Adjacency matrices of graphs - II

M. Rajesh Kannan

Department of Mathematics, Indian Institute of Technology Hyderabad, email: rajeshkannan1.m@gmail.com, rajeshkannan@math.iith.ac.in

September 29, 2025

A=UDUT

Theorem (Spectral theorem for real symmetric matrices)

Any real symmetric matrix is orthogonally similar to a diagonal matrix.

Theorem

If $\lambda_1, \ldots, \lambda_k$ are the distinct eigenvalues of an $n \times n$ real symmetric matrix, then the minimal polynomial of is given by $(x - \lambda_1) \ldots (x - \lambda_k)$.

Theorem

If $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A, then $\lambda_1^k, \ldots, \lambda_n^k$ are the eigenvalues of A^k .

Spec (AL) = { 2, , ... , 2, }

P(x) - bolynomial real coefficients

w) ののナロノストーナロッから

P(A) = 0.14 a, A+ -- + 03 AB

Spec (PCA) = { ();): n; E Spec(PU)}

Positive Semidefinite Matrices(PSD)

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is *positive semidefinite*(PSD) if $x^T A x \ge 0$ for every $x \in \mathbb{R}^n$.

Theorem

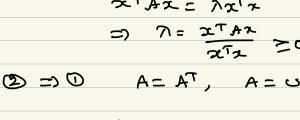
TFAE for $A \in \mathbb{R}^{n \times n}$: Symmetric:

- A is PSD.
- 2 All the eigenvalues of A are nonnegative,
- There exists an $n \times k$ real matrix B such that $A = BB^T$,

$$x^TAx = \lambda x^Tx$$

$$\begin{array}{cccc}
x^{T}Ax & & \lambda x^{T}x \\
\Rightarrow & \lambda & & x^{T}x
\end{array}$$

$$= \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2}$$



<u> </u>	$\mathbf{v} \gtrsim \mathbf{e}$
claim: A O PSd	•
$\int_{0}^{\infty} A_{2} = \langle A_{2} \rangle_{1} \times \langle A_{2} \rangle_{2}$	>
•	
= <udut.< th=""><th>x, ∞</th></udut.<>	x, ∞

$$= \langle \mathcal{D} \mathcal{O}^{7} x_{1} \mathcal{O}^{3} x_{2} \rangle$$

$$\geq 0$$

$$\Rightarrow 2 \quad P.S. \mathcal{D}.$$

$$\Rightarrow 1 \quad PS \quad D \quad R \quad NONNECAT = R$$

$$A = \quad U \quad D \quad UT$$

$$= \quad U \quad d_{1} \quad 0 \quad O \quad UT$$

$$= \quad U \quad d_{2} \quad O \quad UT$$

$$= \quad 0 \quad d_{2} \quad O \quad UT$$

$$= \quad 0 \quad d_{2} \quad O \quad UT$$

$$= \quad 0 \quad d_{2} \quad O \quad UT$$

$$A = 3B^T$$
 B $\in \mathbb{R}^{n \times 1}$.

(3) =) (1) $A = BB^T$, then $A \cong PSD$

< A 21,20) = < BRT21,20)

= < 8 7 x, 8 7 x>

こりりかいしるつ

Cone of positive semidefinite matrices

Let S^n denote the subspace of symmetric matrices in $\mathbb{R}^{n \times n}$. The set of positive semidefinite matrices in S^n will be denoted by \mathcal{PSD}_n . \mathcal{PSD}_n is a convex cone.

A, B & PSDn = A+B & PSDn 2CT CA+B) X = XTAXX XTBX (的 よろち、 人本 一) スては1米 = d. KTAI 20 (**) A,-A E PSDn crain :-AGP.SD 3 - A & PSD =) 11

=) essenvolues of of one zero.

AERMXY Rayleigh ratio: 2(±0) G Rn

$$R(A)(x) = \frac{x^T A x}{x^T x},$$
 $x \in \mathbb{R}^n, x \neq 0.$

Theorem (Rayleigh-Ritz)

If A is a symmetric $n \times n$ matrix with eigenvalues $\lambda_1 > \lambda_2 > ... > \lambda_n$ and if $\{u_1, u_2, \dots, u_n\}$ is any orthonormal basis of eigenvectors of A, where u_i is a unit eigenvector associated with λ_i , then

with the maximum attained for $x = u_1$, and

$$\min_{x \neq 0} \frac{x^T A x}{x^T x} = \lambda_n$$

with the maximum attained for $x = u_n$.

A = A^T, A = UDU^T, D=
$$\begin{bmatrix} \lambda_1 \lambda_2 & 0 \\ \lambda_2 & \lambda_3 \end{pmatrix}$$

I an orthonormal basis for Rⁿ consists

of the eigen vectors of A.

fully ..., und be the 0.10. R

Let $x \in \mathbb{R}^n$.

$$x = \sum_{i=1}^n x_i \cdot Au_i$$

$$= \sum_{i=1}^n x_i \cdot Au_i$$

$$\langle A_{2i}, x \rangle = \langle \sum_{i=1}^{n} A_{i}, \lambda_{i}, u_{i}, \sum_{j=1}^{n} A_{j} u_{j} \rangle$$

$$= \sum_{i=1}^{n} A_{i}, \langle u_{i}, \sum_{j=1}^{n} A_{i} u_{j} \rangle = \sum_{i=1}^{n} A_{i}, \langle u_{i}, u_{j} \rangle$$

$$= \sum_{i=1}^{n} A_{i}, \lambda_{j}, \langle u_{i}, u_{i}, u_{j} \rangle$$

$$= \sum_{i=1}^{n} A_{i}, \lambda_{j}, \langle u_{i}, u_{i}, u_{j} \rangle$$

$$= \sum_{i=1}^{n} A_{i}, \lambda_{j}, \langle u_{i}, u_{i}, u_{j} \rangle$$

$$= \stackrel{\wedge}{Z} + \stackrel{$$

$$\lambda_{1} \geq \lambda_{2} \geq \dots \geq \lambda_{n}$$

$$\langle A_{2(1)}(x) \rangle = \sum_{i=1}^{n} A_{i}^{2} \lambda_{i}$$

$$\leq \lambda_{1} \left(\sum_{i=1}^{n} A_{i}^{2} \lambda_{i} \right)$$

$$\leq \lambda_{1} \left(\sum_{i=1}^{n} A_{i}^{2$$

くれらり

From
$$\mathcal{F}$$

$$\frac{A u_1 = \lambda_1 u_1}{\langle u_1, u_1 \rangle} = \lambda_1.$$

< A 26, 26)

$$= \frac{2}{2} \pi n$$

> In to

Then $\gamma_1 \geq \frac{2m}{n}$, where

n is the number of vertice. $\lambda_1 = \max_{x \neq 0} \frac{x^T A(G) x}{xTx}.$

m is the number of edges &

Theorem

If A is a symmetric $n \times n$ matrix with eigenvalues $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n$ and if $\{u_1, u_2, \ldots, u_n\}$ is any orthonormal basis of eigenvectors of A, where u_i is a unit eigenvector associated with λ_i , then

$$(i) \qquad \left(\max_{\substack{x \perp \text{span}\{u_1, \dots, u_{k-1}\}}} \frac{x^T A x}{x^T x} = \lambda_k\right)$$

with the maximum attained for $x = u_k$, and

$$\lim_{x \perp \text{span}\{\underline{u_{k+1},...,u_n}\}} \frac{x^T A x}{x^T x} = \lambda_k$$

with the minimum attained for $x = u_k$.

(i)
$$\{u_1, u_2, ..., u_n\}$$
 ONB evectors

 $2 \le x \le n$
 $x = x \le n$

= dr nkuk + -- + dn nun

$$2 u_{1} \in Span_{3}u_{13} \dots u_{1}u_{1}$$

$$2 \in Span_{3}u_{12}u_{1} \dots u_{1}u_{1}$$

$$3 \in Span_{4}u_{12}u_{1} \dots u_{1}u_{1}$$

$$3 \in Span_{5}u_{1}u_{1} \dots u_{1}u_{1}$$

$$3 \in Span_{6}u_{1}u_{1} \dots u_{1}u_{1}$$

$$3 \in Span_{6}u_{1}u_{1} \dots u_{1}u_{1}$$

$$4 = \sum_{i=1}^{K} x_{i} u_{i}$$

$$4 = \sum_{i=1}^{K} x_{i} u_{i}$$

7K. 42(=0) E

> nk.

Theorem (Courant-Fischer)

Let A be a symmetric $n \times n$ matrix with eigenvalues $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$ and let (u_1, u_2, \ldots, u_n) be any orthonormal basis of eigenvectors of A, where u_i is a unit eigenvector associated with λ_i . If \mathcal{V}_k denotes the set of subspaces of \mathbb{R}^n of dimension k, then

$$\lambda_k = \max_{W \in \mathcal{V}_{n-k+1}} \min_{x \in W, x \neq 0} \frac{x^T A x}{x^T x},$$
$$\lambda_k = \min_{W \in \mathcal{V}_k} \max_{x \in W, x \neq 0} \frac{x^T A x}{x^T x}.$$

Perron-Frobenius: Graph version

Theorem

Let G be a connected graph adjacency matrix A. Let $\lambda_1 \ge \cdots \ge \lambda_n$ be the eigenvalues with the corresponding the eigenvectors x_1, \ldots, x_n , respectively. Then,

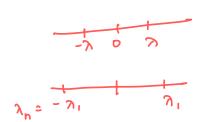
- $2 \lambda_1 > \lambda_2$.
- **1** There exists a positive eigenvector x_1 .

A x, = 7, x,

Spectrum and bipartiteness

Theorem

Let G be a bipartite graph. Then λ is an eigenvalue of A(G) if and only if $-\lambda$ is an eigenvalue of A(G). Further, if G is connected and $\lambda_1 = -\lambda_n$, then G is bipartite.



G-bipowerse =)
$$A(G) = \sqrt{D}$$

$$\sqrt{L}$$

 $A \propto = \begin{bmatrix} 8 \times 2 \\ 8^{T} \times 1 \end{bmatrix} = \lambda \begin{bmatrix} \times 1 \\ 2 \times 1 \end{bmatrix}$ $= \lambda \times 2 = \lambda \times 1$

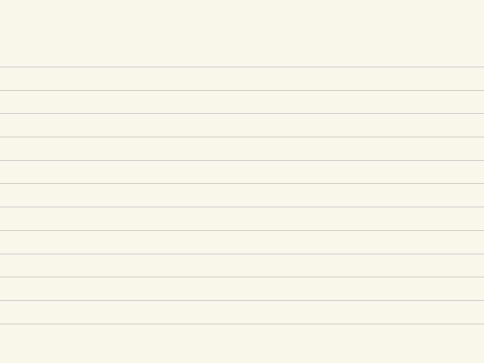
$$\begin{array}{ccc}
 & \beta & x_2 &= & \gamma & x_1 \\
 & \beta^T & x_1 &= & \gamma & x_2 \\
 & y &= & \begin{bmatrix} -x_1 \\ 2c_1 \end{bmatrix} & \mp & 0
\end{array}$$

$$\begin{array}{cccc}
 & A & J & = & \begin{bmatrix} B & x_1 \\ -g & 2c_1 \end{bmatrix} & = & \begin{bmatrix} \gamma & 2c_1 \\ -\gamma & 2c_2 \end{bmatrix}$$

converse.

(Ak) - # of walks of length K

Starting cense at i. = (AK); = total number of closed calls = n, + ...+ n, K-odd , 7, + ... + 7, = 0 ": A & e. value of Alix (=) -> 3 e.vem of => Cr does not have any odd cylle => Cr is bipontive.



Interlacing inequalities

Theorem (Cauchy interlacing theorem)

Let A be a symmetric $n \times n$ matrix and let B be a principal submatrix of A of order n-1. If $\lambda_1, \lambda_2, \ldots, \lambda_n$ and $\mu_1, \mu_2, \ldots, \mu_{n-1}$ are the eigenvalues of A and B, respectively, then

$$\lambda_1 \leq \mu_1 \leq \lambda_2 \leq \mu_2 \cdots \leq \mu_{n-1} \leq \lambda_n$$

Theorem

Let A and B be symmetric $n \times n$ matrices such that $B = A + xx^T$. If $\lambda_1, \lambda_2, \dots, \lambda_n$ and $\mu_1, \mu_2, \dots, \mu_n$ are the eigenvalues of A and B, respectively, then

$$\lambda_1 \leq \mu_1 \leq \lambda_2 \leq \mu_2 \cdots \leq \lambda_n \leq \mu_n$$

Interlacing inequalities

Theorem (Poincaré separation theorem)

Let A be an $n \times n$ matrix partitioned as

$$A = \left[\begin{array}{cc} B & C \\ C^T & D \end{array} \right]$$

such that B and D are square matrices order m and n-m, respectively. If $\lambda_1, \lambda_2, \ldots, \lambda_n$ and $\mu_1, \mu_2, \ldots, \mu_m$ are the eigenvalues of A and B, respectively, then $\lambda_i \leq \mu_i \leq \lambda_{n-m+i}$ for $i=1,\ldots,m$

Wilf's theorem

Theorem

 $\chi(G) \leq 1 + \lambda_1(G)$, where $\chi(G)$ is the chromatic number of G.

Proof of Wilf's theorem

Block matrices

Lemma

If B and C are symmetric $n \times n$ matrices, then

$$\lambda_1(B+C) \leq \lambda_1(B) + \lambda_1(C)$$

Lemma

Let B be an $n \times n$ positive semidefinite matrix and suppose B is partitioned as

$$B = \left[\begin{array}{cc} B_{11} & B_{12} \\ B_{21} & B_{22} \end{array} \right]$$

where B_{11} is $p \times p$. Then $\lambda_1(B) \leq \lambda_1(B_{11}) + \lambda_1(B_{22})$.

Block matrices - contd.

Lemma

Let B be an $n \times n$ symmetric matrix and suppose B is partitioned as

$$B = \left[\begin{array}{cc} B_{11} & B_{12} \\ B_{21} & B_{22} \end{array}\right]$$

where B_{11} is $p \times p$. Then $\lambda_1(B) + \lambda_n(B) \leq \lambda_1(B_{11}) + \lambda_1(B_{22})$.

Lemma

Let B be a symmetric matrix partitioned as

$$B = \begin{bmatrix} 0 & B_{12} & \dots & B_{1k} \\ B_{21} & 0 & \dots & B_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ B_{k1} & B_{k2} & \dots & 0 \end{bmatrix}$$

Then $\lambda_1(B) + (k-1)\lambda_n(B) \leq 0$.

Hoffman's bound

Theorem (Hoffman's bound)

$$\chi(G) \geq 1 - \frac{\lambda_1}{\lambda_n}$$
.

References

- R. B. Bapat, Graphs and Matrices, second ed., Universitext, Springer, London; Hindustan Book Agency, New Delhi, 2014.
- Andries E. Brouwer and Willem H. Haemers, Spectra of graphs, Universitext, Springer, New York, 2012.
- Oragoš Cvetković, Peter Rowlinson and Slobodan Simić, An introduction to the theory of graph spectra, London Mathematical Society Student Texts, vol. 75, Cambridge University Press, Cambridge, 2010.