Lovász Theta Function, Semidefinite Programs and Algorithms

Parts 3,4

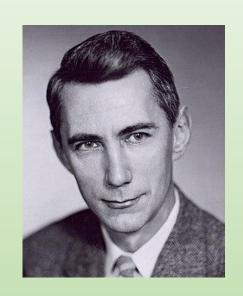
Lecturer: Rakesh Venkat

Short Term Program on "Graphs, Matrices and Applications"

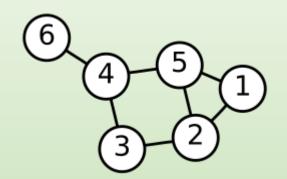
Indian Institute of Technology, Hyderabad

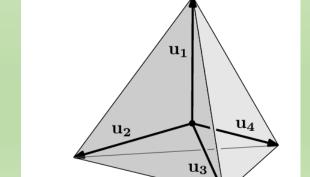
4th Oct 2025 (Sat)

Shannon, Lovász, Graphs and Geometry



Claude Shannon





László Lovász

Recap from Lectures 1,2

- Optimization in CS
- Shannon Capacity
- The Theta Function of a Graph
- Lovasz Bound
- Shannon capacity of the 5-cycle

Outline for Today

- Linear and Semidefinite Programs
- Semidefinite programs for the Theta function
- Sandwich theorem and perfect graphs
- Relaxations and Rounding: Combinatorial optimization.
 Examples.
- Goemans Williamson Max-Cut algorithm
- SDPs for Coloring

Quick Recap

- Independence number $\alpha(G)$ and chromatic number $\chi(G)$ are hard-to-compute quantities of G, but important from both theoretical and practical standpoints
- Given a graph G, we are interested in finding the value of

$$S(G) \coloneqq \sup_{\{k \in \mathbb{N}\}} \alpha (G^k)^{\frac{1}{k}}$$

- $S(G)\coloneqq\sup_{\{k\in\mathbb{N}\}}\alpha(G^k)^{\frac{1}{k}}$ This quantity characterizes the measure of information that can be sent across a channel per symbol when edges of G show which alphabets cannot be sent together
- Lovasz formulated the *theta* function $\vartheta(G)$, that satisfies:

$$S(G) \le \vartheta(G)$$

- $\vartheta(G)$ is a function that utilizes orthonormal representations of G, and is easier to analyze than S(G)
 - For instance, $\vartheta(G^k) \leq \vartheta(G)^k$
- Using this, Lovasz showed that $\vartheta(C_5) = \sqrt{5}$, implying $S(G) = \sqrt{5}$

Recap: OR and theta function

 $\rho V = \{1, 2, ... n\}$

• Orthonormal Representation (OR) for G: A set of unit vectors $\{u_1, \dots, u_n\}$ satisfying:

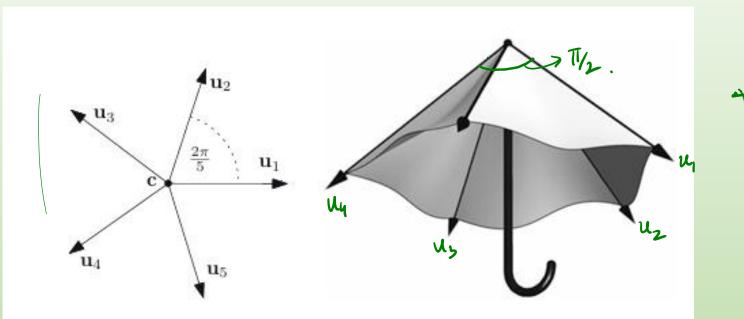
•
$$u_i^T u_j = 0$$
 $\{i,j\} \in \bar{E}$

• The **value** of U is defined as

$$\vartheta(U) \coloneqq \min_{c:\|c\|=1} \max_{i} \frac{1}{(c^T u_i)^2}$$
 $c = \text{'hardle'' of the or.}$

•
$$\vartheta(G) \coloneqq \min_{U: OR \text{ for } G} \vartheta(U)$$

Illustration of OR for C_5



At satisfying
$$u_i = \left(\begin{array}{c} \cos \frac{2\pi i}{5}, \sin \frac{2\pi i}{5}, Z \right), \text{ for } i=1,2,3,4,5$$

point of $0R$:

 $V_s^T U_z = 0 \Rightarrow (1,0,Z)^T \begin{pmatrix} \cos 4\pi z \\ \sin 4\pi z \end{pmatrix} = 0$
 2
 3
 $\cos 4\pi z + Z^2 = 0$.

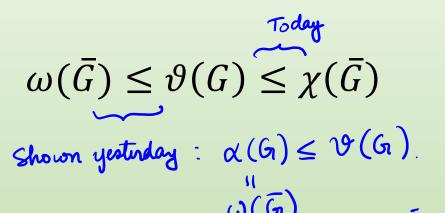
Some definitions

• $\omega(G)$: Size of the maximum clique in G

$$\alpha(G) = \omega(G)$$

The Sandwich Theorem

Theorem [Lovasz, 1979]: For all graphs G, (Main result)



(Notice: $\chi(\overline{G}) > \omega(\overline{G})$)

Computation of $\vartheta(G)$

• $\vartheta(G)$ is a *relaxation* of $\alpha(G)$

• $\vartheta(G)$ is an optimization problem

 Can a solution to this optimization problem be computed efficiently?

General form of an optimization problem

$$Z^*$$
:= min or max $f(x)$
subject to: $g_1(x) = 0$
 $g_2(x) \ge 0$
... $x \in \mathbb{R}^n$ or similar

- Some optimization problems are "easy" computationally, others are hard
- If f, g_i' s are "simple", then the optimization problem may be efficiently solved
 - Will assume that an optimum exists

Example: f, g linear

 $x_1 + x_2$ objective Maximize

Subject to:

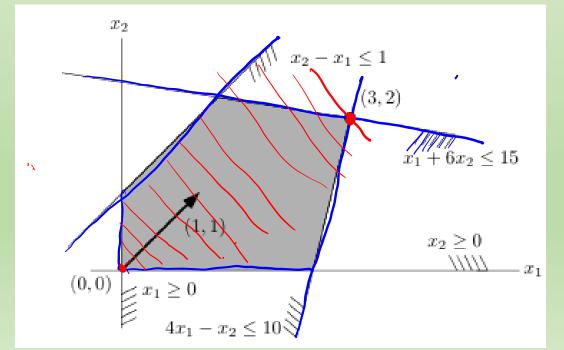
 $x_1, x_2 \ge 0$ $x_2 - x_1 \leq 1$ $x_1 + 6x_2 \le 15$ $4x_1 - x_2 \le 10$

(2-variables)

constraints.

Fearible solutions:

 $(x_1,x_2) \in \mathbb{R}^2$ s.t. they satisfy all the constraints.



General Linear Program

$$\max_{x \in \mathbb{R}^n} c_i x_i$$

$$x \ge 0$$

$$x \in \mathbb{R}^n$$

$$x \ge 0$$

$$x \in \mathbb{R}^n$$

Here, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$

- An optimal solution to a Linear Program can be found efficiently computationally
 - Given inputs c, A, b, we can find an x^* optimizing the above

More constraints

- Say, now, the variables are entries x_{ij} of a symmetric matrix
- The space of variables is, therefore: (n² variables) $SYM_n = \{X \in \mathbb{R}^{n \times n} : x_{ij} = x_{ji}\}$
- Let's generalize the previous Linear Program:

• Let's generalize the previous Linear Program:

•
$$\max c^T x$$
 $s.t. \quad Ax \leq b$
 $x \geq 0$
 $x \in \mathbb{R}^n$
 $x \leq 0$
 $x \in SYM_n$

**Cij x_{ij}

**Cij x_{ij}

**Linear constroints.

**\frac{1}{2} \frac{1}{2} \f

Positive Semidefinite Matrices

- Fact: Let $M \in SYM_n$. The following are equivalent:
 - 1. M is positive semidefinite: All the eigenvalues of M are non-negative
 - 2. $z^T M z \ge 0$ for all $z \in \mathbb{R}^n$
 - 3. $M = U^T U$, for some matrix U

$$(3)\Rightarrow(2): Z^{T}MZ = Z^{T}U^{T}UZ$$

= $\|UZ\|^{2} \ge 0$

Semidefinite Program (SDP)

max/min
$$\sum_{i,j} c_{i,j} \chi_{i,j}$$

s.t. Linear combraints on $\chi_{i,j}$'s. (eg: $4\chi_{i,1} + 3\chi_{2,1} + 5\chi_{2,3} \ge 10$)
 $\times \ge 0$.
 $\times \in SYMn$.

 Omitting technical conditions*, we can efficiently find optimal solutions* to Semidefinite Programs!

A slight caveat

- max $-x_{11}$
- s.t. $x_{12} = 1$
- $X \ge 0, X \in SYM_2$
- What is the optimum? -> Exists, but can't be attained -> Solvers give approximately optimal solutions

Back to the Theta Function

• $\vartheta(G)$ as an optimization problem

Find vectors
$$u_1 \cdots u_n : \mathcal{U}_n : \mathcal{U}_n = 0 \text{ for } \{i,j\} \in \mathbb{E}$$
and hadle 'c' and min max $\frac{1}{c}$
 c , i $(c^Tu_i)^2$
 $u_i \cdot u_n$

Set. OR constraint.

Claim: Consider the optimization problem

Z* := max

t

st. uity = 0 *** Eije =

$$u_i^T u_j = 0 \qquad \text{if } i, j \in \mathbb{R}, \dots, n \}.$$

$$c^T u_i \ge t \qquad \text{if } i \in \{1, \dots, n\}.$$

$$||c|| = 1$$

$$\forall i: ||ui|| = 1, ||c|| = 1$$

 $\begin{cases} ui \in \mathbb{R}^n, c \in \mathbb{R}^n, t \end{cases} \rightarrow varables.$

For any fearable

11 ... Un

and C,

the optimum t

= min (CTUi)

ie[n]

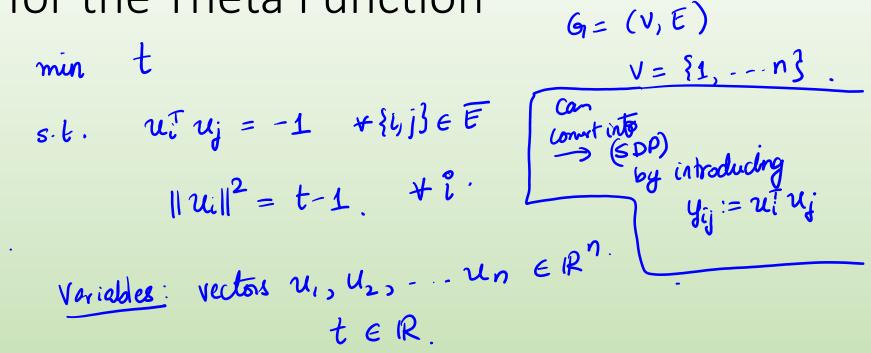
Previous is actually aSDP Y E SYMn+L Introduce max t ut uj = 0 +{i,j}eF c⁷uizt $||u_i||^2 = 1$, $||C||^2 = 1$. -> A "vector program" (variables are vectos). Why does Y > 0 make sense? max *{i,j}eE Ano: Y > 0 F matrix U s.t. s.t. (dy not ter yoj > t Y >0

Summeny: J9(G)

is the optimal value of a

Semi définite Program.

SDP #2 for the Theta Function



• Why is the optimal of this equal to $\vartheta(G)$?

Let
$$Z_2^*$$
 be the optimal of the above optimization problem.
Lemma: $Z_2^* = 9(G)$.

Proof that $\vartheta(G) = Z_2^*$

• Part 1: $Z_2^* \leq \vartheta(G)$

$$Z_{2} = \min t$$

$$SDP2.$$

$$s \cdot t \cdot v_{i}^{T}v_{j}^{*} = -[*k_{i}] \in E$$

$$||v_{i}||^{2} = t - 1.$$

$$vars: t \in R, V_{i}'s \in R^{n}.$$

 Given an optimal OR and handle c, construct a feasible solution to SDP2

Let
$$U = \{u_1, u_2 -- - u_n\}$$
 \Rightarrow optimal OR, hardle c.

$$V_{i} := C - \frac{u_{i}}{c^{T}u_{i}}$$

$$For ij \in E : V_{i}^{T}V_{j} = c^{T}C - \frac{c^{T}u_{i}}{c^{T}u_{i}} - \frac{c^{T}u_{j}}{c^{T}u_{i}} + \frac{u_{j}^{T}u_{j}}{c^{T}u_{i}}$$

$$= 1 - |-| = -1.$$

Part 2:
$$Z_2^* \ge \vartheta(G)$$

• From an optimal SDP solution, construct an OR for G (Skip the proof here)

Till now

Optimization formulation (SDP) for the Theta Function

• Goal: To show that $\vartheta(G) \leq \chi(\bar{G})$

Need to relate it to a coloring in the complement graph

Proof strategy To show
$$9(6) \le x(5)$$
.

• Show that if G has a k-coloring, then SDP2 has a feasible solution with value at most $k \gg 9(6) \leq k$.

SDP2:

Z2 = min
$$t$$

s.t. $y_{ij} = -1$ forall $i, j \in \overline{E}$

$$y_{ii} = 1$$

$$Y \geqslant 0$$

. SDP 2 : (vector form)
$$Z_{2}^{*} = \min \quad t$$

${\it k}$ - colorings and Vector ${\it k}$ -colorings

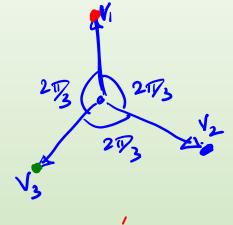
or k-colorings G' = (V, E')

k-coloning:
$$\chi: V \rightarrow \{1, \dots, k\}$$

of $G' = (V, E')$ st. $\chi\{i,j\} \in E', \chi(i) \neq \chi(j)$
Definition: A vector k-coloning is an assignment of vectors to vertices
 $\chi: V \rightarrow S^{n-1}$
s.t. $\chi\{i,j\} \in E', \chi(i)^T \chi(j) = -\frac{1}{k-1}$
(2) $\chi(i)^T \chi(j) = -\frac{1}{2}$
Claim: If $\chi(i)^T \chi(j) = -\frac{1}{2}$
it has a vector k-coloning.

Went: $r(i) \in \mathbb{R}^n$ s.t. $\{\{i,j\}\}\in G': \gamma(i)^T\gamma(j) = -\frac{1}{k-1}$

eg: k=3



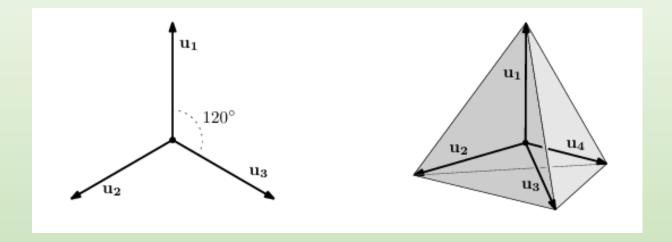
3-colorable graph

$$\gamma(i) = V_{\chi(i)}$$

4

Solutions for k = 3,4

•



In general:
$$\Upsilon(i) := e_{\chi(i)} - \frac{1}{k} \sum_{l=1}^{k} e_{l}$$
.

$$||e_{\chi(i)} - \frac{1}{k} \sum_{l=1}^{k} e_{l}||$$

 $9(G) \leq \chi(G)$ Wanted to show:

 \bar{G} has a k-coloring \Rightarrow it has a vector k coloring \Rightarrow there is a feasible solution to the SDP with value k

 $(d(G^k))^k \leq 9(G) = \frac{1}{min} \max_{i \in V} \frac{1}{(i \in V)^2}.$

Recap

- Kecap $mx = \begin{cases} (x) & x : var.ables \\ (x) & y : var.ables \\ (x) & y$ where the n^2 variables are entries x_{ij} of a symmetric psd matrix $X \in SYM_n$, and the objective and constraints are linear in $x'_{ij}s$
- $\vartheta(G)$ can be expressed as a minimization SDP: i.e, as an optimization problem which can be solved efficiently
- If \tilde{G} has a k-coloring, then we can use it to find a feasible solution to the SDP with value k.
- This gives us: $\omega(G) \leq \vartheta(G) \leq \chi(\overline{G})$

Perfect Graphs

Sandwich Thm: $\forall G: \omega(G) \leq \vartheta(G) \leq \chi(G)$

• Perfect Graphs are graphs G where $\omega(G')=\chi(G')$ for all with induced subgraphs G' of G

• By sandwich theorem, can compute $\omega(G)$ and $\chi(G)$ for all perfect graphs G efficiently (since by sandwich theorem, both are = 19(G)

Examples: Bipartite graphs, Chordal graphs, Interval Graphs

Perfect graph theorems

• Weak Perfect Graph Theorem (Lovasz 1972)

G is a perfect graph if and only if \bar{G} is perfect

$$\Rightarrow$$
 Can compute $\chi(G)$, $\chi(G)$, $\omega(G)$ from $\wp(G)$ and $\wp(G)$.

 Strong Perfect Graph Theorem (CRST, 2006, Annals of Math)

A graph is perfect iff it contains no odd hole (odd induced cycle of length ≥ 5) and no odd antihole,

SDPs and Designing Algorithms

(Part 4)

Easy and hard problems

- "Easy" problems: Problems for which there are efficient (polynomial-time) algorithms
 - Sorting n numbers
 - Matching
 - Finding a minimum Spanning tree
 - Min-cut
 - Max-Flow
- "Hard" problems: NP-hard, optimal solutions likely cannot be found efficiently
 - Minimum Vertex-Cover
 - Max-Cut
 - Minimum Set-Cover
 - Maximum Independent Set

Approximation

 Area of approximation algorithms: design efficient algorithms that provably find an approximately optimal solution

• Example:

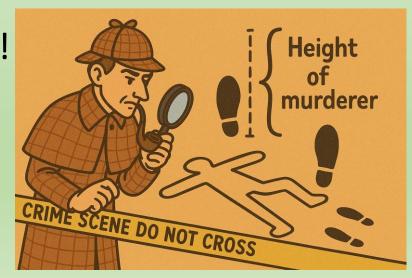
- Input: Graph G
- Output: Independent Set S
- Objective: Maximize |S|
- A β -approximation algorithm ($\beta \leq 1$):
 - If OPT is the optimal value output an answer |S| with the *guarantee* that $|S| \ge \beta \cdot \text{OPT}$
- Definition applies to all maximization problems: if ALG is a solution given by the algorithm, want $ALG \ge \beta \cdot \mathrm{OPT}$
- For minimization problems, want to ensure that we get a solution not too larger than the optimal, i.e. $ALG \le \Delta \cdot OPT$ (for $\Delta \ge 1$).

But how does it work?

• How can we guarantee that ALG $\geq \beta \cdot \text{OPT}$, when we have no idea what OPT will be?

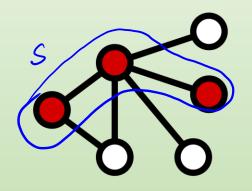
 Answer: Use a proxy to get an idea of what OPT should be like!

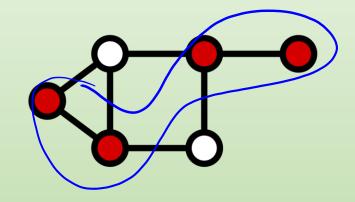
Very similar to Lovasz's theta function!



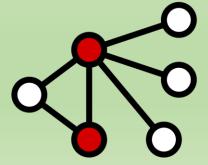
Example: Minimum Vertex-Cover

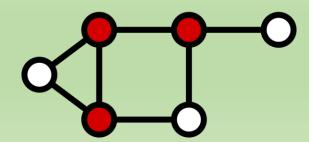
 A vertex cover is a subset S of vertices that covers (touches) all edges





ullet Goal: Find a minimum-sized vertex cover in input graph G





Optimization formulation and relaxation

21 + 22 + 23 + 24 + 25 + 26 .

Given
$$G_{1}=(V,E)$$
, $V=\{1,2,\dots,n\}$
Let variables be x_{1},x_{2},\dots,x_{n} .
 $Z=\min \sum_{i\in V} x_{i}$
S.t. $x_{i}+x_{j}\geq 1$ $\forall \{i,j\}\in E$
 $x_{i}\in \{0,i\}$ $\forall i\in V$

for Vertex Cover

Any feanble soln 2 E { 0,15° to this problem in an indicator vector of a vertex com in 6 -> optimal solution will be a minimum vertex com in G

$$x_1 + x_2 \geqslant 1$$

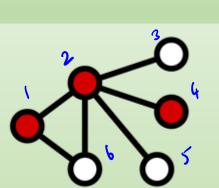
$$x_1 + x_6 \gg 1$$

$$x_2 + x_4 \geqslant 1$$

$$x_1 + x_5 \geqslant 1$$

$$x_1 + x_2 \geqslant 1$$

$$x_1 \in \{0,1\} \quad \forall i \in \{1, --6\}$$



Relaxation

s.t.
$$x_i + x_j \ge 1$$
 $+ \xi i, j \le E$
 $x_i \ge 0$ $\}$ $+ i \in V$.

 $x_i \le 1$ \Rightarrow P , efficiently solvable.

Prev: 2 = {0,1}

$$19: x^* = (0.2, 0.3, 0.47, 0.9, 0.6)$$

Algorithm

$$\min \sum_{i \in V} x_i$$
s.t. $x_i + x_j \ge 1 \quad \forall \{i, j\} \in E$

$$x_i \ge 0 \quad \forall i \in V$$

- O Feed the abox into a solver, get a solution $x^* = (x_i^*, \dots, x_n^*)$ with value $Z_{ip}^* = \sum_{i \in I} x_i^* \leq OPT_G$ size of min vertex con in G_i .
- ② (et S = {i: xi* > ½}.

 Claim: S is a vertex cover in G.

 Broof: Take any {i,j} ∈ E. We know that xi* + xy* > 1.

 ⇒ attent on endpoint on any edge is in S.

Why in IsI small?
$$|S| = \sum_{i \in S} 1 \le 2 \sum_{i \in S} x_i^* \quad (since x_i^* \ge 1 + i \in S)$$

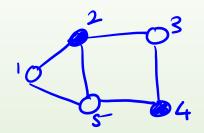
$$\le 2 \left(\sum_{i \in I} x_i^*\right) \quad (since x_i^* \ge 0 + i)$$

$$= Z_{LP}$$

$$\le 2 \cdot OPT \quad (since Z_{LP} \le 0PT)$$

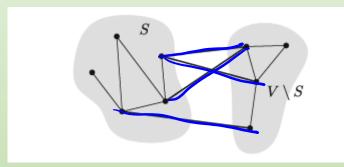
min vertex com rice.

The MAX-CUT problem



- Input: G = (V, E) $V = \{1, 2, \dots, n\}$
- Objective: Find a partition (S, S^c) of V that maximizes the number of edges across the cut: max $|E(S, S^c)|$

Unlike min-cut, NP Hard to find exactly!



- A $\frac{1}{2}$ approximation was known
- Goemans and Williamson [1994] give an algorithm that guarantees a 0.878 approximation, which introduced the use of SDPs in designing algorithms.

An observation

Max cut value

Fact:
$$\widetilde{OPT} \ge \frac{1}{2}|E|$$
 * graphs G.

Proof: Choose a set
$$S \subseteq V$$
 randomly as Jollous:

For each $i \in V$: choose i to be in S to $P \subseteq I$ (independently).

Will analyze: $\mathbb{E} \left[|E(S,S)| \right]$.

 $X_{ij} = \begin{cases} 1 & \text{if } i_j \text{ lie on opp side of cut} \\ 0 & \text{if } i_j \text{ lie on same side of cut} \end{cases}$
 $\mathbb{E} \left[|E(S,S)| \right] = \mathbb{E} \left[\sum_{i,j \in E} X_{ij} \right] = \sum_{i,j \in E} \frac{1}{2}$
 $= \sum_{i',j \notin E} \mathbb{E} \left[X_{i'j} \right] = \sum_{i',j \in E} \frac{1}{2}$
 $= \sum_{i',j \notin E} \mathbb{E} \left[X_{i'j} \right] = \sum_{i',j \in E} \frac{1}{2}$

Randomized algorithm:

Choose an S as above.

Outout (s, sc).

Optimization formulation

Linear formulations do not work very well for MAX-CUT

A quadratic formulation

Variables
$$z_1 - x_n$$
, z_i indicates if $i \in S$.

 $max \quad \sum_{\{i,j \notin E} \left(\frac{1-x_i x_j}{2}\right)$
 $z_i^2 = 1 \equiv x_i \in \{-1,1\} + i \in V$
 $x_i = 1$ means $i \in S$
 $x_i = -1$ means $i \notin S$

Claim: Optimum of this persulation is exactly

 $MAX-(UT)$ value of G_1 .

 $MAX-(UT)$ value of G_2 .

 $MAX-(UT)$ value of G_3 .

 $MAX-(UT)$ value of G_4 .

Relaxation of quadratic form to a SDP

max
$$\sum_{\{i,j\}\in\mathcal{E}} \left(\frac{1-\chi_i\chi_j}{2}\right) \xrightarrow{\text{replace}} \max_{\{i,j\}\in\mathcal{E}} \left(\frac{1-\chi_i\chi_j}{2}\right) \xrightarrow{\text{scalar variables}} \sup_{\{i,j\}\in\mathcal{E}} \left(\frac{1-\chi_i\chi_j}{2}\right) \xrightarrow{\text{scalar variables}} \left(\frac{1-\chi_i\chi_j}{2}\right)$$

Let
$$Y = gram matrix of vector {ui}_{i=1}^{n};$$

$$y_{ij} = u_i^T u_j$$

$$Z_{SOP} = max \qquad \sum_{\{i,j\} \in \mathcal{E}} \left(\frac{1-y_{ij}}{2}\right)$$

$$s_i = 1$$

$$\forall \geq 0$$

Finding a solution

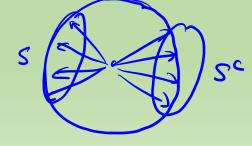
Maximize
$$\sum_{\{i,j\}\in E} \frac{1-\mathbf{u}_i^T\mathbf{u}_j}{2}$$
 subject to
$$\mathbf{u}_i \in S^{n-1}, \quad i=1,2,\ldots,n.$$

Algo:

O Write out SDP#1, feed it into a solver

Get solution $u_1^*, -- u_n^*$ in S^{n-1} ω objective function value = $Z_{SDP} \geqslant MAX-CUT(G_1)$

Intuitively, expect if Si,j) EE, ui, uj would have large angle between them.



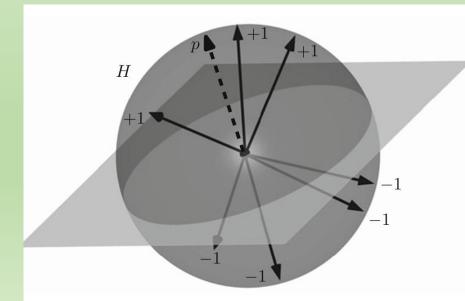
The randomized rounding algorithm

Choose a random hypurplane through the origin that cuts 5^{n-1} .

Specify normal vetor pVectors on one ride give the set S (and other ride in S^c) $S = \{i: p^T ii > 0\}$ $S = \{i: p^T ii > 0\}$

Remaining: To bound E[[E(S,Sc)]]

[GN'94]: E[IE(S,S')] > 0-878 MAX-CUT.



Analysis: Pick any edge {i,j} EE

Let $X_{ij} = 1$, if i,j lie on opposite sides of the cut $\mathbb{E} \left[|E(S,S^c)| \right] = \sum_{i,j \in E} \mathbb{E} \left[X_{ij} \right].$

$$P_{r}(x_{ij}=1) = Co^{-1}(u_{i}^{T}u_{j})$$

$$= \Theta_{ij}$$

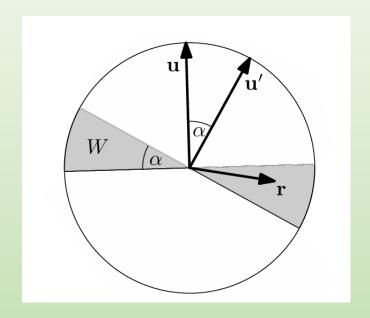
$$TT$$

Main Lemma

• Let $u, u' \in S^{n-1}$. Then the probability that u, u' go to different halves is at least:

Inthalves is at least:
$$\frac{1}{\pi}\cos^{-1}u^{T}u'$$
 (shown in previolation)

Probability of separating u, u'



The final bound

• Lemma: $\frac{1}{\pi} \cos^{-1} z \ge 0.87856 \frac{1-z}{2}$

Set
$$z=u^{T}u_{j}$$

$$\Rightarrow P_{Y}(x_{i,j}=1) \geqslant 0.37356 \cdot \left(\frac{1-u_{i}^{T}u_{j}}{2}\right)$$

$$\Rightarrow \mathbb{E}\left[1E(s,s^{c})\right] = \sum_{i,j\in E} \mathbb{E}\left[x_{i,j}\right] \geqslant 0.37356x \sum_{i,j\in E} \left(\frac{1-u_{i}^{T}u_{j}}{2}\right)$$

Closing remarks

 The power of SDPs in approximation is a topic of very active research

References

Most of the material covered can be found in the excellent book:

 B. Gartner and J. Matousek, Approximation Algorithms and Semidefinite Programming, Springer, 2012