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Laplacian matrix

Let G be a graph on vertices 1, 2, . . . , n. The Laplacian matrix of G is defined as
L(G) = [lij ], where

lij =


di if i = j,

−1 if i ∼ j,

0 otherwise.

G

12

3 4

L(G) =


2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1


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Laplacian matrix

The Laplacian matrix L(G) = D(G)−A(G), where D(G) is diagonal matrix with
main diagonal entries as vertex degrees.

G
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3 4

L(G) =
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2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
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2 0 0 0
0 2 0 0
0 0 3 0
0 0 0 1

−


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

 .
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Incidence matrix

The vertex-edge incidence matrix of an oriented graph of G is defined as an n×m
matrix Q(G) = [qij ], where

qij =


1 if ej originates at i,

−1 if ej terminates at i,

0 otherwise.

G
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3 4
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L(G) = Q(G)Q(G)T .

Q(G) =


1 1 0 0
−1 0 −1 0
0 −1 1 1
0 0 0 −1

 , L(G) =


2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1

 .

• L(G) is positive semidefinite and 0 is one eigenvalue of L(G) with corresponding
eigenvector 1.
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Lemma 1. If G is a connected graph on n vertices, then rankQ(G) = n− 1.

Proof. Suppose that x is a vector in the left null space of Q(G). Then xi − xj = 0
whenever i ∼ j. It follows that xi = xj if there is a path between i and j.

xTQ(G) = [x1 x2 x3 x4]

 1 1 0 0
−1 0 −1 0
0 −1 1 1
0 0 0 −1

 = [x1 − x2 x1 − x3 x3 − x2 x3 − x4]

Since G is connected, x1 = x2 = · · · = xn. Thus, the left null space of Q(G) is
one-dimensional and therefore rankQ(G) ≥ n− 1.

Also, as Q(G) has n rows and they are linearly dependent, therefore rank
Q(G) ≤ n− 1. Thus, rankQ(G) = n− 1.
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Theorem 1. If G is a graph on n vertices and has k components, then
rankQ(G) = n− k.

Let G1, . . . , Gk be the connected components of G. Then

Q(G) =


Q(G1) 0 . . . 0

0 Q(G2) 0
...

. . .
...

0 0 . . . Q(Gk)

 .

rank(Q(G)) = rank(Q(G1)) + rank(Q(G2)) + · · ·+ rank(Q(Gk))
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Lemma 2. Q(G) is totally unimodular (determinant of any square submatrix is either
0 or ±1).

Proof. (Using method of induction on k, the size of the submatrix.)

For k = 1, the statement holds. Assume that the statement holds for k − 1 and
consider a k × k submatrix B of Q(G).

If each column of B has a 1 and a −1, then det(B) = 0. Also, if B has a zero column,
then det(B) = 0.

Suppose that B has a column with only one nonzero entry, which must be ±1. Expand
the determinant of B along that column and use induction hypothesis to conclude that
detB must be 0 or ±1.
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Lemma 3. Let G be a tree on n vertices. Then any submatrix of Q(G) of order n− 1
is nonsingular.

Proof. Consider the submatrix X of Q(G) formed by the rows 1, 2, . . . , n− 1. If we
add all the rows of X to the last row, then the last row of X becomes the negative of
the last row of Q(G).

G
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
1 0 0
0 −1 0
−1 1 1

0 0 −1

e1 e2

e3
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Thus, if Y denotes the submatrix of Q(G) formed by the rows 1, . . . , n− 2, n, then
detX = detY . Thus, if detX = 0, then detY = 0.

Continuing this way we can show that if detX = 0 then each (n− 1)× (n− 1)
submatrix of Q(G) must be singular. In fact, if any one of the (n− 1)× (n− 1)
submatrices of Q(G) is singular, then all of them must be so.

But, rankQ(G) = n− 1. Thus, at least one of the (n− 1)× (n− 1) submatrices of
Q(G) must be nonsingular.
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Properties of the Laplacian matrix

Lemma 4. Let G be a graph with V (G) = {1, . . . , n} and E(G) = e1, . . . , em. Then
the following statements hold.

(i) L(G) is a symmetric, positive semidefinite matrix.

(ii) If G has k connected components, then rank L(G) = n− k.

(iii) For any vector x,

xTL(G)x =
∑
i∼j

(xi − xj)
2.

(iv) The row and column sums of L(G) are zero.

(v) The cofactors of any two elements of L(G) are equal.



Properties of the Laplacian matrix

Proof of (iii).

xTL(G)x =
[
x1 x2 x3 x4

] 
2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1




x1
x2
x3
x4



=
[
2x1 − x2 − x3 −x1 + 2x2 − x3 −x1 − x2 + 3x3 − x4 −x3 + x4

] 
x1
x2
x3
x4


= 2x21 − x1x2 − x1x3 − x1x2 + 2x22 − x2x3 − x1x3 − x2x3 + 3x23 − x3x4 − x3x4 + x24



Properties of the Laplacian matrix

= x21 − 2x1x2 + x22 + x21 − 2x1x3 + x23 + x22 − 2x2x3 + x23 + x23 − 2x3x4 + x24

= (x1 − x2)
2 + (x1 − x3)

2 + (x2 − x3)
2 + (x3 − x4)

2.

G

12

3 4



Properties of the Laplacian matrix

Proof of (v). Note that all the row and column sums of L = L(G) are zero. Let
L(i|j) := the matrix obtained by deleting row i and column j of L.

det(L(1|1)) = det


l22 l23 . . . l2n
l32 l33 . . . l3n
...

. . .
...

ln2 ln3 . . . lnn

 = det


l22 + · · ·+ l2n l23 . . . l2n
l32 + · · ·+ l3n l33 . . . l3n

...
. . .

...
ln2 + · · ·+ lnn ln3 . . . lnn



= det


−l21 l23 . . . l2n
−l31 l33 . . . l3n
...

. . .
...

−ln1 ln3 . . . lnn

 = det(L(1|2))

A similar argument shows that the cofactor of lij equals that of lik, for any i, j, k.
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Laplacian spectrum

S(G) =
(
λ1, λ2, . . . , λn

)
, where 0 = λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of L(G).

Theorem (Fiedler, 1973). λ2 > 0 if and only if G is connected.

λ2 is known as the algebraic connectivity of G and is denoted by a(G). The
corresponding eigenvectors are known as Fiedler vectors of G.

The complete graph Kn which may be regarded as “highly connected” has

λ2 = · · · = λn = n.
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Matrix-tree theorem

Cayley’s Theorem. There are nn−2 distinct labeled trees on n vertices. (The number
of spanning trees of Kn equals nn−2.)

Kirchhoff’s Matrix-tree theorem (1847).

Let G be a graph on n vertices. Then the cofactor of any element of L(G) is equal to
the number of spanning trees in G.

Theorem 2. The number of spanning trees of a graph G equals

λ2λ3 · · ·λn

n
.
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Laplacian spectrum
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G

S(G) = (0, 2, 4, 4). The number of spanning trees= 1
4 .2.4.4 = 8.
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Proof of matrix-tree theorem

det(L(1|1))
= det((QQT )(1|1))

=
∑

Z⊂E(G)
|Z|=n−1

(detQ[2, 3 . . . , n|Z])2 (Using Cauchy-Binet formula)

Example: Let A =

[
1 3 2
4 5 1

]
and B =

 1 3
−1 2
4 5

, then
det(AB) = det

[
1 3
4 5

] [
1 3
−1 2

]
+ det

[
1 2
4 1

] [
1 3
4 5

]
+ det

[
3 2
5 1

] [
−1 2
4 5

]
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Proof of matrix-tree theorem

Since Q is unimodular, and det(L(1|1)) equals the number of nonsingular submatrices
of Q with rows 2, . . . , n.

Notice that detQ[2, 3 . . . , n|Z] is nonsingular if and only if the corresponding edges
form a tree. Hence, there is a one-to-one correspondence between nonsingular
submatrices of Q of size n− 1 and spanning trees of G.
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submatrices of Q of size n− 1 and spanning trees of G.



The number of spanning trees

Theorem. The number of spanning trees of a graph G

t(G) =
λ2λ3 · · ·λn

n
.

Proof. Recall that the sum of the principal minors of L(G) of order n− 1 equals the
sum of the products of the eigenvalues, taken n− 1 at a time.

detL(1|1) + detL(2|2) + · · ·+ detL(n|n) = λ1 · · ·λn−1 + · · ·+ λ2 · · ·λn.

Thus,
n× t(G) = λ2 · · ·λn.

Since λ1 = 0, the sum of the products of the eigenvalues, taken n− 1 at a time,
equals λ2 · · ·λn.
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Generalization

A generalization of the matrix-tree theorem was obtained by Kel’mans which gives a
combinatorial interpretation to all the coefficients of ϕ(L(G);x) in terms of the
numbers of certain subforests of the graph.

Theorem. Let G be a graph on n vertices and the characteristic polynomial of L(G)
be

ϕ(L(G);x) = xn + c1x
n−1 + · · ·+ cn−1x.

Then

ci = (−1)i
∑

S⊂V (G)
|S|=n−i

t(Gs),

where t(Gs) is the number of spanning trees of H, and GS is obtained from G by
identifying all vertices of S to a single vertex.



Home work

Problem 1. Let G be a graph on n vertices and L be the Laplacian matrix of G.
Then show that

t(G) =
1

n2
det(L+ J),

where J is the n× n matrix with all entries equal to 1.

Problem 2. Let G be a graph on n vertices and m edges. Then show that

t(G) ≤ 1

n

(
2m

n− 1

)n−1

.



Brouwer’s Conjecture



Brouwer’s Conjecture

Let the Laplacian eigenvalues of G be λ1 ≥ λ2 ≥ · · · ≥ λn = 0.

For k ∈ {1, . . . , n}, let

Sk(G) =

k∑
i=1

λi(G).

Conjugate degrees: d∗k =
∣∣{v ∈ V (G) : dv ≥ k}

∣∣

12

3 4

d(G) = (d1 = 2, d2 = 2, d3 = 3, d4 = 1). d∗1 = 4, d∗2 = 3, d∗3 = 1, d∗4 = 0, . . .
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Brouwer’s Conjecture

Grone-Merris1 Conjecture: For any graph G on n vertices and for each
k ∈ {1, . . . , n}

Sk(G) ≤
k∑

i=1

d∗i (G)

It is currently known as the Grone-Merris-Bai theorem.

Conjecture [Brouwer3, 2012]: For any graph G on n vertices and for each
k ∈ {1, . . . , n}

Sk(G) ≤ |E(G)|+
(
k + 1

2

)
.

1R. Grone and R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discrete Math., 7:221–229, (1994).
2H. Bai, The Grone-Merris conjecture, Trans. Amer. Math. Soc., 363:4463–4474, (2011).
3A. E. Brouwer and W. H. Haemers, Spectra of graphs, Springer-Verlag, New York, 2012.



Brouwer’s conjecture

▶ λ1 ≤ n. Thus, the conjecture is true for k = 1 for any connected graph.

▶ Sn−1 = Sn = 2e(G) ≤ e(G) +
(
n
2

)
. Thus, the conjecture is true for k = n and

k = n− 1.

▶ When k = 2, Haemers et al.1 proved that the conjecture holds.

▶ Chen2 showed that if the conjecture holds for all graphs when
k = p (1 ≤ p ≤ n−1

2 ), then it also holds for k = n− p− 1.

▶ Thus, the conjecture also holds for all graphs when k = n− 2 and k = n− 3.

1W. H. Haemers, A. Mohammadian, and B. Tayfeh-Rezaie, On the sum of Laplacian eigenvalues of graphs,

Linear Algebra Appl., 432:2214–2221, (2010).
2X. Chen, On Brouwer’s conjecture for the sum of k largest Laplacian eigenvalues of graphs, Linear Algebra

Appl., 578:402–410, (2019).
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Brouwer’s conjecture

The Brouwer’s conjecture is true for several classes of graphs (for all k ∈ {1, . . . , n}):

▶ Trees and threshold graphs (Haemers1)

▶ Unicyclic graphs and bicyclic graphs (Du and Zhou 2)

▶ Regular graphs and split graphs (Mayank3).

1W. H. Haemers, A. Mohammadian, and B. Tayfeh-Rezaie, On the sum of Laplacian eigenvalues of graphs,

Linear Algebra Appl., 432:2214–2221, (2010).
2Z. Du, B. Zhou, Upper bounds for the sum of Laplacian eigenvalues of graphs, Linear Algebra Appl.,

436:3672–3683, (2012).
3Mayank, On Variants of the Grone-Merris Conjecture, Master’s thesis, Eindhoven University of Technology,

2010.
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