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Recap from Lectures 1,2

• Optimization in CS

• Shannon Capacity

• The Theta Function of a Graph

• Lovasz Bound 

• Shannon capacity of the 5-cycle



Outline for Today

• Linear and Semidefinite Programs

• Semidefinite programs for the Theta function

• Sandwich theorem and perfect graphs

• Relaxations and Rounding: Combinatorial optimization. 
Examples.

• Goemans Williamson Max-Cut algorithm

• SDPs for Coloring



Quick Recap

• Independence number 𝛼 𝐺 and chromatic number 𝜒(𝐺) are hard-
to-compute quantities of 𝐺, but important from both theoretical and 
practical standpoints

• Given a graph 𝐺, we are interested in finding the value of 

   𝑆 𝐺 ≔ sup
𝑘∈ℕ

𝛼 𝐺𝑘
1

𝑘

• This quantity characterizes the measure of information that can be sent 
across a channel per symbol when edges of 𝐺 show which alphabets cannot 
be sent together

• Lovasz formulated the theta function 𝜗(𝐺), that satisfies:
𝑆 𝐺 ≤ 𝜗(𝐺)

• 𝜗(𝐺) is a function that utilizes orthonormal representations of 𝐺, 
and is easier to analyze than 𝑆(𝐺)
• For instance, 𝜗 𝐺𝑘 ≤ 𝜗 𝐺 𝑘

• Using this, Lovasz showed that 𝜗 𝐶5 = 5, implying 𝑆 𝐺 = 5



Recap: OR and theta function

• Orthonormal Representation (OR) for 𝐺: A set of unit 
vectors 𝑢1, … , 𝑢𝑛  satisfying:
• 𝑢𝑖

𝑇𝑢𝑗 = 0 𝑖, 𝑗 ∈ ത𝐸

• The value of 𝑈 is defined as

𝜗 𝑈 ≔ min
𝑐: 𝑐 =1

max
𝑖

1

𝑐𝑇𝑢𝑖
2

• 𝜗 𝐺 ≔ min
𝑈:OR for 𝐺

𝜗 𝑈



Illustration of OR for 𝐶5



Some definitions

• 𝜔 𝐺 : Size of the maximum clique in 𝐺



The Sandwich Theorem

Theorem [Lovasz, 1979]: For all graphs 𝐺,

𝜔( ҧ𝐺) ≤ 𝜗 𝐺 ≤ 𝜒 ҧ𝐺



Computation of 𝜗(𝐺)

• 𝜗(𝐺) is a relaxation of 𝛼(𝐺)

• 𝜗 𝐺  is an optimization problem

• Can a solution to this optimization problem be computed 
efficiently?



General form of an optimization problem

𝑍∗: =  min  or max 𝑓 𝑥
subject to ∶  𝑔1 𝑥 = 0
 𝑔2 𝑥 ≥ 0

                                                                …

• Some optimization problems are “easy” computationally, others 
are hard

• If 𝑓, 𝑔i
′s  are “simple”, then the optimization problem may be 

efficiently solved
• Will assume that an optimum exists



Example: f, g linear

Maximize      𝑥1 + 𝑥2

Subject to:                    𝑥1, 𝑥2 ≥ 0
𝑥2 − 𝑥1 ≤ 1
𝑥1 + 6𝑥2 ≤ 15
4𝑥1 − 𝑥2 ≤ 10



General Linear Program

max 𝑐𝑇𝑥
𝑠. 𝑡.  𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0
𝑥 ∈ ℝ𝑛

Here, 𝐴 ∈ ℝ𝑚×𝑛, 𝑏 ∈ ℝ𝑚

• An optimal solution to a Linear Program can be found 
efficiently computationally
• Given inputs 𝑐, 𝐴, 𝑏, we can find an 𝑥∗ optimizing the above



More constraints

• Say, now, the variables are  entries 𝑥𝑖𝑗 of a symmetric 
matrix

• The space of variables is, therefore:  

 SYM𝑛 = {𝑋 ∈ ℝ𝑛×𝑛: 𝑥𝑖𝑗 = 𝑥𝑗𝑖} 

• Let’s generalize the previous Linear Program:

• max 𝑐𝑇𝑥 

 𝑠. 𝑡.  𝐴𝑥 ≤ 𝑏

 𝑥 ≥ 0

 𝑥 ∈ ℝ𝑛



Positive Semidefinite Matrices

• Fact: Let 𝑀 ∈ SYM𝑛. The following are equivalent:
1. M is positive semidefinite: All the eigenvalues of 𝑀 are non-

negative

2. 𝑧𝑇𝑀𝑧 ≥ 0 for all 𝑧 ∈ ℝ𝑛

3. 𝑀 = 𝑈𝑇𝑈, for some matrix 𝑈



Semidefinite Program (SDP)

• Omitting technical conditions*, we can efficiently find 
optimal solutions* to Semidefinite Programs!



A slight caveat

• max  −𝑥11

• s.t.      𝑥12 = 1

• 𝑋 ≽ 0, 𝑋 ∈ SYM2

• What is the optimum?



Back to the Theta Function

• 𝜗 𝐺  as an optimization problem







SDP #2 for the Theta Function

• Why is the optimal of this equal to 𝜗(𝐺)?



Proof that 𝜗 𝐺 = 𝑍2
∗

• Part 1: 𝑍2
∗ ≤ 𝜗(𝐺)

• Given an optimal OR and handle 𝑐, construct a feasible 
solution to SDP2



Part 2: 𝑍2
∗ ≥ 𝜗(𝐺)

• From an optimal SDP solution, construct an OR for 𝐺



Till now

• Optimization formulation (SDP) for the Theta Function

• Goal: To show that 𝜗 𝐺 ≤ 𝜒 ҧ𝐺  

• Need to relate it to a coloring in the complement graph



Proof strategy

• Show that if ҧ𝐺 has a 𝑘-coloring, then SDP2 has a feasible 
solution with value at most 𝑘

SDP2:

Z2 = min 𝑡

s.t. 𝑦𝑖𝑗 = −1 forall 𝑖, 𝑗 ∈ ത𝐸

 𝑦𝑖𝑖 = 1

 𝑌 ≽ 0



𝑘 - colorings and Vector 𝑘-colorings





Solutions for 𝑘 = 3,4

•  



ҧ𝐺 has a 𝑘-coloring ⇒ it has a vector 𝑘 coloring ⇒ 
there is a feasible solution to the SDP with value 𝑘





Recap

• An SDP (Semidefinite Program) is an optimization problem 
where the 𝑛2 variables are entries 𝑥𝑖𝑗of a symmetric psd matrix 
𝑋 ∈ SYM𝑛, and the objective and constraints are linear in 𝑥𝑖𝑗

′ 𝑠

• 𝜗(𝐺) can be expressed as a minimization SDP: i.e, as an 
optimization problem which can be solved efficiently

• If ҧ𝐺 has a 𝑘-coloring, then we can use it to find a feasible 
solution to the SDP with value 𝑘.

• This gives us: 𝜔 𝐺 ≤ 𝜗 𝐺 ≤ 𝜒( ҧ𝐺)



Perfect Graphs

• Perfect Graphs are graphs 𝐺 where 𝜔 𝐺′ = 𝜒(𝐺′) for all 
induced subgraphs 𝐺′ of 𝐺

• By sandwich theorem, can compute 𝜔(𝐺) and 𝜒(𝐺) for all 
perfect graphs 𝐺 efficiently

• Examples: Bipartite graphs, Chordal graphs, Interval 
Graphs



Perfect graph theorems

• Weak Perfect Graph Theorem (Lovasz 1972)

 𝐺 is a perfect graph if and only if  ҧ𝐺 is perfect

• Strong Perfect Graph Theorem (CRST, 2006, Annals of 
Math)

A graph is perfect iff it contains no odd hole (odd induced 
cycle of length ≥ 5) and no odd antihole



SDPs and Designing 
Algorithms
(Part 4)



Easy and hard problems

• “Easy” problems: Problems for which there are efficient 
(polynomial-time) algorithms
• Sorting n numbers
• Matching
• Finding a minimum Spanning tree
• Min-cut
• Max-Flow

• “Hard” problems: NP-hard, optimal solutions likely cannot be 
found efficiently
• Minimum Vertex-Cover
• Max-Cut
• Minimum Set-Cover
• Maximum Independent Set



Approximation

• Area of approximation algorithms: design efficient algorithms that provably find 
an approximately optimal solution

• Example: 
• Input: Graph G
• Output: Independent Set S
• Objective: Maximize |S|

• A 𝛽-approximation algorithm (𝛽 ≤ 1):
• If OPT is the optimal value output an answer |𝑆| with the guarantee that 𝑆 ≥ 𝛽 ⋅ OPT

• Definition applies to all maximization problems: if 𝐴𝐿𝐺 is a solution given by the 
algorithm, want 𝐴𝐿𝐺 ≥ 𝛽 ⋅ OPT

• For minimization problems, want to ensure that we get a solution not too larger 
than the optimal, i.e. ALG ≤ Δ ⋅ OPT (for Δ ≥ 1).



But how does it work?

• How can we guarantee that ALG ≥ 𝛽 ⋅ OPT, when we 
have no idea what OPT will be?

• Answer: Use a proxy to get an idea of what OPT should be 
like!

• Very similar to Lovasz’s theta function! 



Example: Minimum Vertex-Cover

• A vertex cover is a subset 𝑆 of vertices that covers 
(touches) all edges

• Goal: Find a minimum-sized vertex cover in input graph 𝐺

 



Optimization formulation and relaxation







Algorithm

min ෍

𝑖∈𝑉

𝑥𝑖

𝑠. 𝑡.  𝑥𝑖 + 𝑥𝑗 ≥ 1 ∀ 𝑖, 𝑗 ∈ 𝐸
 𝑥𝑖 ≥ 0 ∀𝑖 ∈ 𝑉





The MAX-CUT problem

• Input: 𝐺 = 𝑉, 𝐸  

• Objective: Find a partition (𝑆, 𝑆𝑐) of 𝑉 that maximizes the 
number of edges across the cut: max 𝐸 𝑆, 𝑆𝐶

• Unlike min-cut, NP Hard to find exactly!

• A 
1

2
 - approximation was known

• Goemans and Williamson [1994] give an algorithm that 
guarantees a 0.878 approximation, which introduced the use of 
SDPs in designing algorithms.



An observation

Fact: 𝑂𝑃𝑇 ≥
1

2
|𝐸|





Optimization formulation

• Linear formulations do not work very well for MAX-CUT

• A quadratic formulation



Relaxation of quadratic form to a SDP



Finding a solution



The randomized rounding algorithm

•  





Main Lemma

• Let 𝑢, 𝑢′ ∈ 𝑆𝑛−1. Then the probability that 𝑢, 𝑢′ go to 
different halves is at least:

1

𝜋
cos−1 𝑢𝑇𝑢′



Probability of separating 𝑢, 𝑢′



The final bound

• Lemma: 
1

𝜋
cos−1 𝑧 ≥ 0.87856

1−𝑧

2



Closing remarks

• The power of SDPs in approximation is  a topic of very 
active research



References

Most of the material covered can be found in the excellent 
book:

• B. Gartner and J. Matousek, Approximation Algorithms 
and Semidefinite Programming, Springer, 2012
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