \{1, \ldots, n\}$

$$S_k(G) \le |E(G)| + {k+1 \choose 2}.$$

¹R. Grone and R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discrete Math., 7:221–229, (1994).

²H. Bai, The Grone-Merris conjecture, *Trans. Amer. Math. Soc.*, 363:4463–4474, (2011).

 $\lambda_1 \leq n$. Thus, the conjecture is true for k=1 for any connected graph.

¹W. H. Haemers, A. Mohammadian, and B. Tayfeh-Rezaie, On the sum of Laplacian eigenvalues of graphs, *Linear Algebra Appl.*, 432:2214–2221, (2010).

²X. Chen, On Brouwer's conjecture for the sum of k largest Laplacian eigenvalues of graphs, *Linear Algebra Appl.*, 578:402–410, (2019).

- $ightharpoonup \lambda_1 \leq n.$ Thus, the conjecture is true for k=1 for any connected graph.
- ▶ $S_{n-1} = S_n = 2e(G) \le e(G) + \binom{n}{2}$. Thus, the conjecture is true for k = n and k = n 1.

¹W. H. Haemers, A. Mohammadian, and B. Tayfeh-Rezaie, On the sum of Laplacian eigenvalues of graphs, *Linear Algebra Appl.*, 432:2214–2221, (2010).

²X. Chen, On Brouwer's conjecture for the sum of k largest Laplacian eigenvalues of graphs, *Linear Algebra Appl.*, 578:402–410, (2019).

- $ightharpoonup \lambda_1 \leq n$. Thus, the conjecture is true for k=1 for any connected graph.
- ▶ $S_{n-1} = S_n = 2e(G) \le e(G) + \binom{n}{2}$. Thus, the conjecture is true for k = n and k = n 1.
- ▶ When k = 2, Haemers et al. proved that the conjecture holds.

¹W. H. Haemers, A. Mohammadian, and B. Tayfeh-Rezaie, On the sum of Laplacian eigenvalues of graphs, *Linear Algebra Appl.*, 432:2214–2221, (2010).

²X. Chen, On Brouwer's conjecture for the sum of k largest Laplacian eigenvalues of graphs, *Linear Algebra*Appl., 578:402–410, (2019).

- $ightharpoonup \lambda_1 \leq n$. Thus, the conjecture is true for k=1 for any connected graph.
- ▶ $S_{n-1} = S_n = 2e(G) \le e(G) + \binom{n}{2}$. Thus, the conjecture is true for k = n and k = n 1.
- ▶ When k = 2, Haemers et al. proved that the conjecture holds.
- ▶ Chen² showed that if the conjecture holds for all graphs when k=p $(1 \le p \le \frac{n-1}{2})$, then it also holds for k=n-p-1.
- ▶ Thus, the conjecture also holds for all graphs when k = n 2 and k = n 3.

¹W. H. Haemers, A. Mohammadian, and B. Tayfeh-Rezaie, On the sum of Laplacian eigenvalues of graphs, *Linear Algebra Appl.*, 432:2214–2221, (2010).

²X. Chen, On Brouwer's conjecture for the sum of k largest Laplacian eigenvalues of graphs, *Linear Algebra Appl.*, 578:402–410, (2019).

The Brouwer's conjecture is true for several classes of graphs (for all $k \in \{1, ..., n\}$):

- ► Trees and threshold graphs (Haemers¹)
- Unicyclic graphs and bicyclic graphs (Du and Zhou ²)
- Regular graphs and split graphs (Mayank³).

¹W. H. Haemers, A. Mohammadian, and B. Tayfeh-Rezaie, On the sum of Laplacian eigenvalues of graphs, *Linear Algebra Appl.*, 432:2214–2221, (2010).

²Z. Du, B. Zhou, Upper bounds for the sum of Laplacian eigenvalues of graphs, Linear Algebra Appl., 436:3672–3683, (2012).

³Mayank, On Variants of the Grone-Merris Conjecture, Master's thesis, Eindhoven University of Technology, 2010.

Suggested Books

1. R. B. Bapat, Graphs and Matrices, (2010).

2. A. Brouwer, Spectra of Graphs, (2011).

3. D. M. Cvetković, M. Doob, and H. Sachs, *Spectra of Graphs*, Academic Press, (1979).

THANK YOU