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Outline for today

• Optimization in CS

• Shannon Capacity

• The Theta Function of a Graph

• Lovasz Bound 

• Shannon capacity of the 5-cycle

• Linear and Semidefinite Programs



Parts 3,4

• Semidefinite programs for the Theta function

• Sandwich theorem and perfect graphs

• Relaxations and Rounding: Combinatorial optimization. 
Examples.

• Goemans Williamson Max-Cut algorithm



Broadcasting Problem

• A telecom company rolling out 
radio towers in a city. 

• Two towers conflict if their 
signals interfere when they use 
the same frequency.

•  Which towers can broadcast 
simultaneously on the same 
channel?



Modelling as a graph problem



Scheduling Tasks on Shared Machines 

• In a high-performance computing cluster: tasks need 
machines

• Some pairs of tasks can’t be run at the same time because 
they require the same resource. 

• Find the largest batch of tasks that can run in parallel 
without conflicts.



Scheduling Exams

• A professor has to schedule 𝑛 exams

• Two exams cannot be scheduled in the 
same slot, if some student has 
registered for both of them

• Find the maximum number of exams 
that can be scheduled simultaneously in 
the same slot



Exam Scheduling as a graph problem



Fundamental Graph Quantities

• 𝐺 = 𝑉, 𝐸

• Independent Set

• Maximum Independent Set: 𝛼(𝐺)



Chromatic Number

• Proper Colouring of a graph

• Chromatic Number 𝜒(𝐺)



NP-Hardness

• Both 𝛼(𝐺) and 𝜒(𝐺) are believed to be hard to compute 
for any input graph 𝐺

• But they turn up frequently in practical applications!



Information Transmission

• Suppose we send symbols across a noisy channel. Some 
symbols might be misread as others — they ‘conflict.’

• Example: We have a communication channel with five 
possible symbols: 𝐴, 𝐵, 𝐶, 𝐷, 𝐸.

• Possible confusion: 
• A with B, E, 
• C with B, D, 
• E with A, D

• Goal: Transmit a message without confusion at the 
receiver’s end. At most how many alphabets can you 
transmit?



Another example

• If you receive “JILL”

• What are the possible words that 
might have led to it?
• JILL, JJLL, JLLL may all have been 

received as JILL

• Conflict graph shows that 2 
messages (e.g. fix  E and I) can be 
transmitted without ambiguity 
from the sender’s end

• Can you do something better if 
you allow to transmit 𝑘 = 2 
symbols at a time?





Definition: Similarity Graph 𝐺

• 𝑣 ∼ 𝑤: 𝑣 is similar to 𝑤

• Similarity-free dictionary on 𝐺



Graph 𝐺𝑘



Independent sets in 𝐺, 𝐺𝑘

• Theorem: 𝛼(𝐺𝑘+ℓ) ≤ 𝛼 𝐺𝑘 𝛼(𝐺ℓ)



Example: 𝐶5



Shannon Capacity

• Bits of information transmitted is log 𝛼(𝐺)

• For 𝑘- letter words, average information per bit is:



Part 2
Lovasz Theta Function and Shannon Capacity of 𝐶5



Quick Recap of Part 1

• Independence number 𝛼 𝐺 and chromatic number 𝜒(𝐺) are hard-
to-compute quantities of 𝐺, but important from both theoretical and 
practical standpoints

• Alphabet= {𝐴, 𝐵, 𝐶, … }, each is a vertex of 𝐺 = (𝑉, 𝐸)

•  {𝑖, 𝑗} ∈ 𝐸  if alphabet at vertex 𝑖 and 𝑗 are similar (i.e. can be 
confused)

• 𝛼(𝐺) = max subset of non-similar messages

• 𝛼 𝐺𝑘  = max subset of non-similar messages that can be 
transmitted using 𝐺𝑘 (𝑘 symbols at a time used)

• Information per alphabet symbol = 
1

𝑘
log 𝛼 𝐺𝑘

• 𝛼 𝐺𝑘 ≥ 𝛼 𝐺 𝑘, inequality may be strict (e.g. 𝛼 𝐶5
2 = 5 > 22)



Shannon Capacity: definition

• Note that 𝐶5 shows that 𝑘 = 1 need not always be the 
best!

• 𝜎(𝐺) is bounded, and satisfies the limit criterion



Hard to analyze!

• 𝜎 𝐺  is “notoriously” hard to compute even for simple 
graphs [Shannon, 1956]

• Lovasz [1979] determined 𝜎 𝐶5  via an ingenious 
“relaxation”

• Open to determine 𝜎(𝐺) for many graphs, even 𝐶7



Finding 𝜎 𝐺

• Let S 𝐺 ≔ 2 𝜎 𝐺 = 𝛼 𝐺𝑘

1

𝑘

• To find what S 𝐺  is, first look to bound it

• Lovasz’s idea: look at a geometrical representation of 
𝐺, and its properties



Lovasz’s approach: Orthonormal 
Representations

• Let 𝐺 = (𝑉, 𝐸), with 𝑉 = 1,2, … 𝑛

• Let ത𝐸 = 𝑉
2

\𝐸

• Orthonormal Representation of 𝐺: A set of unit vectors 
𝑢1, … , 𝑢𝑛  satisfying:

• 𝑢𝑖
𝑇𝑢𝑗 = 0 𝑖, 𝑗 ∈ ത𝐸

• Dimension?



Orthonormal Representations examples

• Trivial orthonormal representation

• Complete graph 𝐾𝑛



4-Cycle 𝐶4



Value of an OR for 𝐺

• Let 𝑈 = {𝑢1, … , 𝑢𝑛} be an Orthonormal Representation of 
𝐺

• The value of 𝑈 is defined as

𝜗 𝑈 ≔ min
𝑐: 𝑐 =1

max
𝑖

1

𝑐𝑇𝑢𝑖
2

• Note: 𝜗 is read as “theta”





Theta function 𝜗 𝐺  for 𝐺

𝜗 𝐺 ≔ min
𝑈:OR for 𝐺

𝜗 𝑈

• Note: Minimum exists (continuous function over a 
compact set)

• Why consider the quantity 𝜗(𝐺)?



Lovász Bound

• Theorem: S 𝐺 ≤ 𝜗(𝐺)

Proof uses two lemmas:

• Lemma A: 𝜗 𝐺 ⋅ 𝐻 ≤ 𝜗(𝐺)𝜗(𝐻)
• Corollary: 𝜗 𝐺𝑘 ≤ 𝜗 𝐺 𝑘

• Lemma B: For all graphs 𝐺′: 𝛼 𝐺′ ≤ 𝜗(𝐺′)



Lemma A

• Lemma A: 𝜗 𝐺 ⋅ 𝐻 ≤ 𝜗 𝐺 𝜗 𝐻

Definition (Strong Graph Product): 𝐺 ⋅ 𝐻







Lemma B

Lemma B: For all graphs 𝐺′: 𝛼 𝐺′ ≤ 𝜗(𝐺′)





Shannon capacity of 𝐶5: Lovász’s umbrella 
construction

Lemma: 𝐶5 has an OR with value = 5. Thus, 𝜗 𝐶5 = 5

Recall that we had shown that 𝑆 𝐶5 ≥ 5. Combined with 
the above,  we infer that 𝑆 𝐶5 = 5.





Illustration of OR for 𝐶5





More properties of 𝜗(𝐺)

• For a graph 𝐺 and its complement ҧ𝐺, 𝜗 𝐺 𝜗 ҧ𝐺 ≥ 𝑛



Relaxations for combinatorial quantities

• Linear Relaxation for Independent Set
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