
MARKOV CHAINS: A VERY SHORT COURSE

LECTURER: MANJUNATH KRISHNAPUR

1. MOTIVATIONS

I Probability is used to model various real life situations, and the model may be fit the real
situation to a greater or lesser extent. For example, when we consider the children born in a
hospital and whether they are male or female, we may model the outcomes as tosses of a fair coin.
Here it is understood that the tosses are independent of each other, i.e., the outcome of one does
not influence the outcome of another. For the first time around 1905, Markov introduced a general
class of models that could be used to describe a sequence of uncertain outcomes, where each
outcome may be influenced by previous ones. This was the genesis of Markov chains, although a
few special models studied before Markov could later be seen as special cases of it.

I Take the example of a text. On Mathematica, we invoked the text of Alice in Wonderland, and
simplified it by removing all punctuation and capitalization and extra spaces to get a text of length
49217, made of the 27 characters a–z and space. We take this as the corpus and try to generate a
new piece of text of length 80 by using it as follows.

Attempt-1: Count the frequencies of characters in the corpus, and sample independently ac-
cording to those frequencies (for example, “e” occurs 5000 times, so each character is equal to “e”
with probability 5000/49217. In one experiment, the output was

c fl fgro gkooeyalegyrhptaesd fcroye atbi oetswenhls cda te s ttfrmsko i aalssuem .
Attempt-2: As the text is built up, if the last character so far is “e”, we look in the corpus for

all the 5000 times “e” occured, and count how many times it was followed by various characters,
and sample the next character in proportion to those frequencies. For example, “ea” occurred 274
times, so whenever “e” occurs, the next character will be “a” with probability 274/5000. In one
experiment, the output was

wasasebleyoond thenthevitheale peting aning me anor fin t d keg whi walld the maca.
Attempt-3: Like before, but now we keep track of the last two characters in the new text so far

and use that to choose the next one. For example, “th” occurred 1261 times in the corpus, and in
870 of these occurrences, it was followed by “e”. Therefore, whenever the last two letters in our
text are “th”, the next letter will be “e” with probability 870/1261. In one experiment, the output
was

a low tre every ever cauckedly don a ged noice cat the ge fore warged sating anxio .
Attempt-4: Now we keep track of the last 3 or 4 characters to fill in the next. We got the outputs
e mustory made shards aftere of can animall it ve open a mome to know no said to eit
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ld front on the cake more plate tried out of it said that thing voice whether whole w
I Clearly, the words start looking more like actual words or other reasonable looking ones,

when we keep track of more and more characters. In other words, text is probably better mod-
eled by a sequence with some memory, rather than a sequence of independent characters thrown
together. But the size of the memory is not too large, 3 or 4 characters appear to be sufficient.

2. MARKOV CHAINS: DEFINITION

I There are two ingredients to defining a Markov chain: (1) A state space S, which is just a
finite or countably infinite set. (2) A transition matrix (also called a stochastic matrix) P = (pi,j)i,j∈S ,
which is an S×S (or n×n if you prefer) matrix whose entries are positive (i.e., pi,j ≥ 0) and whose

row-sums are all equal to 1 (i.e.,
∑

j pi,j = 1 for all i).

I A Markov chain with state space S and transition matrix P is a sequence (X0, X1, X2, . . .) of
S-valued random variables (on some probability space) with the property that

P{Xt+1 = j
∣∣∣∣∣∣ X0 = i0, X1 = i1, . . . , Xt = it} = pi,j , where i = it,

for all t ≥ 0 and all i0, . . . , it, j ∈ S. In other words, if the “current state” (namely Xt) is equal to i,
then irrespective of the past, the chance that Xt+1 = j is pi,j .

3. EXAMPLES OF MARKOV CHAINS

I A general 2-state MC: Let S = {1, 2} (or any 2-element set) and P =

[
1− α α

β 1− β

]
for

some 0 ≤ α, β ≤ 1. This will be a useful workhorse for us, to carry out computations explicitly
before going to the general case.

I Simple random walk on a graph: Let G = (V,E) be a finite graph with vertex set V and
edge set E. Then SRW on G is the Markov chain with state space V and transition probabilities

pi,j =

 1
deg(i) if j ∼ i,

0 otherwise.

In words, if the current state is i ∈ V , the next state will be one of the vertices adjacent to i, and it
will be picked with uniform probability.

A special case is when G is d-regular. Then P = 1
dA, where A is the adjacency matrix of G.

I Random walk on a weighted graph: Let G = (V,E,w), where w : E → R+. We say that
w(e) is the weight of the edge e. We define

pi,j =
w(i, j)∑
k∼iw(i, k)

if j ∼ i, pi,j = 0 if j 6∼ i.(1)

The corresponding Markov chain is called a random walk on G w.r.t weights/conductances w. If
we take w(e) = 1 for all e, we get back the SRW on G.
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I Ehrenfest chain: The original model comes from statistical physics. Imagine a box contain-
ing some gas. Inside the box is a partition with a tiny hole in it. At each instant of time, we imagine
that one of the gas molecules (picked at random) is transferred to the other side of the partition.

I Card shuffling mechanisms: Consider a deck of k cards labelled 1, 2 . . . , k. The state space
S is the set of all arrangements or permutations of the cards. Any mechanism for shuffling cards
leads to a Markov chain on S. Let us consider one simple one, random transposition. A transposition
is any permutation of the form τi,j = (i, j), the permutation that interchanges card i and card

j, and leaves everything else untouched. There are
(
n
2

)
such transpositions. Now consider a

Markov chain defined by Xt+1 = τIt,Jt(Xt), whre (It, Jt) is picked uniformly at random from the

set of pairs {(i, j) : i < j} uniformly. In words, we pick two distinct cards and interchange their
positions.

I A model for queues Imagine a queue in a cafeteria. Between time t and time t+ 1, the first
person in the queue (if any was there at time t) gets served and leaves the queue. In the same
time duration a random number Zt of people join the queue. A simple model is to assume that
Z0, Z1, Z2, . . . are independent and identically distributed with P{Zt = m} = am for m ≥ 0. Let
Xt denote the number of people in the queue at time t. Then X = (X0, X1, . . .) is a Markov chain
with state space N = {0, 1, 2, . . .}with transitions

pi,j =

aj if i = 0,

aj+1 if i ≥ 1.

I Random walk on directed graphs: IfG = (V,E,w) is a directed graph, then the correspond-
ing random walk is the Markov chain with transitions given by (1), except that now w(i, j) means
the weight of the edge i→ j. But this is not a special case but all Markov chains!

In fact, given any S and P , form a directed graph with vertex set S, edge set {(i, j) : pi,j > 0}
and weights w(i, j) = pi,j . The random walk on this weighted directed graph is precisely the
Markov chain on S with transition matrix P .

As we shall see later, random walks on undirected (weighted or unweighted) graphs are special!

4. THREE QUESTIONS

We raise three questions of interest. What needs to be kept in mind is that the transition matrix
tells us how the chain moves in one step. The questions here are not about one step, but over the
fullness of time. This is similar in spirit to classical Mechanics where Newton’s laws (given as a
system of differential equations) tell us how a system of bodies move in an infinitesimal amount
of time. The question of how to calculate the positions and velocities after a year or a century is
the problem of integrating the differential equation. It can be difficult. But in principle, no more
information is needed than the infinitesimal law. Analogously, any question about the behaviour
of a Markov chain should be possible to answer in terms of the transition matrix. Again, this is
true in principle, but can be difficult in practise.
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Q1 (Long-term behaviour of the chain): What is the distribution of Xt for large t? That is, for

i, j ∈ S, does lim
t→∞

P{Xt = j
∣∣∣∣∣∣ X0 = i} exist? What is it and how to compute it from the given

transition probabilities? Does it depend on the starting point i?

Q2 (Recurrence v/s Transience): Does the Markov chain visit every state in S? If so, does it visit
infinitely often? Does the answer depend on the starting point? In symbols, the first question is
asking if P{∪t≥0{Xt = j}} = 1 for all j ∈ S?

If the answer is Yes, we say that the chain is recurrent. Otherwise we say that the chain is
transient. How to decide whether a chain is recurrent or transient based on the transition matrix?

Q3 (Harmonic measure): Fix two disjoint subsets A,B of the state space S. For i ∈ S, what is the
probability that a Markov chain started at i (i.e., given X0 = i) hits A before B?

This problem is also called the problem of gambler’s ruin because of the following special case.
Imagine two gamblers with a and b rupees each playing a sequence of gambling games. After each
game, the loser pays 1 rupee to the winner. Imagine that both have equal chance of winning any
game, and that the games are independent of each other. The profit of the second gambler can be

thought of as a SRW on Z which moves up or down with equal probability (i.e., pi,i+1 =
1
2 = pi,i−1).

The chain starts at 0, and stops when it hits +a (the first gambler goes bankrupt) or when it hits−b
(the second gambler goes bankrupt), whichever happens first. It is of interest to find the chances of
the two possibilities. Clearly, this is a harmonic measure problem for the SRW on Z with X0 = 0

and A = {+a} and B = {−b} (it makes no difference if we take A = {a, a + 1, a + 2, . . .} and
B = {−b,−b− 1,−b− 2, . . .}).

5. MULTI-STEP TRANSITIONS AND THE QUESTION OF LONG-TERM BEHAVIOUR

I From the definition, we can see that

P{X1 = i1, X2 = i2, . . . , Xt = it
∣∣∣∣∣∣ X0 = i0}

= P{X1 = i1
∣∣∣∣∣∣ X0 = i0}P{X2 = i2

∣∣∣∣∣∣ X1 = i1, X0 = i0} . . .P{Xt = it
∣∣∣∣∣∣ Xt−1 = it−1, . . . , X0 = i0}

= pi0,i1pi1,i2 . . . pit−1,it .

I What is P{Xt = j
∣∣∣∣∣∣X0 = i}? We can sum the above probabilities over all possible trajectories

that lead from i to j in exactly t steps. Thus,

P{Xt = j
∣∣∣∣∣∣ X0 = i} =

∑
i1,...,it−1∈S

pi,i1pi1,i2 . . . pit−2,it−1pit−1,j .

4



A little thought shows that this is nothing but the (i, j) entry of P t (the matrix P multiplied with

itself t times). Thus1,

P{Xt = j
∣∣∣∣∣∣ X0 = i} = P ti,j .

I Look back at Q1, the question of long-term behaviour. It was precisely to compute the
above probability, as t → ∞. Have we solved the question? We have reduced it to a question

about matrices: What are the entries of P t, for large t?
I One can easily generate a few stochastic matrices on a computer and raise them to high

powers. Quite often, one sees that all rows become equal! In other words, it seems to be the case

that as P ti,j → πj as t→∞, where π1, . . . , πn are some positive numbers that sum to 1. This is still

a numerical observation, to be proved or disproved!
I But this is not always true. Here are two cases,

P =

[
1 0

0 1

]
and Q =

[
0 1

1 0

]
.

Then P t = P for all t and Qt = Q for odd t and Qt = P for even t. Thus the limit of Qt does not
exist. The limit of P t does exist, but the rows are not all equal.

I Moral: We need to understand the conditions on P under which P ti,j converges for all i, j

and the limit is free of i (depends only on j). We must also ask how these πj values are to be found
from P ?

I Let us analyse the 2-state chain with 0 < α, β < 1. We claim that with r = 1− α− β,

P t =
1

α+ β

[
αrt + β α− αrt

β − βrt α+ βrt

]
for t ∈ N.

The claim can be easily verified by induction. Note that |r| < 1, therefore,

P t → 1

α+ β

[
β α

β α

]
as t→∞.

In other words, irrespective of whether X0 is 0 or 1, the probabilities that Xt is equal to 0 or 1

converge to β
α+β and α

α+β respectively.

All of this work as long as |r| < 1. Otherwise, α = β = 0 or α = β = 1. In either case, P t

alternates between

[
1 0

0 1

]
and

[
0 1

1 0

]
as t varies. Thus, lim

t→∞
P ti,j does not exist.

I For general P , how do we guess at P t? Clearly a better way must be found. Suppose we

can diagonalize P as P = XDX−1, where X is an invertible matrix and D = diag(λ1, . . . , λn),

where n = |S|. Then, P t = XDtX−1. Here Dt = diag(λt1, . . . , λ
t
n). Since P1 = 1, we may take

1It would be less ambiguous but more cumbersome to write (P t)i,j . Do not confuse P t
i,j with (Pi,j)

t.
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λ1 = 1 (and the first column of X to be 1). Now additionally suppose that |λj | < 1 for j ≥ 2.

Then Dt → E1,1, where E1,1 = e1e
†
1 has (1, 1) entry equal to 1 and all other entries are zero.

Thus, P t → Xdiag(1, 0, . . . , 0)X−1. It is easy to see that the (i, j) entry of the limiting matrix is

Xi,1(X
−1)1,j . But we may take Xi,1 = 1 (as P1 = 1), hence if we define πj = (X−1)1,j , then

P ti,j → πj for all i, j. Thus the limits exist, and do not depend on the starting state.

I Not all matrices are diagonalizable. But every matrix has a Jordan decomposition. To recall
this, define the Jordan block

Jm(λ) =



λ 1 0 . . . . . . 0

0 λ 1 0 . . . 0
...

...
...

...
...

...
...

...
... 0 λ 1

0 . . . . . . . . . 0 λ


m×m

.

For m = 1, we simply take J1(λ) = [λ]. Then any matrix is conjugate to a matrix which is block
diagonal with each block being a Jordan block. For each eigenvalue λ, there may be one or more
Jordan blocks, Jm1(λ), . . . , Jmk

(λ), where m1 + . . . +mk is the arithmetic multiplicity of λ (and k

equals the geometric multiplicity of λ).

I Write P = XDX−1 where D is block diagonal with each block being a Jordan block. Again,
P1 = 1, therefore, 1 is an eigenvalue. Suppose we assume that 1 is a simple eigenvalue, and that
all other eigenvalues satisfy |λj | < 1. Then D is of the form

D =



1 0 0 . . . . . . 0

0 Jm1(λ1) 0 0 . . . 0
...

... Jm2(λ2)
...

...
...

...
...

... 0 01

0 . . . . . . . . . 0 Jmk
(λk)


.

From this it is clear that Dt → E1,1 and therefore P t → XE1,1X
−1. Thus if we choose X so that

Xi,1 = 1 and write πj = (X−1)1,j , then P ti,j → πj . As P ti,j ≥ 0, we must have πj ≥ 0. Further

(X−1X)1,1 = 1 imples that
∑

j πj = 1. Thus π is a probability distribution on S.

I We have almost solved the question of long-term behaviour. If P has 1 as a simple eigen-
value and all other eigenvalues are strictly smaller than 1 in absolute value, then there is a proba-

bility vector π = (πj)j∈S such that P ti,j → πj for all i, j ∈ S. When there are other eigenvalues of

absolute value 1 (as in the 2-state example), then P ti,j may not converge. Still, it would be nice to

have a simpler way to determine if 1 is a simple eigenvalue of P (instead of having to compute all
the eigenvalues). Such a criterion is given by the Perron-Frobenius theorem.
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I Assume that P is irreducible (i.e., for each i, j ∈ S, there is some t such that P ti,j > 0)

and aperiodic (i.e., g.c.d.{t : P ti,i > 0} = 1 for some (and then for all) i ∈ S. Then, 1 is a simple

eigenvalue of P , and all other eigenvalues have absolute values strictly smaller than 1. As a

corollary, there is a probability vector π = (πi)i∈S such that P ti,j → πj for all i, j ∈ S, as t→∞.

Proof: The assumption of irreducibility and aperiodicity imply that there is some T such that

P Ti,j > 0 for all i, j ∈ S (why?). Applying the Perron-Frobenius theorem to P T , we see that 1 is a

simple eigenvalue and all other eigenvalues have absolute value strictly smaller than 1. But the

eigenvalues of P T are λT1 = 1 and λTj , j ≥ 2, hence this shows that |λj | < 1 for j ≥ 2.

6. STATIONARY DISTRIBUTION

I For an irreducible, aperiodic MC, we have see that P ti,j → πj for all i, j ∈ S. What are these

πjs and how to compute them?

I From the proof, we have see that if P = XDX−1 is the Jordan decomposition of P and

Xi,1 = 1 for all i, then πj = (X−1)1,j . Thus, π is the first column of (X−1)†, which by the equation

P † = (X−1)†D†X show that π is the eigenvector of P † for the eigenvalue 1. Further, (X−1X)1,1 = 1

shows that
∑

j πj = 1. Since it arises as the limit of P ti,j , we must have πj ≥ 0. But this is also part

of the Perron-Frobenius theorem (applied to P T it shows that πj > 0 for all j).

I Thus π can be found as the top eigenvector of P † normalized so that
∑

j πj = 1. Even if P

is not aperiodic (but 1 is a simple eigenvalue of P and hence of P †), we can define π like this. It is
called the stationary distribution of the Markov chain. Finding it means solving the linear equations

(P †−I)π = 0, which need not be easy (numerically one can find it on a computer fairly efficiently).
I There are two cases when we can find π explicitly.

(1) We say that P is doubly stochastic if its column sums are also 1. Then P†1 = 1, hence

πj =
1
n for all j ∈ S.

(2) We say that P is reversible w.r.t. the numbers (σi)i∈S if σi > 0 and σiPi,j = σjPj,i for all

i, j ∈ S. In such as case (P †σ)i =
∑

j P
†
i,jσj =

∑
j Pj,iσi = σi. Therefore, σ is an eigenvector

of P † for the eigenvalue 1, and hence the stationary distribution is given by πi = σi/
∑

k σk.

I Consider SRW on a finite graph G = (V,E). Then Pi,j = 1
deg(i) if j ∼ i, and Pi,j = 0

otherwise. Hence if σi = deg(i), then σiPi,j = σjPj,i for all i ∼ j. For i 6∼ j, both sides are

zero, hence equal. Thus P is reversible and πi =
deg(i)∑

k∈V deg(k) . The MC spends time at each vertex

proportional to its degree.
More generally, for random walk on the weighted graph G = (V,E,w), the chain is reversible

with σ(i) =
∑

j∼iw(i, j) (“generalized degree”). Hence πi =
σ(i)∑
k σ(k)

.
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I Consider the Ehrenfest chain with S = {0, 1, . . . , N} and Pi,i+1 = N−i
N and Pi,i−1 = i

N and

all other Pi,j = 0. Let σi =
(
N
i

)
. Then

σiPi,i+1 =
N !

i!(N − i)!
N − i
N

=
(N − 1)!

i!(N − i− 1)!
,

σi+1Pi+1,i =
N !

(i+ 1)!(N − i− 1)!

i+ 1

N
=

(N − 1)!

i!(N − i− 1)!
.

From this we see that P is reversible w.r.t. σ and hence πi = 1
2N

(
N
i

)
for 0 ≤ i ≤ N .

I Consider the Tsetlin library. It is not reversible, because there are π, σ ∈ Sn such that Pπ,σ > 0

and Pσ,π = 0. However, every permutation has n inward edges and n outward edges, from which
we see that P is doubly stochastic. Hence π is uniform on Sn.

7. TWO REMARKS ON REVERSIBLE CHAINS

I We saw that random walks on wighted (undirected) graphs are reversible. In fact, all re-
versible Markov chains can be thought of as random walks on weighted graphs.

Suppose S is a finite or countable state space, and P is a transition matrix that is reversible w.r.t.
σ, i.e., σi > 0 for all i ∈ S and σipi,j = σjpj,i for all i, j ∈ S. Then form the graph G with vertex set

S, edge set {{i, j} : pi,j > 0} (the edges are undirected because σipi,j = σjpj,i and σi, σj > 0 shows

that pi,j > 0 if and only if pj,i > 0). Define the edge-weights, w(i, j) = σipi,j (so w(j, i) = w(i, j),
the weights don’t depend on the direction). Check that the random walk on G is precisely the MC
with transition matrix P .

I Rate of convergence: Let S be finite with n = |S|, and P be irreducible and aperiodic. We

know that P ti,j → πj for all i, j ∈ S. How fast is the convergence? We restrict ourselves to the

special case when Pi,j = Pj,i, i.e., P is reversible w.r.t. σi = 1 (we can extend all the considerations
here to general reversible chains, see the end of this section).

I Write the spectral decomposition P = λ1v1v
†
1 + . . . λnvnv

†
n, where {vi} is an orthonormal

basis of Rn and λi are the corresponding eigenvalues (real because P † = P ). Take λ1 = 1 and

v1 =
1√
n
1. Then −1 < λ2, . . . , λn < +1. Let α = maxj≥2 |λj |. Then

P t =
1

n
11† + λt2v2v

†
2 + . . .+ λtnvnv

†
n

is the spectral decomposition of P t (eigenvectors remain the same, eigenvalues are powers of
eigenvalues of P ). Thus, for any i, j ∈ S, we have

P ti,j −
1

n
= λ2v2(i)v2(j) + . . .+ λtnvn(i)vn(j)

8



from wheich we can see that

∑
j

|P ti,j −
1

n
| ≤ αt

n∑
k=2

∑
j

|vk(i)||vk(j)| ≤ Cnαt.

As |vk(i)| ≤ 1, we can take Cn = n2 (or do better but we don’t care here). This means that

the probability vector (P ti,j)j∈S is within Cnα
t distance on the uniform distribution π (in the `1

distance). In particular, this shows that the distance between them decays exponentially fast. The
smaller α is, faster is the decay. If α is close to 1, the decay is slower.

I The quantity 1 − α is called the spectral gap. And the larger it is, faster the convergence

of the chain to stationarity. For example, with P = 1
dA for the SRW on a d-regular graph, this

motivates the question of finding a sequence Gn of d-regular graphs (with d fixed, say d = 3) so
that the spectral gap remains bounded away from zero. Such graphs are called expander graphs.
Constructing a sequence of expander graphs is not easy!

8. RECURRENCE AND TRANSIENCE

I As always, consider an irreducible chain with state space S and transition P . For a state
j ∈ S, define the hitting time random variable Tj = min{t ≥ 1 : Xt = j} (infinite if the set is

empty). If P{Tj <∞
∣∣∣∣∣∣X0 = i} <∞ for all i, j ∈ S, we say that the MC is recurrent. As the chain is

irreducible, one can show that this is equivalent to P{Tj < ∞
∣∣∣∣∣∣ X0 = j} for one single j ∈ S (we

skip the argument here, but it is similar to the one that comes next).
I If S is finite and P is irreducible, the chain is recurrent.
Proof: Then there is a t0 < ∞ and δ > 0 such that for every i, j ∈ S, there is some t ≤ t0 such

that P ti,j ≥ δ. Now break the chain into steps of t0. Fix a target state j. In each block of t0 steps,

there is a probability of at least δ that the chain hits the state j, conditional on all that happened

before. Therefore, the probability that Tj > kt0 steps is bounded by (1 − δ)k, which goes to 0 as
k →∞. Therefore Tj <∞w.p.1.

I Thus, for finite state spaces, the recurrence question is not interesting. But one can ask quan-
titative questions that are more interesting, for example, the distribution or the tails or moments
of Tj . A very interesting and important fact is that for a finite state space, irreducible, aperiodic
chain,

E[Tj
∣∣∣∣∣∣ X0 = j] =

1

πj
.

I Let us explain one consequence of it. Consider the Ehrenfest chain on S = {0, 1, . . . , N}. As
it is irreducible, the chain visits every state, including 0. In terms of the interpretation in terms of
gas molecules, this says that there will come a time when all the air in a room moves to the right
half, leaving a vacuum in the left half. But this is not something that anyone has experienced, so it
looks like a contradiction. However, the paradox gets resolved when we look at it quantitatively.
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Recall that πj = 1
2N

(
N
j

)
. Hence E[T0

∣∣∣∣∣∣X0 = 0] = 2N . Contrast with j = N
2 , for which E[Tj

∣∣∣∣∣∣X0 =

j] ∼ c
√
N (because

(
N
N/2

)
1
2N
∼ 1

c
√
N

by Stirlings’ approximation (recall that f(s) ∼ g(s) means that

f(f)/g(s) goes to 1 as s→∞). Both
√
N and 2N are large, but when we plug in N = 1026 (realistic

for number of molecules of air in a room), the quantities are 1013 and 210
26

. If 106 moves happen
in a second, then the first one is less than half a year, while the second one is larger than the age of
the universe! It is not inconsistent with observation.

I Now let us come to the problem of deciding whether an irreducible Markov chain on an
infinite state space is recurrent or transient. Here is the key theorem.

Theorem: A chain is recurrent or transient according as
∑∞

t=0 P
t
i,i is divergent or convergent for

some i ∈ S (the convergence/divergence does not depend on i).
I Consider random walk on Z with pi,i+1 = p and pi,i−1 = 1 − p where 0 < p < 1. Let i = 0.

Starting from 0, the walk can return to 0 only in an even number of steps. And if t = 2s, then

P t0,0 =
(
2s
s

)
(p(1 − p))s, since there must be s steps to the right and s steps to the left, but they

can occur in any order. By Stirlings’ approximation
(
2s
s

)
∼ 22s

c
√
2s

as already noted above. Hence

P 2s(0, 0) ∼ (4p(1− p))s/c
√
s as s→∞.

If p = 1/2, then P 2s(0, 0) ∼ 1
c
√
2s

and hence
∑

t P
t
0,0 =∞. The chain is recurrent.

If p 6= 1
2 , then 4p(1− p) < 1, hence P t0,0 decays exponentially fast in t. Hence

∑
t P

t
0,0 <∞. The

chain is transient.
I Consider SRW on Z2. Again P t0,0 (here 0 stands for the origin) is zero for odd t. For t = 2s,

to return to the origin, the walk must make k steps to the right and left each, and s − k steps up
and down each (for some 0 ≤ k ≤ s). Therefore,

P 2s
0, =

s∑
k=0

(2s)!

(k!(s− k)!)2
1

42s
=

(2s)!

(s!)242s

s∑
k=0

(
s

k

)2

=
(2s)!

(s!)242s

(
2s

s

)
=

((
2s

s

)
1

22s

)2

∼ 1

c2s
.

Thus,
∑

t P
t
0,0 =∞, hence the chain is recurrent.

I Exercise: Show that SRW on the infinite b-regular tree (for b ≥ 3) is transient.

9. FURTHER READING

I We have just touched some of the most basic aspects of Markov chains. Most books on
probability, have a chapter on Markov chains, covering all the basics in greater detail than we
have done here. Here are some:

(1) W. Feller, An Introduction to Probability Theory and Its Applications: v. 1, John Wiley & Sons;
3rd Edition (1968).
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(2) Grimmett and Stirzaker, Probability and random processes, Oxford university press, 4th ed
(2020).

(3) P. Brémaud, Markov chains, Springer (2020).

BASED ON LECTURES GIVEN IN IWM mini-course (NOV 2024) ORGANIZED BY PROFESSORS ARCHANA MORYE AND

ABHAY SOMAN OF UNIVERSITY OF HYDERABAD AND THE WORKSHOP Graphs, Matrices and Applications (SEP 2025)

ORGANIZED BY PROFESSOR RAJESH KANNAN OF IIT, HYDERABAD.
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