Lovász Theta Function, Semidefinite Programs and Algorithms

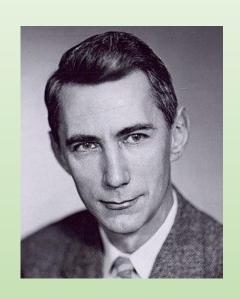
Parts 1,2

Lecturer: Rakesh Venkat

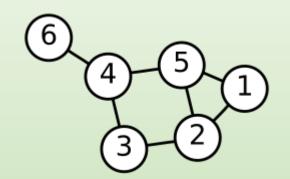
Short Term Program on "Graphs, Matrices and Applications"

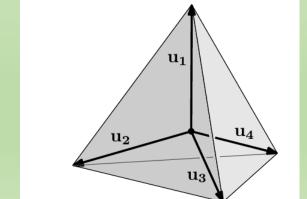
Indian Institute of Technology, Hyderabad 3rd Oct 2025 (Fri)

Shannon, Lovász, Graphs and Geometry



Claude Shannon





László Lovász

Outline for today

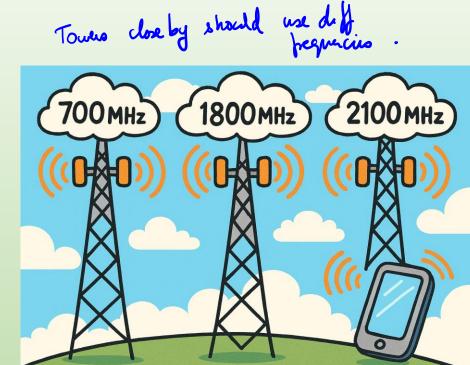
- Optimization in CS
- Shannon Capacity
- The Theta Function of a Graph
- Lovasz Bound
- Shannon capacity of the 5-cycle
- Linear and Semidefinite Programs

Parts 3,4

- Semidefinite programs for the Theta function
- Sandwich theorem and perfect graphs
- Relaxations and Rounding: Combinatorial optimization.
 Examples.
- Goemans Williamson Max-Cut algorithm

Broadcasting Problem

- A telecom company rolling out radio towers in a city.
- Two towers conflict if their signals interfere when they use the same frequency.
- Which towers can broadcast simultaneously on the same channel?



Modelling as a graph problem

G=
$$(V, E)$$

Towns: represent viction

Edge between two towns i, j

y they may conflict

Finding: a subset $S \subseteq V$ st.

 $\forall i,j \in S$ {i,j} $\notin E$ } such a set is called an i-dipedit

 $\forall i,j \in S$ {i,j} $\notin E$ } set.

Q: what is $\max_{S:indepictit} |S|$

Scheduling Tasks on Shared Machines

 In a high-performance computing cluster: tasks need machines

 Some pairs of tasks can't be run at the same time because they require the same resource.

Find the largest batch of tasks that can run in parallel

without conflicts.,

Goal: Find maxindep set

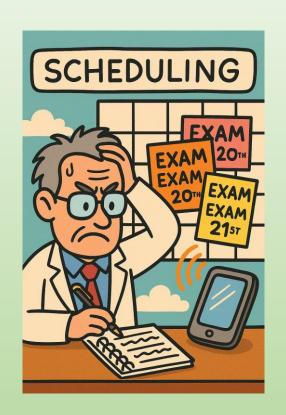
edje between i, if they coeffect.

Scheduling Exams

ullet A professor has to schedule n exams

 Two exams cannot be scheduled in the same slot, if some student has registered for both of them

 Find the maximum number of exams that can be scheduled simultaneously in the same slot



Exam Scheduling as a graph problem

G= (V, E): conflict graph. Vortices V = examb edje {i, j} EE if exams i, j conflict (can't be schiedled together) To find: min # days W: Monday " Tuesday : # : Wed Assigning colors to nodes st. no two adjacent node hare the same color.
while minimizing the number of colors.

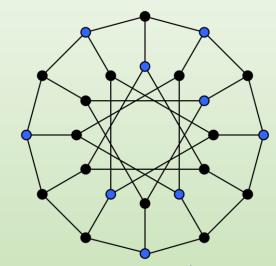
Fundamental Graph Quantities

•
$$G = (V, E)$$
 $|V| = \gamma$

Independent Set

• Maximum Independent Set: $\alpha(G)$ = max | 5

S: indep.



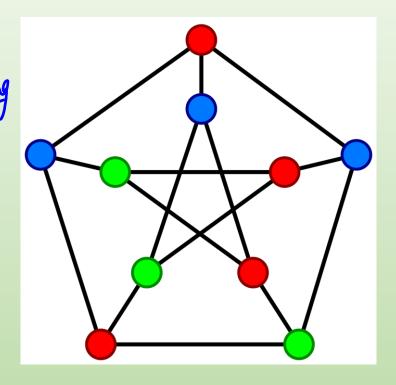
Brute force | trivial procedure to find a max Independent set; Try all SEV, check if independent > Takeo 2ⁿ tries for checking all SCV.

Chromatic Number

Proper Colouring of a graph for kend,

$$\chi: V \rightarrow \{1, ..., k\}$$
 is a proper-k-cobing if $\chi: V \rightarrow \{1, ..., k\}$ is a proper-k-cobing

• Chromatic Number $\chi(G)$



$$\chi(G)$$
 $\chi(G)$

NP-Hardness

• Both $\alpha(G)$ and $\chi(G)$ are believed to be *hard to compute* for any input graph G

Input graph
$$G$$

If $P \neq NP$, $\alpha(G)$ and $\alpha(G)$ can't be computed in polynomial time (eg: $O(n^3)$)

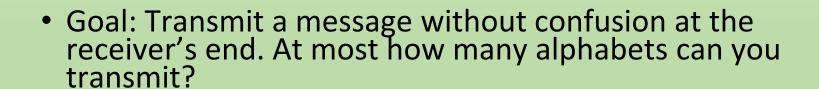
or $O(n^{100})$)

But they turn up frequently in practical applications!

"Fix": approximate the solution by When
$$n=10,00,000$$
. If $\alpha(G_1)=10000$ can output $S: (rdep, |S| > \frac{\alpha(G_1)}{2}$

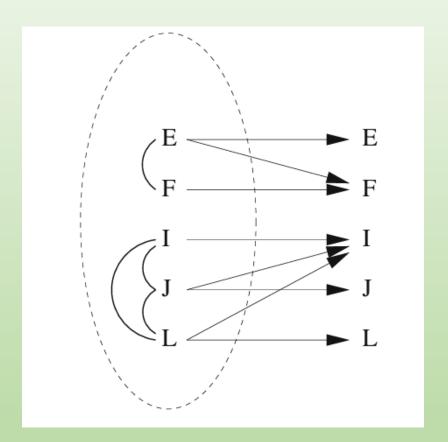
Information Transmission

- Suppose we send symbols across a noisy channel. Some symbols might be misread as others — they 'conflict.'
- Example: We have a communication channel with five possible symbols: A, B, C, D, E.
- Possible confusion:
 - A with B, E,
 - C with B, D,
 - E with A, D



Another example

- If you receive "JILL"
- What are the possible words that might have led to it?
 - JILL, JJLL, JLLL may all have been received as JILL
- Conflict graph shows that 2 messages (e.g. fix E and I) can be transmitted without ambiguity from the sender's end
- Can you do something better if you allow to transmit k=2 symbols at a time?



Transmitting a symbols at a time .

{E,F,I,J,L}

Every message consists of (two Symbols).

6-cycle:

Coffetsraph

Coffetsraph

Coffetsraph

Chanel twice

k=2 symbols at a time.

AA, AC, CA, CC.

Versages cake set by using the chanel twice

In fact 5 messages can be sent: {AA, BC, CE, DB, ED?

Definition: Similarity Graph G

• $v \sim w$: v is similar to w y $v = \omega$ or $\{v, \omega\} \in E$

• Similarity-free dictionary on $G \to a$ collection of virtues, all of which are pairwise dissimilar.

Graph G^k

$$G^{k} = (V^{k}, E_{k}).$$

$$\{(v_{1}, \dots, v_{k}), (v_{1}', \dots, v_{k}')\} \in E_{k}, \forall i = 1 \dots k,$$

$$V_{i} \sim v_{i}' \text{ (i.e. } v_{i}' \text{ is similar to } v_{i}').$$

$$AB$$

$$C_{s}$$

$$\{B, E\} \rightarrow \text{Indip set in bear graph.}$$

$$\{B, E\} \times \{B, E\}$$

$$\{B$$

Independent sets in G, G^k

• Theorem:
$$\alpha(G^{k+\ell})$$
 and $\alpha(G^k)\alpha(G^\ell)$ $\gamma^{k+\ell}$ γ^k γ^k γ^k γ^k γ^k SxT in Indep set in $\alpha(G^k)\alpha(G^\ell)$ Indep set $\alpha(G^k)\alpha(G^\ell)$ $\alpha(G^k)\alpha(G^\ell)$

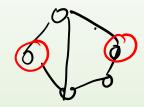
Example: C_5

$$d(C_s^2) > \alpha(C_s) \times \alpha(C_s).$$

$$|| || 2.$$

N

Shannon Capacity



• Bits of information transmitted is $\log_{\frac{2}{2}} \alpha(G)$ (definition)

Use graph
$$G^k \to \mathcal{A}(G^k)$$
 is # distinct messages we can transmit who confusion . For (5)

For k - letter words, average information per bit is: #1 (AA)

1 los ($\mathcal{A}(G^k)$)

For
$$C_{5}$$
 $k=1$, 2 $k=2$, $2 \times \log_{2} 5 > 1 \approx 1.161$. A $\alpha(C_{5}^{2})$.

Part 2

Lovász Theta Function and Shannon Capacity of C_5

Quick Recap of Part 1

- Independence number $\alpha(G)$ and chromatic number $\chi(G)$ are hard-to-compute quantities of G, but important from both theoretical and practical standpoints
- Alphabet= $\{A, B, C, ...\}$, each is a vertex of G = (V, E)
- $\{i,j\} \in E$ if alphabet at vertex i and j are similar (i.e. can be confused)

$$G^{k} = (V^{k}, E')$$

$$(V_{1}, \dots V_{k}) \sim (V_{1}' \dots V_{k}')$$

- $\alpha(G)$ = max subset of non-similar messages $G^{k} = (v^{k}, E')$ $\alpha(G^{k})$ = max subset of non-similar messages that can be $\mathcal{F}^{(k)}$ in similar by $\mathcal{F}^{(k)}$ transmitted using G^{k} (k symbols at a time used)
- Information per alphabet symbol = $\frac{1}{k} \log_2 (\alpha(G^k))$
- $\alpha(G^k) \ge \alpha(G)^k$, inequality may be strict (e.g. $\alpha(C_5^2) = 5 > 2^2$)

Shannon Capacity: definition

Shanon appirts
$$= \sigma(G) = \sup \left\{ \frac{1}{k} \log \alpha(G^k) : k \in \mathbb{N} \right\}$$
 size of max indep set in G^k .

• Note that C_5 shows that k=1 need not always be the best!

•
$$\sigma(G)$$
 is bounded, and satisfies the limit criterion

$$\sigma(g) = \lim_{k \to \infty} \frac{1}{k} \log \alpha(G^k).$$

Hard to analyze!

• $\sigma(G)$ is "notoriously" hard to compute even for simple graphs [Shannon, 1956]

• Lovasz [1979] determined $\sigma(C_5)$ via an ingenious "relaxation"

• Open to determine $\sigma(G)$ for many graphs, even C_7

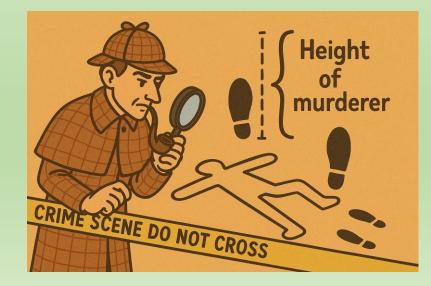
Finding $\sigma(G)$

• Let
$$S(G) := 2^{\{\sigma(G)\}} = \left(\alpha(G^k)\right)^{\frac{1}{k}} > \left(\alpha(G^k)^k\right)^{\frac{1}{k}} = \alpha(G)$$
.

• To find what S(G) is, first look to bound it

• Lovasz's idea: look at a geometrical representation of

G, and its properties



Lovasz's approach: Orthonormal Representations

- Let G=(V,E), with $V=\{1,2,\dots n\}$
- Let $\bar{E} = \binom{V}{2} \backslash E$
- Orthonormal Representation of G: A set of unit vectors $\{u_1, \dots, u_n\}$ satisfying:
- $u_i^T u_j = 0 \leftrightarrow \{\underline{i,j}\} \in \overline{E}$
- Dimension? = n

Orthonormal Representations examples

Trivial orthonormal representation in Kⁿ

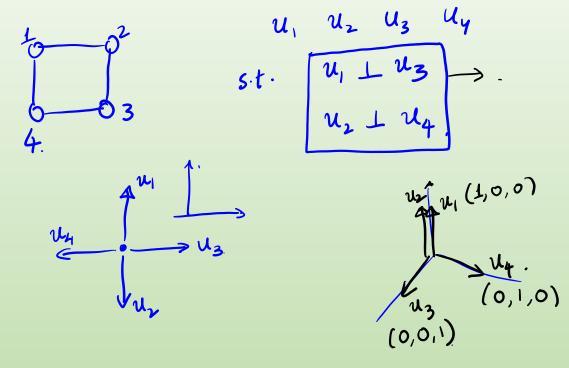
$$u_i^T u_j = 0 \Leftrightarrow$$
 $\{i_{ij}\} \in \mathbb{E}$

Vertex
$$i \mapsto e_i = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = i$$

• Complete graph K_n : (A non-trivial or thonormal vepⁿ):

Let all u_i 's be the same (no constraint since all edges are present).

4-Cycle C_4



Value of an OR for G orthonormal rep".

• Let $U = \{u_1, \dots, u_n\}$ be an Orthonormal Representation of G

• The **value** of U is defined as

$$\vartheta(U) \coloneqq \min_{c: \|c\| = 1} \left(\max_{i} \frac{1}{(c^T u_i)^2} \right)$$

$$c \text{ that minimizes this is called the "handle".}$$

• Note: ϑ is read as "theta"

Take
$$C = \frac{1}{\sqrt{n}} (1, 1, 1, ... 1)$$

$$9(0) := \min_{C:||C||_2=1} \max_{i \in [n]} \frac{1}{(c^Tu_i)^2}$$

Complete graph
$$K_n$$
: $\{u, u, u, --u\}$.

 $C = u$, then $\max_{(C^T u)} \perp = 1$
 $(C^T u) = 1$.

Ex: for C4.

Theta function $\vartheta(G)$ for G

$$\vartheta(G) \coloneqq \min_{\underline{U}: OR \text{ for } \underline{G}} \underline{\vartheta(U)}$$

Intintialy: Want all vectors to jet in a small cap around C.

Note: Minimum exists (continuous function over a compact set)

• Why consider the quantity $\vartheta(G)$?

Lovász Bound (a(G*))/k

• Theorem: $S(G) \leq \vartheta(G)$

Proof uses two lemmas:

- Lemma A: $\vartheta(G \cdot H) \leq \vartheta(G)\vartheta(H)$
 - Corollary: $\vartheta(G^k) \leq \vartheta(G)^k$
- Lemma B: For all graphs $G': \alpha(G') \leq \vartheta(G')$

Fix any kern. Apply Lemma B to
$$G' = G^k$$
.

$$\alpha(G^k) \leq 9(G^k) \leq 9(G)^k$$

$$\text{Lem B} \qquad \text{Lem A}$$

$$\Rightarrow (\alpha(G^k))^{k} \leq 19(G) \Rightarrow S(G) \leq 9(G)$$

Lemma A

• Lemma A: $\vartheta(G \cdot H) \leq \vartheta(G)\vartheta(H)$

Definition (Strong Graph Product): $G \cdot H$

G=
$$(V, E)$$
, H= (W, F)
G:H has vertex set $V \times W$
Edge between (v, w) and (v', w') if $v \sim v'$ and $w \sim w'$ in H.

Proof strategy: Use OR for Gr and OR for H to give a valid OR for Gr. H, with value = O(G). O(H).

•

Want: v(6.H) < v(6). v(H)

be an optimal OR for Go with hardle vector c. Let P={u, u2, ... u/v1.} be an optical OR for H with ball vector d. Let Q={V1, V2 - - V | W| }

 $(u_i \otimes v_j)^T (u_i \otimes v_j)$

$$= (\mathbf{u}_{i}^{\mathsf{T}} \mathbf{u}_{i'}) \times (\mathbf{v}_{j}^{\mathsf{T}} \mathbf{v}_{j'})$$

= 0 iff
$$(i,i') \in \mathcal{E}$$
 or $(j,j') \in \mathcal{F}$
= $(i,j) \not\sim (i',j')$ in $G \cdot H$.

$$H = (W, F)$$

Tensor product

 $x_1 y_1$
 $x_2 y_3 = x_2 y_3$
 ER^m
 $x_1 y_2 = x_2 y_3$
 ER^m
 $x_1 y_2 = x_2 y_3$
 ER^m
 $x_2 y_3 = x_2 y_3$
 ER^m
 $x_1 y_2 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_2 y_3 = x_2 y_3$
 $x_1 y_2 = x_1 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_1 y_2 = x_1 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_1 y_2 = x_1 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_1 y_2 = x_1 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_1 y_2 = x_1 y_3$
 $x_1 y_2 = x_2 y_3$
 $x_1 y_2 = x_1 y_3$

$$\begin{array}{l}
\varphi\left(P\otimes Q\right) \\
\text{vectors} \left(u_{i}\otimes v_{j}\right) \\
\text{the handle vector} \left(c\otimes d\right) \\
\Psi\left(P\otimes Q\right) \leq \max_{(i,j)\in V\times W} \frac{1}{\left(c\otimes d\right)^{T}\left(u_{i}\otimes v_{j}\right)^{2}} \\
= \max_{(i,j)\in V\times W} \frac{1}{\left(c^{T}u_{i}\right)^{2}} \cdot \left(d^{T}v_{j}\right)^{2} \\
= \max_{i} \frac{1}{\left(c^{T}u_{i}\right)^{2}} \times \max_{i} \frac{1}{\left(d^{T}v_{j}\right)^{2}} \cdot \\
= \vartheta(G_{i}) \times \vartheta(H_{i})
\end{array}$$

Lemma B

Lemma B: For all graphs G': $\alpha(G') \leq \vartheta(G')$

Proof: Let
$$\{u_1, \dots u_n\}$$
 be an optimal or for G' , with handle vector C .

Let I be an appropriate set in G' ,

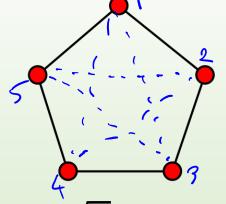
(a) $\|C\|^2 = C^TC \ge Z C^T u_i)^2$
 $\Rightarrow 1 \ge \sum_{i \in I} (C^T u_i)^2 \ge (\min_{i \in I} (C^T u_i)^2) \times |I|$
 $\Rightarrow 1 \ge \sum_{i \in I} (C^T u_i)^2 \ge (\min_{i \in I} (C^T u_i)^2) \times |I|$
 $\Rightarrow 1 \ge \sum_{i \in I} (C^T u_i)^2 \ge (\min_{i \in I} (C^T u_i)^2) \times |I|$
 $\Rightarrow 1 \ge \sum_{i \in I} (C^T u_i)^2 \ge (\min_{i \in I} (C^T u_i)^2) \times |I|$
 $\Rightarrow 1 \ge C^T u_i$
 $\Rightarrow 1 \ge C$

$$S(G_1) \leq 9(G_1)$$

Theta function

 $(\alpha(G_1^k))^{r_k}$

Shannon capacity of C_5 : Lovász's umbrella construction



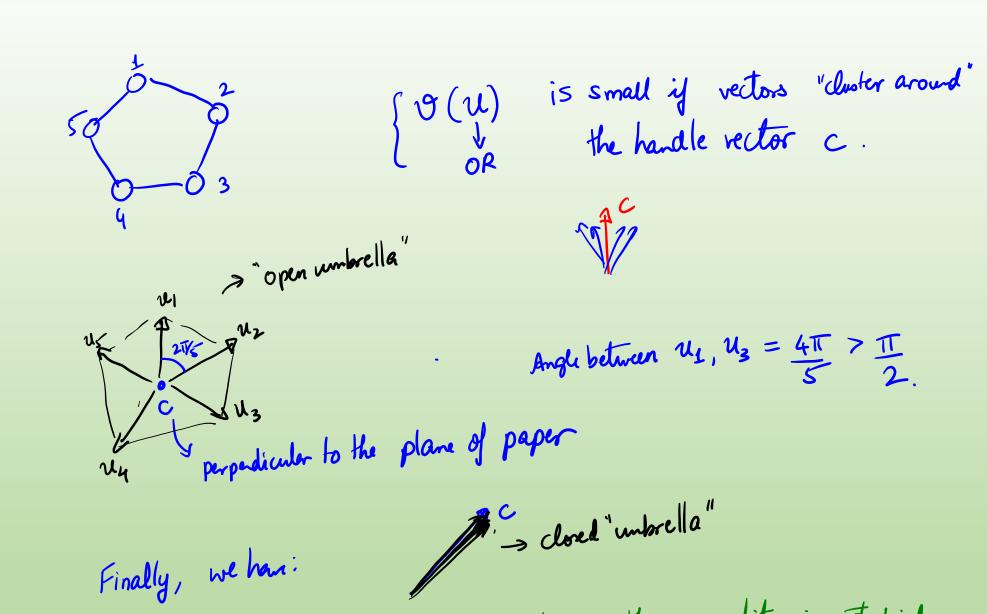
Lemma: C_5 has an OR with value $= \sqrt{5}$. Thus, $\frac{\vartheta(C_5)}{=} = \sqrt{5}$

Recall that we had shown that $S(C_5) \ge \sqrt{5}$. Combined with the above, we infer that $S(C_5) = \sqrt{5}$.

$$A(C_5^2) = 5$$

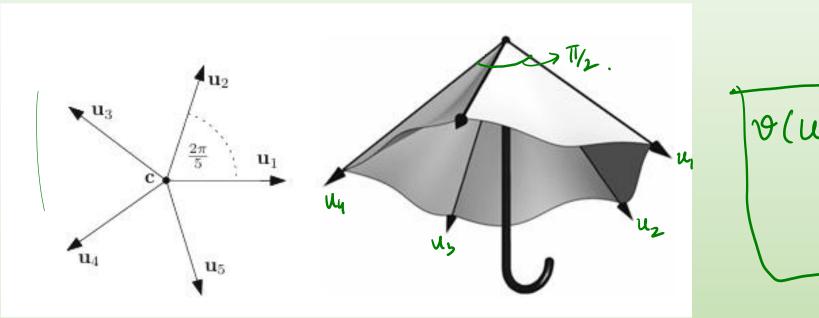
$$\Rightarrow (a(C_5^2))^2 = \sqrt{5}$$

$$\Rightarrow (C_5) \Rightarrow \sqrt{5}$$



Obsn: At some intermediate point, orthonormality is satisfied

Illustration of OR for C_5



At satisfying.
$$u_i = \left(\begin{array}{c} \cos \frac{2\pi i}{5}, \sin \frac{2\pi i}{5}, Z \right), \text{ for } i=1,2,3,4,5 \\ \text{point of of } \\ v_s^T u_z = 0 \end{array} \right) \Rightarrow \left(\begin{array}{c} (1,0,2)^T \left(\sin \frac{2\pi i}{5} \right) \\ 2 \end{array} \right) = 0$$

$$\Rightarrow (\cos \frac{4\pi}{5} + Z^2 = 0).$$

To analyze
$$S(G)$$
, used a proxy $\leq 9(G)$.

$$(d(G^{k}))^{V_{k}}$$
hard to analyze
$$9(G^{k}) \leq (9(G))^{k}$$

More properties of $\vartheta(G)$

• For a graph G and its complement \bar{G} , $\vartheta(G)\vartheta(\bar{G}) \geq n$

Relaxations for combinatorial quantities

• Linear Relaxation for Independent Set

References

 B. Gartner and J. Matousek, Approximation Algorithms and Semidefinite Programming, Springer, 2012