Adjacency Algebra of a Graph

A. Satyanarayana Reddy

Department of Mathematics School of Natural Sciences Shiv Nadar Institution of Eminence, Delhi-NCF

Online Short-Term Program on "Graphs, Matrices and Applications" (Under Malaviya Mission Teacher Training Program), 29 Sep- 4 Oct, 2025

Lecture-1

Lecture-2

Lecture-3

Lecture-4
Bose Mesner Algebra

References

Graph
$$(K_{3,4})$$
 Adjacency matrix
$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Graph
$$(K_{3,4})$$
 Adjacency matrix Spectrum
$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{pmatrix} -\sqrt{12} & 0 & \sqrt{12} \\ 1 & 5 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0$$

Eigenvalues of complete bipartite graph $K_{m,n}$

▶ The adjacency matrix of $K_{m,n}$ has rank 2.

Graph
$$(K_{3,4})$$
 Adjacency matrix Spectrum
$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{pmatrix} -\sqrt{12} & 0 & \sqrt{12} \\ 1 & 5 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0$$

Eigenvalues of complete bipartite graph $K_{m,n}$

▶ The adjacency matrix of $K_{m,n}$ has rank 2.

Graph
$$(K_{3,4})$$
 | Adjacency matrix | Spectrum | $\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$ | $\begin{pmatrix} -\sqrt{12} & 0 & \sqrt{12} \\ 1 & 5 & 1 \end{pmatrix}$.

Eigenvalues of complete bipartite graph $K_{m,n}$

- ► The adjacency matrix of $K_{m,n}$ has rank 2. So, $\lambda = 0$ is an eigenvalue with multiplicity m + n 2.
- Let λ_1 , λ_2 be the remaining two non-zero eigenvalues.

Graph
$$(K_{3,4})$$
 Adjacency matrix

$$\begin{bmatrix}
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} -\sqrt{12} & 0 & \sqrt{12} \\ 1 & 5 & 1 \end{pmatrix}.$$
f complete bipartite graph $K_{m,n}$

Spectrum

$$\begin{pmatrix} -\sqrt{12} & 0 & \sqrt{12} \\ 1 & 5 & 1 \end{pmatrix}$$

Eigenvalues of complete bipartite graph $K_{m,n}$

- ▶ The adjacency matrix of $K_{m,n}$ has rank 2. So, $\lambda = 0$ is an eigenvalue with multiplicity m + n - 2.
- Let λ_1 , λ_2 be the remaining two non-zero eigenvalues.
- As trace($A(K_{m,n})$) = 0, $\lambda_1 = -\lambda_2$. Hence we have $2\lambda_1^2 = 2mn$ and hence $\lambda_1 = \sqrt{mn}$.

Graph
$$(K_{3,4})$$
 Adjacency matrix

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} -\sqrt{12} & 0 & \sqrt{12} \\ 1 & 5 & 1 \end{pmatrix}.$$

The soft complete bipartite graph K

Spectrum

$$\begin{pmatrix} -\sqrt{12} & 0 & \sqrt{12} \\ 1 & 5 & 1 \end{pmatrix}$$

Eigenvalues of complete bipartite graph $K_{m,n}$

- ▶ The adjacency matrix of $K_{m,n}$ has rank 2. So, $\lambda = 0$ is an eigenvalue with multiplicity m + n - 2.
- Let λ_1 , λ_2 be the remaining two non-zero eigenvalues.
- As trace $(A(K_{m,n})) = 0$, $\lambda_1 = -\lambda_2$. Hence we have $2\lambda_1^2 = 2mn$ and hence $\lambda_1 = \sqrt{mn}$.
- ► Thus.

$$Spec(K_{m,n}) = \begin{pmatrix} -\sqrt{mn} & 0 & \sqrt{mn} \\ 1 & m+n-2 & 1 \end{pmatrix}.$$

$$\begin{array}{c|c}
1 \\
\hline
2 \\
\hline
4 \\
\hline
5
\end{array}$$
 K_5

Eigenvectors (
$$X^T$$
):

$$\begin{bmatrix}
 [1,1,1,1,1]^T \\
 [1,-1,0,0,0]^T \\
 [1,0,-1,0,0]^T \\
 [1,0,0,-1,0]^T$$

$$[1,0,0,0,-1]^T$$

 $Spec(K_n) = \begin{pmatrix} 4 & -1 \\ 1 & 4 \end{pmatrix}.$

$$\begin{array}{c}
1 \\
2 \\
4 \\
5
\end{array}$$
Eigenvectors (X^T) :

$$egin{aligned} [1,1,1,1,1]^T \ [1,-1,0,0,0]^T \ [1,0,-1,0,0]^T \ [1,0,0,-1,0]^T \ [1,0,0,0,-1]^T \ Spec(K_n) &= egin{pmatrix} 4 & -1 \ 1 & 4 \end{pmatrix}. \end{aligned}$$

Note that the adjacency matrix of K_n equals

$$A = \begin{bmatrix} 0 & 1 & 1 & \dots & 1 \\ 1 & 0 & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & \dots & 0 \end{bmatrix} = \mathbf{J} - I.$$

Eigenvectors (
$$X^T$$
):

 $[1,1,1,1,1]^T \ [1,-1,0,0,0]^T \ [1,0,-1,0,0]^T$

$$[1,0,-1,0,0]^T$$

$$[1,0,0,0,-1]^T$$

$$Spec(K_n) = \begin{pmatrix} 4 & -1 \\ 1 & 4 \end{pmatrix}.$$

Note that the adjacency matrix of K_n equals

$$A = \begin{bmatrix} 0 & 1 & 1 & \dots & 1 \\ 1 & 0 & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & \dots & 0 \end{bmatrix} = \mathbf{J} - I.$$

Thus, the eigenpairs are $(\mathbf{e}, n-1)$ and $(\mathbf{e}_1 - \mathbf{e}_i, -1)$, for $2 \le i \le n$. Thus,

$$Spec(K_n) = \begin{pmatrix} n-1 & -1 \\ 1 & n-1 \end{pmatrix}.$$

 $\mathbf{e} \in \mathbb{R}^n$ is the column vector of all 1's.

Problem-1 Let X = (V, E) be a simple undirected connected graph with n vertices, and let A denote its adjacency matrix. Many properties of X such as regularity or bipartiteness can be characterized from the spectrum of A. If X is large, however, investigating the spectrum of X might be cumbersome, which motivates to study "condensed" versions of A that preserve properties of its spectrum.

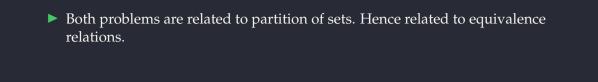
How to find these condensed versions of *A*?

Problem-1 Let X = (V, E) be a simple undirected connected graph with n vertices, and let A denote its adjacency matrix. Many properties of X such as regularity or bipartiteness can be characterized from the spectrum of A. If X is large, however, investigating the spectrum of X might be cumbersome, which motivates to study "condensed" versions of A that preserve properties of its spectrum.

How to find these condensed versions of A?

Problem-2 A graph Y is a polynomial in a graph X if the adjacency matrix of Y, A(Y) is a polynomial in A(X). That is $\exists p(x) \in \mathbb{C}[x]$ such that A(Y) = p(A(X)). Given a graph X, what are all graphs which are polynomials in X? To attack this problem, we introduce adjacency algebra of X that is exactly set of all polynomials in A. If a given graph has few nice regular properties, then adjacency algebra of X will have a basis such that whose elements are symmetric matrices with entries 0,1.

How to find those graphs which have these nice basis?



- Both problems are related to partition of sets. Hence related to equivalence relations.

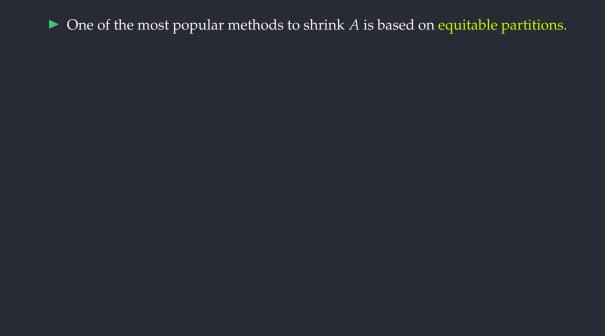
Problem-1 related to partition of the vertex set *V*.

- ▶ Both problems are related to partition of sets. Hence related to equivalence relations.
- ▶ Problem-1 related to partition of the vertex set *V*.
- ▶ Problem-2 related to partition of the set $V \times V$.

- ▶ Both problems are related to partition of sets. Hence related to equivalence relations.
- ▶ Problem-1 related to partition of the vertex set *V*.
- ightharpoonup Problem-2 related to partition of the set $V \times V$.
- ▶ Group actions provides partial answers to both the problems.

- ▶ Both problems are related to partition of sets. Hence related to equivalence relations.
- ▶ Problem-1 related to partition of the vertex set *V*.
- ▶ Problem-2 related to partition of the set $V \times V$.
- ▶ Group actions provides partial answers to both the problems.
- ▶ If X is a graph, then Aut(X), the set of all automorphisms of X is a group which acts on the vertices of V of X hence on $V \times V$ whose orbits provides partitions to both V and $V \times V$.

- ▶ Both problems are related to partition of sets. Hence related to equivalence relations.
- ▶ Problem-1 related to partition of the vertex set *V*.
- ▶ Problem-2 related to partition of the set $V \times V$.
- ▶ Group actions provides partial answers to both the problems.
- ▶ If X is a graph, then Aut(X), the set of all automorphisms of X is a group which acts on the vertices of V of X hence on $V \times V$ whose orbits provides partitions to both V and $V \times V$.
- Thus knowledge on automorphism group of a graph and group actions will be very useful.

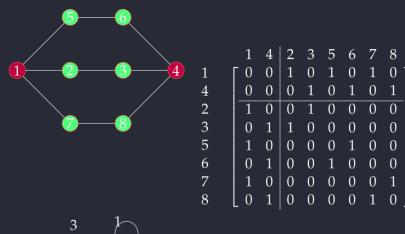


- ▶ One of the most popular methods to shrink *A* is based on equitable partitions.
- To define this, let $\mathcal{P} = \{V_1, \dots, V_m\}$ (m < n) be a partition of V, and, for $i, j \in [m] = \{1, \dots, m\}$ and $u \in V_i$, let $b_{ij}(u)$ be the number of neighbors of u in V_i .

- ▶ One of the most popular methods to shrink *A* is based on equitable partitions.
- ▶ To define this, let $\mathcal{P} = \{V_1, \dots, V_m\}$ (m < n) be a partition of V, and, for $i, j \in [m] = \{1, \dots, m\}$ and $u \in V_i$, let $b_{ij}(u)$ be the number of neighbors of u in V_i .
- ▶ The partition \mathcal{P} is called *equitable* (or regular) if $b_{ij}(u)$ is independent from the concrete choice of $u \in V_i$, i.e., $b_{ij}(u) = b_{ij}(v)$ for all $u, v \in V_i$.

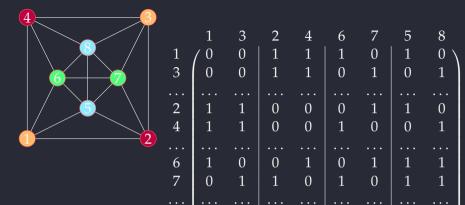
- ▶ One of the most popular methods to shrink *A* is based on equitable partitions.
- ▶ To define this, let $\mathcal{P} = \{V_1, ..., V_m\}$ (m < n) be a partition of V, and, for $i, j \in [m] = \{1, ..., m\}$ and $u \in V_i$, let $b_{ij}(u)$ be the number of neighbors of u in V_i .
- ▶ The partition \mathcal{P} is called *equitable* (or regular) if $b_{ij}(u)$ is independent from the concrete choice of $u \in V_i$, i.e., $b_{ij}(u) = b_{ij}(v)$ for all $u, v \in V_i$.
- ▶ In this case, the matrix $B = (b_{ij})_{i,j \in [m]}$ is called the *quotient matrix* of \mathcal{P} . Since it is known that for an equitable partition the eigenvalues of B are also eigenvalues of A, some spectral properties of B carry over to A. We will see them in a while, most of the content is taken from the book Godsil and Royle [3].

- ▶ One of the most popular methods to shrink *A* is based on equitable partitions.
- ▶ To define this, let $\mathcal{P} = \{V_1, \dots, V_m\}$ (m < n) be a partition of V, and, for $i, j \in [m] = \{1, \dots, m\}$ and $u \in V_i$, let $b_{ij}(u)$ be the number of neighbors of u in V_j .
- ▶ The partition \mathcal{P} is called *equitable* (or regular) if $b_{ij}(u)$ is independent from the concrete choice of $u \in V_i$, i.e., $b_{ij}(u) = b_{ij}(v)$ for all $u, v \in V_i$.
- In this case, the matrix $B = (b_{ij})_{i,j \in [m]}$ is called the *quotient matrix* of \mathcal{P} . Since it is known that for an equitable partition the eigenvalues of B are also eigenvalues of A, some spectral properties of B carry over to A. We will see them in a while, most of the content is taken from the book Godsil and Royle [3].
- ▶ Equitable partitions have been proven to be useful to derive, among many others, sharp eigenvalue bounds on the independence number like the celebrated ratio bound by Hoffman [5], but such results only hold when the underlying graph is regular.

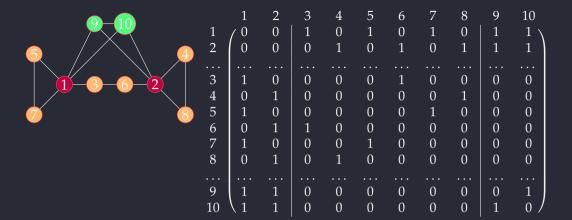


 V_2

3



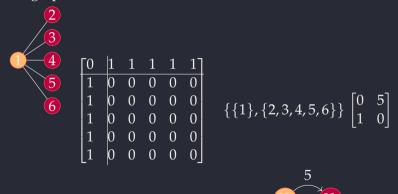
0	2	1	1
2	0	1	1
1	1	1	2
0 2 1 1	1	2	1

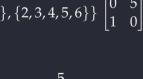


$$\begin{bmatrix} 0 & 3 & 2 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

Let X = (V, E) be a graph with $V = \{v_1, v_2, \dots, v_n\}$. Then the partition

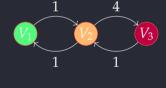
- \blacksquare $\pi = \{\{v_1\}, \{v_2\}, \dots, \{v_n\}\}\$ always an equitable partition.
- $\pi = \{\{v_1, v_2, \dots, v_n\}\}\$ is an equitable partition if and only if X is a regular graph.





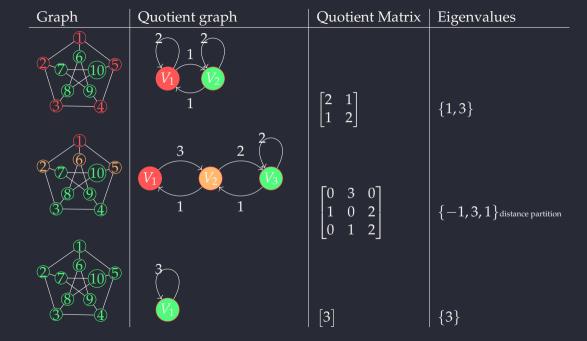
$$\{\{2\},\{1\},\{3,4,5,6\}\}$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 4 \\ 0 & 1 & 0 \end{bmatrix}$$



This partition is called *distance partition* with respect to a vertex v. We denote $X_i(v) = \{w \in V | d(v, w) = i\}$.

In this example v = 2, $X_0(2) = \{2\}$, $X_1(2) = \{1\}$, $X_2(2) = \{3,4,5,6\}$.



$$N = P(P^T P)^{-1} P^T = P \begin{bmatrix} \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{5} & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{5} & \frac{$$

N is a doubly stochastic matrix.

A partition π is equitable if and only if N commutes with A.

If $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$ then $\pi = \{\{1, 4, 6\}, \{2, 5\}, \{7, 8\}, \{3\}\}$ is a partition of Vwith cells $C_1 = \{1, 4, 6\}, C_2 = \{2, 5\}, C_3 = \{7, 8\}, C_4 = \{3\}, \text{ and } \pi \text{ is a 4-partition.}$

 $P^TP = egin{bmatrix} c_1^Tc_1 & 0 & 0 & 0 \ 0 & c_2^Tc_2 & 0 & 0 \ 0 & 0 & c_3^Tc_3 & 0 \ 0 & 0 & 0 & c_3^Tc_4 \ \end{pmatrix} = egin{bmatrix} 3 & 0 & 0 & 0 \ 0 & 2 & 0 & 0 \ 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 1 \ \end{bmatrix}.$ Now, since *P* has orthogonal columns then we have Notice that the diagonals are

$$P^{T}P = \begin{bmatrix} 0 & 0 & c_{3}^{T}c_{3} & 0 \\ 0 & 0 & 0 & c_{4}^{T}c_{4} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$
Now, since *P* has orthogonal columns then we have Notice that the diagonals are

just the cardinalities of the cells, *i.e.*, $c_i^T c_i = |C_i|$.

Let $S = \{1, 2, 3, 4, 5\}$ and $\pi = \{\{3\}, \{2, 4\}, \{1, 5\}\}$ be a partition of S.

Let
$$P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
. Then $P^T P = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.

Further
$$(P^T P)^{-1} P^T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \end{bmatrix}.$$

Further
$$(P^T P)^{-1} P^T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \end{bmatrix}.$$

Finally $P(P^T P)^{-1} P^T = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \end{bmatrix}.$

Finally
$$P(P^TP)^{-1}P^T = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \end{bmatrix}$$

Is there a graph with this partition as an equitable partition? Of course every

partition is equitable for K_5 . We look for a nontrivial graph.

Is there a graph with this partition as an equitable partition? Of course every partition is equitable for K_5 . We look for a nontrivial graph. Consider the path graph P_5 . $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Consider the distance partition of P_5 w.r.to vertex 3.

$$(P^T P)^{-1} P^T A = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ \frac{1}{2} & 0 & 1 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \end{bmatrix}. \text{ Now }$$

$$(P^T P)^{-1} P^T A P = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ \frac{1}{2} & 0 & 1 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \end{bmatrix} P = \begin{bmatrix} 0 & 2 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = B$$
, the quotient matrix.

$$AP = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$PB = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 2 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

Let $u \in V(X)$. Then the uj-entry of AP is the number of neighbours of u that lie in cell C_j . If $u \in C_i$, then this number is b_{ij} . Now, the uj-entry of PB is also b_{ij} , because the only nonzero entry in the u-row of P is a 1 in the i-column. Therefore AP = PB and so $P^TAP = P^TPB$ or equivalently $(P^TP)^{-1}P^TAP = B$.

Graph	Partition of $\{1,2,3\}$	Ch Matrix	Quotient Matrix	Eigenvalues
$ \begin{array}{c c} \hline 3 \\ \hline 1 \\ \hline K_3 \end{array} $	{{1},{2},{3}}	$P = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$	{-1,-1,2}
	{{1,2,3}}	$P = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$	[2]	{2}
K ₃	{{1},{2,3}} {{2},{1,3}}	$P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}$	{-1,2}
	{{2},{1,3}} {{3},{1,2}}			

Every partition of $\{1,2,3\}$ is an equitable partition for K_3 .

First case:

$$(P^T P)^{-1} P^T A P = A = B.$$

Second case:

$$(P^TP)^{-1}P^TAP = rac{1}{3} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = rac{1}{3}[6] = [2] = B.$$

Third case:

$$(P^T P)^{-1} P^T A P = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix} = B.$$

- ▶ Let $A \in M_n(\mathbb{R})$.
- Suppose that *W* is *A*-invariant subspace of \mathbb{R}^n and let $\beta = \{\mathbf{y_1}, \mathbf{y_2}, \dots, \mathbf{y_k}\}$ be a basis for *W* and consider the matrix $P = \begin{bmatrix} \mathbf{y_1} & \mathbf{y_2} & \cdots & \mathbf{y_k} \end{bmatrix}$.
- Now, since W is A-invariant then $A\mathbf{y_i} \in \mathbf{W}$ and therefore $A\mathbf{y_i}$ can be written as a linear combination of the basis vectors $\boldsymbol{\beta}$. Therefore, there is some vector $\mathbf{b_i} \in \mathbb{R}^{\mathbf{k}}$ such that $A\mathbf{y_i} = \mathbf{Pb_i}$. This holds for each $i = 1, 2, \ldots, k$ and therefore if we set $\mathbf{B} = \begin{bmatrix} \mathbf{b_1} & \mathbf{b_2} & \cdots & \mathbf{b_k} \end{bmatrix}$ then

$$AP = PB$$
.

Lemma

Let X be a graph with adjacency matrix A and let π be a partition of V(X) with characteristic matrix P. Then π is equitable if and only if the column space of P is A-invariant.

Proof.

The column space of P is A-invariant if and only if there is a matrix B such that AP = PB. If π is equitable, we can choose B as its quotient matrix.

Let B be the quotient matrix of an equitable partition. Then B is similar to a symmetric matrix. We have $(P^TP)^{-1}P^TAP = B$. Let $P^TP = K = D^2$ and $M = P^{T}AP$. Then it is clear that M is a symmetric matrix. We have $B = K^{-1}M = D^{-2}M$. Then $DBD^{-1} = D^{-1}MD^{-1}$. That is B is similar to a

symmetric matrix
$$D^{-1}MD^{-1}$$
. Hence all eigenvalues of B real.
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Let $P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ be the characteristic matrix corresponding to partition of {{3}, {2,4}, {1,5} of {1,2,3,4,5}. Then

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_3 \\ x_2 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

If AP = PB, then it is easy to see by induction that $A^kP = PB^{\overline{k}}$ for $k \in \mathbb{N}$ and more generally, if f(x) is a polynomial, then f(A)P = Pf(B). If f is a polynomial such that f(A) = 0, then Pf(B) = 0. Since the columns of P are linearly independent, this implies that f(B) = 0. This shows that the minimal polynomial of P divides the minimal polynomial of P, and therefore every eigenvalue of P is an eigenvalue of P.

Theorem

If π is an equitable partition of a graph X, then the characteristic polynomial of B divides the characteristic polynomial of A(X).

Proof.

Let P be the characteristic matrix of π . If X has n vertices, then let Q be an $n \times (n - |\pi|)$ matrix whose columns, together with those of P, form a basis for \mathbb{R}^n . Then there are matrices C and D such that AQ = PC + QD. That is we have

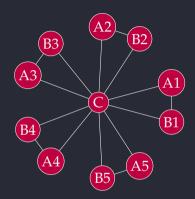
$$AP = PB$$
, $AQ = PC + QD$.

$$A[P \ Q] = [AP \ AQ] = [PB \ PC + QD = [P \ Q] \begin{bmatrix} B & C \\ O & D \end{bmatrix}$$

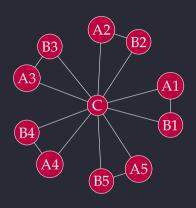
$$[P \ Q]^{-1}A[P \ Q] = \begin{bmatrix} B & C \\ O & D \end{bmatrix}.$$

Thus A is similar to $\begin{bmatrix} B & C \\ O & D \end{bmatrix}$.

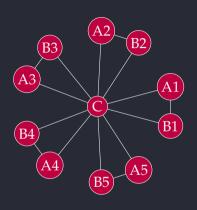
- We can also get information about few eigenvectors of A from eigenvectors of B. Let v is an eigenvector of B with eigenvalue θ . That is $Bv = \theta v$. But we have AP = PB hence $A(Pv) = (AP)v = (PB)v = P(Bv) = \theta Pv$.
- ▶ Thus Pv is eigenvector of A with same eigen value θ .
- \blacktriangleright We say that the eigenvector v of B "lifts" to an eigenvector of A.
- Alternatively, we may argue that if the column space of P is A-invariant, then it must have a basis consisting of eigenvectors of A. Each of these eigenvectors is constant on the cells of P, and hence has the form Pv, where $v \neq 0$. If $APv = \theta Pv$, then it follows that $Bv = \theta v$.
- $v \neq 0$. If $APv = \theta Pv$, then it follows that $Bv = \theta v$.
- ▶ If the column space of *P* is *A*-invariant, then so is its orthogonal complement; from this it follows that we may divide the eigenvectors of *A* into two classes;
 - be those that are constant on the cells of π , which have the form Pv for some eigenvector of B, and
 - those that sum to zero on each cell of π .



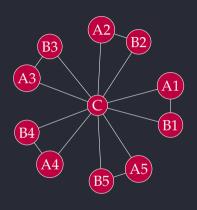
▶ It is Friendship graph F_5 with 11 vertices. Any two vertices have exactly one common neighbor.



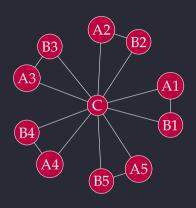
- ▶ It is Friendship graph F_5 with 11 vertices. Any two vertices have exactly one common neighbor.
- Friendship graph (or Dutch windmill) F_k with 2k + 1 vertices and 3k edges. Easy to see F_k is connected with diameter 2, as any of two vertices have a common neighbor.



- ▶ It is Friendship graph F_5 with 11 vertices. Any two vertices have exactly one common neighbor.
- Friendship graph (or Dutch windmill) F_k with 2k + 1 vertices and 3k edges. Easy to see F_k is connected with diameter 2, as any of two vertices have a common neighbor.
- ▶ There is a vertex which is adjacent to all the vertices (Friendship Theorem). Note this is not a part of definition. This is a property of F_k . Once we prove this theorem star graph is a subgraph of F_k .



- ▶ It is Friendship graph F_5 with 11 vertices. Any two vertices have exactly one common neighbor.
- Friendship graph (or Dutch windmill) F_k with 2k + 1 vertices and 3k edges. Easy to see F_k is connected with diameter 2, as any of two vertices have a common neighbor.
- There is a vertex which is adjacent to all the vertices (Friendship Theorem). Note this is not a part of definition. This is a property of F_k . Once we prove this theorem star graph is a subgraph of F_k .
- Let $\{\{C\}, \{A_1, B_1, \dots, A_5, B_5\}\}$ be a partition of vertex set.



- ▶ It is Friendship graph F_5 with 11 vertices. Any two vertices have exactly one common neighbor.
- Friendship graph (or Dutch windmill) F_k with 2k + 1 vertices and 3k edges. Easy to see F_k is connected with diameter 2, as any of two vertices have a common neighbor.
- There is a vertex which is adjacent to all the vertices (Friendship Theorem). Note this is not a part of definition. This is a property of F_k . Once we prove this theorem star graph is a subgraph of F_k .
- Let $\{\{C\}, \{A_1, B_1, \dots, A_5, B_5\}\}$ be a partition of vertex set.
- Then it is an equitable partition and its quotient matrix $B = \begin{bmatrix} 0 & 10 \\ 1 & 1 \end{bmatrix}$. In general $B = \begin{bmatrix} 0 & 2k \\ 1 & 1 \end{bmatrix}$.

The characteristic polynomial of *B* of F_k is $x^2 - x - 2k$. Hence the eigenvalues of *B* are $\frac{1 \pm \sqrt{1+8k}}{2}$.

- ▶ The characteristic polynomial of *B* of F_k is $x^2 x 2k$. Hence the eigenvalues of *B* are $\frac{1 \pm \sqrt{1+8k}}{2}$.
- [0,1,1,-1,-1,0,0...,0,0],[0,1,1,0,0,-1,-1,...,0,0],..., [0,1,1,0,0,0,0...,-1,-1] are k-1, LI eigenvectors with eigenvalue 1.

The characteristic polynomial of B of F_k is $x^2 - x - 2k$. Hence the eigenvalues of B are $\frac{1 \pm \sqrt{1 + 8k}}{2}$.

 $[0, 1, -1, 0, 0, 0, 0, \dots, 0, 0], [0, 0, 0, 1, -1, 0, 0, \dots, 0, 0], \dots, [0, 0, 0, 0, 0, 0, 0, \dots, -1, 1]$

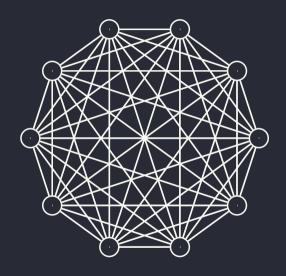
- [0,1,1,-1,-1,0,0...,0,0],[0,1,1,0,0,-1,-1,...,0,0],..., [0,1,1,0,0,0,0...,-1,-1] are k-1, LI eigenvectors with eigenvalue 1.
- ..., [0, 1, 1, 0, 0, 0, 0, ..., -1, -1] are k 1, LI eigenvectors with eigenvalue

are k, LI eigenvectors with eigenvalue -1.

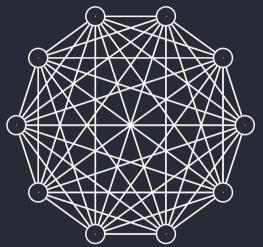
- ▶ The characteristic polynomial of B of F_k is $x^2 x 2k$. Hence the eigenvalues of B are $\frac{1\pm\sqrt{1+8k}}{2}$. \triangleright [0,1,1,-1,-1,0,0...,0,0], [0,1,1,0,0,-1,-1,...,0,0],
- \dots , [0, 1, 1, 0, 0, 0, 0, ..., -1, -1] are k 1, LI eigenvectors with eigenvalue 1.
- $[0, 1, -1, 0, 0, 0, 0, \dots, 0, 0], [0, 0, 0, 1, -1, 0, 0, \dots, 0, 0], \dots, [0, 0, 0, 0, 0, 0, 0, \dots, -1, 1]$ are k, LI eigenvectors with eigenvalue -1.
- The spectrum of F_k is $\begin{pmatrix} \frac{1-\sqrt{1+8k}}{2} & -1 & 1 & \frac{1+\sqrt{1+8k}}{2} \\ 1 & k & k-1 & 1 \end{pmatrix}$.

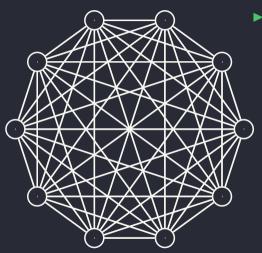
- ▶ The characteristic polynomial of B of F_k is $x^2 x 2k$. Hence the eigenvalues of B are $\frac{1\pm\sqrt{1+8k}}{2}$.
- \triangleright [0,1,1,-1,-1,0,0...,0,0], [0,1,1,0,0,-1,-1,...,0,0], \dots , [0, 1, 1, 0, 0, 0, 0, ..., -1, -1] are k - 1, LI eigenvectors with eigenvalue 1.
- $[0, 1, -1, 0, 0, 0, 0, \dots, 0, 0], [0, 0, 0, 1, -1, 0, 0, \dots, 0, 0], \dots, [0, 0, 0, 0, 0, 0, 0, \dots, -1, 1]$ are k, LI eigenvectors with eigenvalue -1.
- The spectrum of F_k is $\begin{pmatrix} \frac{1-\sqrt{1+8k}}{2} & -1 & 1 & \frac{1+\sqrt{1+8k}}{2} \\ 1 & k & k-1 & 1 \end{pmatrix}$.
- The characteristic polynomial of F_k is $(x+1)(x^2-1)^{k-1}(x^2-x-2k)$.

- The characteristic polynomial of B of F_k is $x^2 x 2k$. Hence the eigenvalues of B are $\frac{1 \pm \sqrt{1 + 8k}}{2}$.
- [0,1,1,-1,-1,0,0...,0,0],[0,1,1,0,0,-1,-1,...,0,0],..., [0,1,1,0,0,0,0...,-1,-1] are k-1, LI eigenvectors with eigenvalue 1.
- $[0,1,-1,0,0,0,0,\dots,0,0],[0,0,0,1,-1,0,0\dots,0,0],\dots,[0,0,0,0,0,0,0,\dots,-1,1]$ are k, LI eigenvectors with eigenvalue -1.
- The spectrum of F_k is $\begin{pmatrix} \frac{1-\sqrt{1+8k}}{2} & -1 & 1 & \frac{1+\sqrt{1+8k}}{2} \\ 1 & k & k-1 & 1 \end{pmatrix}$.
- ► The characteristic polynomial of F_k is $(x+1)(x^2-1)^{k-1}(x^2-x-2k)$.
- For a complete graph K_n , V with a single cell is an equitable partition, with characteristic matrix $P = [1, 1, ..., 1]^T$ and quotient matrix B = [n-1]. The eigenvalue of B is n-1 with eigenvector [1]. Then $P[1] = \mathbf{e} = P$. The remaining eigenvectors are $\{x \in \mathbb{R}^n | x \perp P\} = \{(x_1, x_2, ..., x_n)^T | x_1 + x_2 + \cdots + x_n = 0\}$.

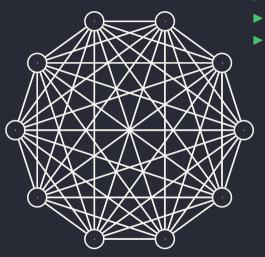


▶ Do you know this graph?

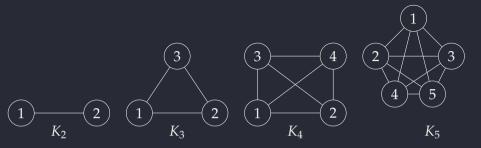




- ▶ Do you know this graph?
- ► Can you share few of its properties?



- ▶ Do you know this graph?
- Can you share few of its properties?
- What are entries of its adjacency matrix?



- ▶ There is an edge between any two vertices (any two vertices are adjacent).
- ► Total number of edges are $\frac{n(n-1)}{2}$.
- ▶ The degree of each vertex is n-1.
- Every simple graph with n vertices is obtained from K_n by deleting some edges.

► All the vertices form a cycle.

► The degree of each vertex is 2.

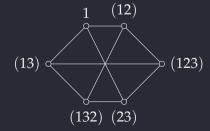
ightharpoonup There are n edges.

Let *G* be a group and let *S* be a non-empty subset of *G* that does not contain the identity element of *G*. Then the **Cayley digraph/graph** associated with the pair (G, S), denoted Cay(G, S), has the set *G* as its vertex set and for any two vertices $x, y \in G$, (x, y) is an edge if $xy^{-1} \in S$.

- Let *G* be a group and let *S* be a non-empty subset of *G* that does not contain the identity element of *G*. Then the **Cayley digraph/graph** associated with the pair (G, S), denoted Cay(G, S), has the set *G* as its vertex set and for any two vertices $x, y \in G$, (x, y) is an edge if $xy^{-1} \in S$.
- ▶ Observe that Cay(G, S) is a graph if and only if S is closed with respect to inverse $(S = S^{-1} = \{s^{-1} : s \in S\})$. Also, the graph is k-regular, where |S| = k. The set S is called the connection set of the graph.

- Let *G* be a group and let *S* be a non-empty subset of *G* that does not contain the identity element of *G*. Then the **Cayley digraph/graph** associated with the pair (G, S), denoted Cay(G, S), has the set *G* as its vertex set and for any two vertices $x, y \in G$, (x, y) is an edge if $xy^{-1} \in S$.
- ▶ Observe that Cay(G, S) is a graph if and only if S is closed with respect to inverse $(S = S^{-1} = \{s^{-1} : s \in S\})$. Also, the graph is k-regular, where |S| = k. The set S is called the connection set of the graph.

- ▶ Let *G* be a group and let *S* be a non-empty subset of *G* that does not contain the identity element of *G*. Then the **Cayley digraph/graph** associated with the pair (G, S), denoted Cay(G, S), has the set *G* as its vertex set and for any two vertices $x, y \in G$, (x, y) is an edge if $xy^{-1} \in S$.
- ▶ Observe that Cay(G, S) is a graph if and only if S is closed with respect to inverse ($S = S^{-1} = \{s^{-1} : s \in S\}$). Also, the graph is k-regular, where |S| = k. The set S is called the connection set of the graph.



- Let *G* be a group and let *S* be a non-empty subset of *G* that does not contain the identity element of *G*. Then the **Cayley digraph/graph** associated with the pair (G, S), denoted Cay(G, S), has the set *G* as its vertex set and for any two vertices $x, y \in G$, (x, y) is an edge if $xy^{-1} \in S$.
- ▶ Observe that Cay(G, S) is a graph if and only if S is closed with respect to inverse ($S = S^{-1} = \{s^{-1} : s \in S\}$). Also, the graph is k-regular, where |S| = k. The set S is called the connection set of the graph.

(13) (12)

be symmetric group on 3 symbols and $S = \{(12), (13), (23)\}$ then S is generating set of G as every permutation can be expressed as product of transpositions. The corresponding Cayley graph Cay(G, S) is $K_{3,3}$ as shown.

 $G = S_3 = \{1, (12), (13), (23), (123), (132)\}.$

Cayley graphs on cyclic groups are called circulant graphs.

An important class of circulant graphs are Paley graphs. Let q be a prime power such that $q \equiv 1$ (mod 4), and \mathbb{F}_q denote a finite field of order q, The Palev graph P(q) of order q is a graph whose vertices are elements of the finite field \mathbb{F}_q in which two vertices are adjacent if and only if their difference is a non-zero square in \mathbb{F}_q . Since in \mathbb{F}_q there are $\frac{q-1}{2}$ non-zero squares (quadratic residues) hence P(q) is $\frac{q-1}{2}$ -regular graph. As we aware -1 is a square in modulo q if and only if $a \equiv 1 \pmod{4}$. Consequently a - b is a square if and only if b - a is a square. On the other hand if $q \equiv 3 \pmod{4}$, then P(q) is a digraph. The following graph is P(13).

The **Kneser graph** K(n,k) is an undirected graph whose vertices correspond to the k-element subsets of the set $\{1,2,\ldots,n\}$, and where two vertices are adjacent if and only if the corresponding subsets are disjoint.

$$V(K(n,k)) = \{A \subseteq \{1,\ldots,n\} \mid |A| = k\}$$
$$E(K(n,k)) = \{\{A,B\} \mid A \cap B = \emptyset\}$$

Note: The graph is well-defined only when $n \ge 2k$, because otherwise no two k-subsets can be disjoint.

Number of vertices:

$$|V(K(n,k))| = \binom{n}{k}$$

- **Edges:** Two *k*-subsets are adjacent if they are disjoint.
- **Degree:** The degree of each vertex is

$$\deg = \binom{n-k}{k}$$

- ▶ **Automorphism group:** The automorphism group of K(n,k) is isomorphic to the symmetric group S_n acting on the k-subsets of $\{1, ..., n\}$.
- ▶ **Vertex-transitivity:** Kneser graphs are vertex-transitive.

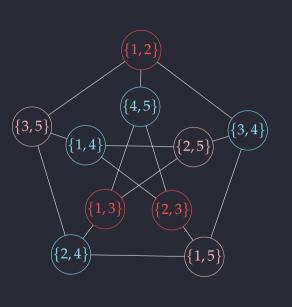
Important Theorem (Lovász, 1978):

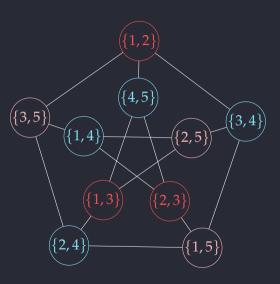
Lovász used the Borsuk–Ulam theorem to prove the chromatic number of Kneser graphs:

$$\chi(K(n,k)) = n - 2k + 2$$

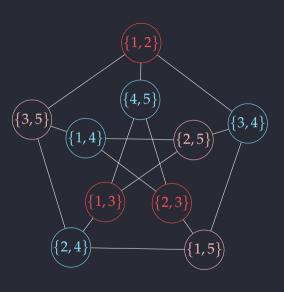
This was a solution to the famous **Kneser conjecture**.

- ▶ Can you see K(n, 1) is the complete graph K_n ?
- For $n \ge 5$, show that diameter of K(n,2) is 2.
- Let $n \ge 5$, K(n,2) is $\binom{n}{2}$ -regular. Let $u, v \in V(K(n,2))$. Then the number of common neighbours of u and v is $\binom{n-4}{2}$ if they are adjacent, else $\binom{n-3}{2}$ and is independent of vertices chosen. That is the graphs K(n,2) are Strongly regular graphs.

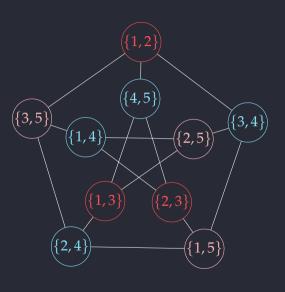




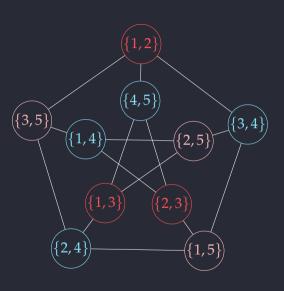
► Are there any triangles in the graph?



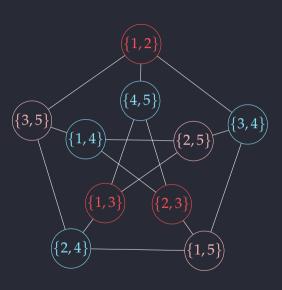
- ► Are there any triangles in the graph?
- ► That is two adjacent vertices can't have a common neighbour.



- Are there any triangles in the graph?
- That is two adjacent vertices can't have a common neighbour.
- ► Two non-adjacent vertices have exactly one common neighbour.



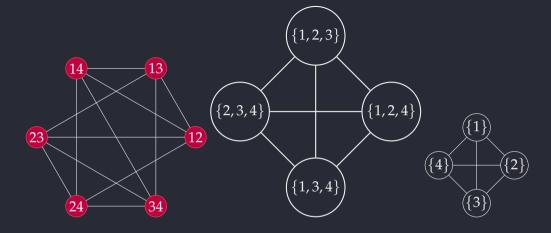
- Are there any triangles in the graph?
- ► That is two adjacent vertices can't have a common neighbour.
- ► Two non-adjacent vertices have exactly one common neighbour.
- ► Number vertices common to two given vertices is dependent on whether they are adjacency or not but not on the chosen vertices.

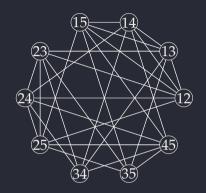


- Are there any triangles in the graph?
- ► That is two adjacent vertices can't have a common neighbour.
- ► Two non-adjacent vertices have exactly one common neighbour.
- Number vertices common to two given vertices is dependent on whether they are adjacency or not but not on the chosen vertices.
 - ▶ The diameter of the graph is 2.

Johnson graph (J(n,k))

Property	Value / Description
Vertex set	All k-element subsets of an n-element set
Number of vertices	$\binom{n}{k}$
Adjacency rule	Two vertices are adjacent
	if their subsets intersect in $k-1$ elements
Degree of each vertex	k(n-k)
Number of edges	$\frac{1}{2} \cdot \binom{n}{k} \cdot k(n-k)$
Regular	Yes, $k(n-k)$ -regular
Connected	Yes, for $n > k \ge 1$
Diameter	$\min(k, n-k)$
Girth	$3 \text{ if } k \geq 2$
Vertex-transitive	Yes
Edge-transitive	Yes
Distance-transitive	Yes
Strongly regular	Only in some special cases (e.g., $J(5,2)$)





Property	Value / Description
Number of vertices	$\binom{5}{2} = 10$
Number of edges	$\binom{5}{2} = 10$ $\frac{10.6}{2} = 30$
Vertex degree	6 (regular)
Connectivity	Connected
Diameter	2
Girth	3 (contains triangles)
Chromatic number	4
Clique number	4
Is strongly regular	Yes
Strongly regular parameters	(10, 6, 3, 4)
Line graph of	K_5
Complement to	Petersen graph

Recall a permutation group S_3 . $S_3 = \{(1), (12), (13), (23), (123), (132)\}$. Recall a permutation group S_3 .

$$S_2 = \{(1), (1, 2), (1, 3), (2, 3),$$

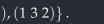
$$S_3 = \{(1), (12), (13), (23), (123), (132)\}.$$

$$C = \{(1), (1, 2), (1, 2), (2, 2), (3, 2), (4$$

$$S_2 = \int (1) (1.2) (1.3) (2.3) (3.4)$$

n group
$$S_3$$

group
$$S_3$$



$$S_{3} = \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \right\}.$$

Recall a permutation group S_3 .

$$S_3 = \{(1), (12), (13), (23), (123), (132)\}.$$

$$S_{3} = \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \right\}.$$

Recall a permutation group S_3 .

$$S_3 = \{(1), (12), (13), (23), (123), (132)\}.$$

$$S_{3} = \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \right\}.$$

Number of bijective maps of a set with *n* elements to itself = Number of ways placing n rooks on $n \times n$ chess board

=Number of permutation matrices of order n.

Is a permutation matrix doubly stochastic?

Automorphism group of a graph *X*

- ▶ The collection of all automorphisms of a graph X, denoted Aut(X), forms a group under composition of maps.
- ▶ If *X* is graph on *n* vertices then, Aut(X) is a subgroup of S_n , the symmetric group on *n* symbols.

Automorphism group of a graph *X*

- ▶ The collection of all automorphisms of a graph X, denoted Aut(X), forms a group under composition of maps.
- ▶ If X is graph on n vertices then, Aut(X) is a subgroup of S_n , the symmetric group on n symbols. Under this correspondence, the maps in Aut(X) consist of $n \times n$ permutation matrices.

Automorphism group of a graph *X*

- ▶ The collection of all automorphisms of a graph X, denoted Aut(X), forms a group under composition of maps.
- If X is graph on n vertices then, Aut(X) is a subgroup of S_n , the symmetric group on n symbols. Under this correspondence, the maps in Aut(X) consist of $n \times n$ permutation matrices.
- ▶ Also, for each $g \in Aut(X)$ the corresponding permutation matrix is be

denoted by
$$P_g$$
. If $g = (1 \ 2 \ 3) \in S_3$, then $P_g = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$.

What is
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} =??$$
 What is $\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} =??$

Is
$$JP_g = P_g J$$
?
Is $\forall g \in S_n \ A(K_n)P_g = P_g A(K_n)$?

 $g \in \operatorname{Aut}(X)$ if and only if $P_g \overline{A = AP_g}$

Lemma

Let A be the adjacency matrix of a graph X. Then $g \in Aut(X)$ if and only if $P_gA = AP_g$.

Proof.

Let g be a permutation of $V(X) = \{v_1, v_2, \dots, v_n\}$, and $g(v_i) = v_h, g(v_j) = v_k$.

 $g \in Aut(X)$ if and only if $P_gA = AP_g$

Lemma

Let A be the adjacency matrix of a graph X. Then $g \in Aut(X)$ if and only if $P_gA = AP_g$.

Proof.

Let g be a permutation of $V(X) = \{v_1, v_2, \dots, v_n\}$, and $g(v_i) = v_h, g(v_j) = v_k$. As each row of P_g has only one non-zero entry, namely 1, one has

$$(P_g A)_{ik} = \sum_{t=1}^{n} (P_g)_{it} A_{tk} = (P_g)_{ih} A_{hk} = A_{hk}$$

 $g \in Aut(X)$ if and only if $P_gA = AP_g$

Lemma

Let A be the adjacency matrix of a graph X. Then $g \in Aut(X)$ if and only if $P_gA = AP_g$.

Proof.

Let g be a permutation of $V(X) = \{v_1, v_2, \dots, v_n\}$, and $g(v_i) = v_h, g(v_j) = v_k$. As each row of P_g has only one non-zero entry, namely 1, one has

$$(P_g A)_{ik} = \sum_{t=1}^{n} (P_g)_{it} A_{tk} = (P_g)_{ih} A_{hk} = A_{hk}$$

$$(AP_g)_{ik} = \sum_{t=1}^n A_{it}(P_g)_{tk} = A_{ij}(P_g)_{jk} = A_{ij}.$$

$$g \in Aut(X)$$
 if and only if $P_gA = AP_g$

Lemma

Let A be the adjacency matrix of a graph X. Then $g \in Aut(X)$ if and only if $P_gA = AP_g$.

Proof.

Let g be a permutation of $V(X) = \{v_1, v_2, \dots, v_n\}$, and $g(v_i) = v_h, g(v_j) = v_k$. As each row of P_g has only one non-zero entry, namely 1, one has

$$(P_g A)_{ik} = \sum_{t=1}^{n} (P_g)_{it} A_{tk} = (P_g)_{ih} A_{hk} = A_{hk}$$

$$(AP_g)_{ik} = \sum_{t=1}^n A_{it}(P_g)_{tk} = A_{ij}(P_g)_{jk} = A_{ij}.$$

$$P_gA = AP_g \Leftrightarrow A_{hk} = A_{ij} \Leftrightarrow \{v_h, v_k\} \in E \text{ if and only if } \{v_i, v_j\} \in E \Leftrightarrow g \text{ is an automorphism of } X.$$

$Aut(X) = Aut(X^c)$

Now we will see few applications of above lemma ($P_gA = AP_g$).

$Aut(X) = Aut(X^c)$

Now we will see few applications of above lemma ($P_gA = AP_g$).

Corollary

Let X be a graph. Then $Aut(X) = Aut(X^c)$

$\overline{\operatorname{Aut}(X)} = \operatorname{Aut}(X^c)$

Now we will see few applications of above lemma ($P_gA = AP_g$).

Corollary

Let X be a graph. Then $Aut(X) = Aut(X^c)$

Proof.

First note that a matrix *B* commutes with **J** if its every row sum is equal to its every column sum.

$\operatorname{Aut}(X) = \operatorname{Aut}(X^c)$

Now we will see few applications of above lemma ($P_gA = AP_g$).

Corollary

Let X be a graph. Then $Aut(X) = Aut(X^c)$

Proof.

First note that a matrix *B* commutes with **J** if its every row sum is equal to its every column sum. Consequently every permutation matrix commutes with **J**.

$\overline{\operatorname{Aut}(X)} = \operatorname{Aut}(X^c)$

Now we will see few applications of above lemma ($P_gA = AP_g$).

Corollary

Let X be a graph. Then $Aut(X) = Aut(X^c)$

Proof.

First note that a matrix *B* commutes with **J** if its every row sum is equal to its every column sum. Consequently every permutation matrix commutes with **J**. Hence

$$P_g A = A P_g \Leftrightarrow P_g (\mathbf{J} - I - A) = (\mathbf{J} - I - A) P_g.$$

Theorem

Let X = (V, E) be a graph and $g \in Aut(X)$. Then

- 1. If $v \in V$, then $\deg(v) = \deg(g(v))$.
- 2. If $u, v \in V$, then d(u, v) = d(g(u), g(v)).

Definition

Let X be a graph. If $H \leq Aut(X)$ is a group of automorphisms of X, we say that u and v are similar under H if there is an automorphism in H which maps u to v. The equivalence classes defined by this similarity are called the orbits of the graph by H. The partition of X consisting of the set of orbits by H is called an orbit partition of X.

Proposition

An orbit partition is an equitable partition.

Proof.

Let O_1, O_2, \ldots, O_r be an orbit partition of X. Suppose $u, v \in O_i$. Then there is an automorphism $\phi \in Aut(X)$ such that $\phi(u) = v$. Since ϕ maps O_j to O_j and preserves valency, u and v must have same number of neighbors in C_j .

Let DS(A) denotes the set of all doubly stochastic matrices that commute with A.

Definition

Let A be the adjacency matrix of a graph X. If every extreme point of DS(A) is a permutation matrix, then the graph X is called *compact*.

Note that DS(A) is a convex set and contains all of the permutation matrices that commute with A, i.e., all automorphisms of X. Hence, if X is compact, then the automorphisms of X are precisely the extreme points of DS(A).

Proposition

If X is compact, then every equitable partition is an orbit partition.

- A graph X = (V, E) is said to be a **vertex transitive** (**edge transitive**) graph if Aut(X) acts transitively on V(E).
- That is *X* is vertex transitive if for any two vertices $x, y \in V, x \neq y$ there exists $g \in \text{Aut}(X)$ such that g(x) = y.
- ▶ For example, $Aut(K_n) \cong S_n$ and $Aut(C_n) \cong D_n$, hence the graphs K_n and C_n are vertex transitive.

Cayley graph is vertex transitive

Theorem Every Cayley graph is vertex transitive.

Cayley graph is vertex transitive

Theorem

Every Cayley graph is vertex transitive.

Proof.

Let X = Cay(G, S) be a Cayley graph. Then, for every $g \in G$

$$\{x,y\} \in E(X) \Leftrightarrow xy^{-1} \in S \Leftrightarrow (xg)(yg)^{-1} \in S \Leftrightarrow \{xg,yg\} \in E(X).$$

Cayley graph is vertex transitive

Theorem

Every Cayley graph is vertex transitive.

Proof.

Let X = Cay(G, S) be a Cayley graph. Then, for every $g \in G$

$$\{x,y\} \in E(X) \Leftrightarrow xy^{-1} \in S \Leftrightarrow (xg)(yg)^{-1} \in S \Leftrightarrow \{xg,yg\} \in E(X).$$

Thus, $G \subseteq \operatorname{Aut}(X)$. Hence, if $a, b \in V = G$ then, the group element $a^{-1}b$ takes a to b.

Theorem

Let X be a vertex transitive graph and π the orbit partition of some subgroup G of Aut(X). If π has a singleton cell $\{u\}$, then every eigenvalue of X is an eigenvalue of B.

 \blacktriangleright Let A be a nonempty finite set. What you mean by a relation on A?

- Let *A* be a nonempty finite set. What you mean by a relation on *A*?
 Let *R* be a relation on *A*, then *M*_R be the corresponding 0,1-matrix
 - Let R be a relation on A, then M_R be the corresponding 0,1-matrix representation of R. How do you check given relation R is symmetric or not from the matrix M_R ?

- Let *A* be a nonempty finite set. What you mean by a relation on *A*?
- Let R be a relation on A, then M_R be the corresponding 0,1-matrix representation of R. How do you check given relation R is symmetric or not from the matrix M_R .?
- Let *A* be a set with *n* elements. Then how many symmetric relations are there on *A*?

- Let A be a nonempty finite set. What you mean by a relation on A?
- Let R be a relation on A, then M_R be the corresponding 0,1-matrix representation of R. How do you check given relation R is symmetric or not from the matrix M_R ?
- Let A be a set with n elements. Then how many symmetric relations are there on A?
- Let $A = \{1,2\}$. Then $A \times A = \{(1,1), (1,2), (2,1), (2,2)\}$. Let

 $R_1 = \{(1,1)\}, R_2 = \{(1,2)\}, R_3 = \{(2,1)\}, R_4 = \{(2,2)\} \text{ find } \cup R_i.$

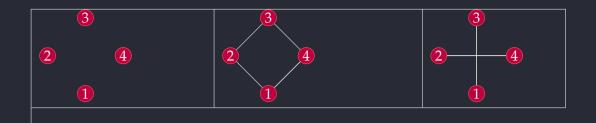
- Let A be a nonempty finite set. What you mean by a relation on A?
- Let R be a relation on A, then M_R be the corresponding 0,1-matrix representation of R. How do you check given relation R is symmetric or not from the matrix M_R ?
- Let A be a set with n elements. Then how many symmetric relations are there
- on A? Let $A = \{1,2\}$. Then $A \times A = \{(1,1), (1,2), (2,1), (2,2)\}$. Let
- $R_1 = \{(1,1)\}, R_2 = \{(1,2)\}, R_3 = \{(2,1)\}, R_4 = \{(2,2)\} \text{ find } \cup R_i$ ▶ What is the vector space spanned by the set $\{M_{R_1}, M_{R_2}, M_{R_3}, M_{R_4}\}$. Is it closed
 - with respect to multiplication?

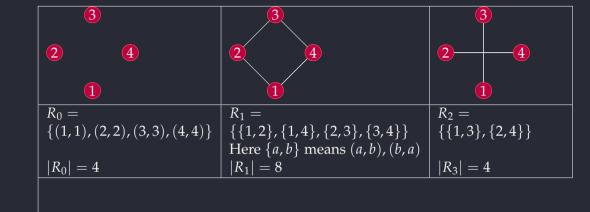
- ▶ Let *A* be a nonempty finite set. What you mean by a relation on *A*?
- Let R be a relation on A, then M_R be the corresponding 0,1-matrix representation of R. How do you check given relation R is symmetric or not from the matrix M_R ?
- ▶ Let *A* be a set with *n* elements. Then how many symmetric relations are there on *A*?
- on A?

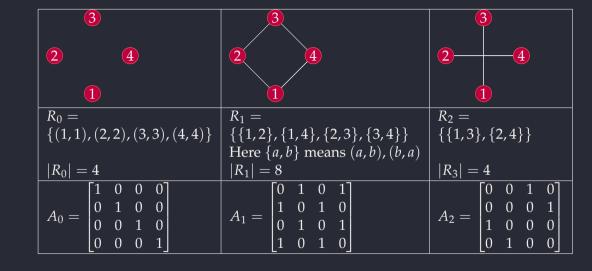
 Let $A = \{1,2\}$. Then $A \times A = \{(1,1), (1,2), (2,1), (2,2)\}$. Let
- $R_1 = \{(1,1)\}, R_2 = \{(1,2)\}, R_3 = \{(2,1)\}, R_4 = \{(2,2)\} \text{ find } \cup R_i.$
 - What is the vector space spanned by the set $\{M_{R_1}, M_{R_2}, M_{R_3}, M_{R_4}\}$. Is it closed with respect to multiplication?
 - What is the vector space spanned by the set $\{M_{R_1}, M_{R_2} + M_{R_3}, M_{R_4}\}$. Is it closed with respect to multiplication?

- Let *A* be a nonempty finite set. What you mean by a relation on *A*?
- Let R be a relation on A, then M_R be the corresponding $\bar{0}$,1-matrix representation of R. How do you check given relation R is symmetric or not from the matrix M_R .?
- ▶ Let *A* be a set with *n* elements. Then how many symmetric relations are there on *A*?
- Let $A = \{1,2\}$. Then $A \times A = \{(1,1), (1,2), (2,1), (2,2)\}$. Let $R_1 = \{(1,1)\}, R_2 = \{(1,2)\}, R_3 = \{(2,1)\}, R_4 = \{(2,2)\}$ find $\bigcup R_i$.
 - What is the vector space spanned by the set $\{M_{R_1}, M_{R_2}, M_{R_3}, M_{R_4}\}$. Is it closed with respect to multiplication?
 - What is the vector space spanned by the set $\{M_{R_1}, M_{R_2} + M_{R_3}, M_{R_4}\}$. Is it closed with respect to multiplication?
 - What is the vector space spanned by the set $\{M_{R_1} + M_{R_4}, M_{R_2} + M_{R_3}\}$. Is it closed with respect to multiplication?

- Let *A* be a nonempty finite set. What you mean by a relation on *A*?
- Let R be a relation on A, then M_R be the corresponding $\bar{0}$,1-matrix representation of R. How do you check given relation R is symmetric or not from the matrix M_R .?
- ▶ Let *A* be a set with *n* elements. Then how many symmetric relations are there on *A*?
- Let $A = \{1,2\}$. Then $A \times A = \{(1,1), (1,2), (2,1), (2,2)\}$. Let $R_1 = \{(1,1)\}, R_2 = \{(1,2)\}, R_3 = \{(2,1)\}, R_4 = \{(2,2)\}$ find $\bigcup R_i$.
 - What is the vector space spanned by the set $\{M_{R_1}, M_{R_2}, M_{R_3}, M_{R_4}\}$. Is it closed with respect to multiplication?
 - What is the vector space spanned by the set $\{M_{R_1}, M_{R_2} + M_{R_3}, M_{R_4}\}$. Is it closed with respect to multiplication?
 - What is the vector space spanned by the set $\{M_{R_1} + M_{R_4}, M_{R_2} + M_{R_3}\}$. Is it closed with respect to multiplication?
- Let $A = \{1,2,3\}$. and $R_0 = \{(1,1),(2,2),(3,3)\}$ and $R_1 = A \times A \setminus R_0$. Find M_{R_1} and $M_{R_0} + M_{R_1}$. Find the vector space spanned by $\{M_{R_0}, M_{R_1}\}$. Is it closed with respect to multiplication.







 $\blacktriangleright \text{ Is } R_0 \cup R_1 \cup R_2 = V \times V?$

 $\blacktriangleright \text{ Is } R_0 \cup R_1 \cup R_2 = V \times V?$

3241	2 4	3
$R_0 = \{(1,1), (2,2), (3,3), (4,4)\}$ $ R_0 = 4$	$R_1 = \{\{1,2\}, \{1,4\}, \{2,3\}, \{3,4\}\}$ Here $\{a,b\}$ means $(a,b), (b,a)$ $ R_1 = 8$	$R_2 = \{\{1,3\}, \{2,4\}\}$ $ R_3 = 4$
$A_0 = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$	$A_1 = egin{bmatrix} 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \end{bmatrix}$	$A_2 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$

 $Is R_0 \cup R_1 \cup R_2 = V \times V? Find A = A_1 + A_2.$

3241	2 4	3 2 1
$R_0 = \{(1,1), (2,2), (3,3), (4,4)\}$ $ R_0 = 4$	$R_1 = \{\{1,2\}, \{1,4\}, \{2,3\}, \{3,4\}\}$ Here $\{a,b\}$ means $(a,b), (b,a)$ $ R_1 = 8$	$R_2 = \{\{1,3\},\{2,4\}\}$ $ R_3 = 4$
$A_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	$A_1 = egin{bmatrix} 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \end{bmatrix}$	$A_2 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$

[▶] Is $R_0 \cup R_1 \cup R_2 = V \times V$? Find $A = A_1 + A_2$. Is A a adjacency matrix of some graph?

3241	2 4	3 2 4
$egin{aligned} R_0 = \ & \{(1,1),(2,2),(3,3),(4,4)\} \ & R_0 = 4 \end{aligned}$	$R_1 = \{\{1,2\}, \{1,4\}, \{2,3\}, \{3,4\}\}$ Here $\{a,b\}$ means $(a,b), (b,a)$ $ R_1 = 8$	$R_2 = \{\{1,3\},\{2,4\}\}$ $ R_3 = 4$
$A_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	$A_1 = egin{bmatrix} 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \end{bmatrix}$	$A_2 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$

- ▶ Is $R_0 \cup R_1 \cup R_2 = V \times V$? Find $A = A_1 + A_2$. Is A a adjacency matrix of some graph?
- What is Hadamard product of A_i and A_j ? Hadamard product means component wise multiplication. Is $A_1^2 = 2A^0 + 2A_2$?

3241	2 4	3 2 4
$egin{aligned} R_0 = \ & \{(1,1),(2,2),(3,3),(4,4)\} \ & R_0 = 4 \end{aligned}$	$R_1 = \{\{1,2\}, \{1,4\}, \{2,3\}, \{3,4\}\}$ Here $\{a,b\}$ means $(a,b), (b,a)$ $ R_1 = 8$	$R_2 = \{\{1,3\},\{2,4\}\}$ $ R_3 = 4$
$A_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	$A_1 = egin{bmatrix} 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \end{bmatrix}$	$A_2 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$

- ▶ Is $R_0 \cup R_1 \cup R_2 = V \times V$? Find $A = A_1 + A_2$. Is A a adjacency matrix of some graph?
- What is Hadamard product of A_i and A_j ? Hadamard product means component wise multiplication. Is $A_1^2 = 2A^0 + 2A_2$?

3241	2 4	2 4
$egin{array}{c} R_0 = \ \{(1,1),(2,2),(3,3),(4,4)\} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$egin{aligned} R_1 = \ & \{\{1,2\},\{1,4\},\{2,3\},\{3,4\}\} \ & ext{Here } \{a,b\} ext{ means } (a,b),(b,a) \ & R_1 = 8 \end{aligned}$	$egin{array}{l} R_2 = \ \{\{1,3\},\{2,4\}\} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$A_0 = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$	$A_1 = egin{bmatrix} 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \end{bmatrix}$	$A_2 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$

- ▶ Is $R_0 \cup R_1 \cup R_2 = V \times V$? Find $A = A_1 + A_2$. Is A a adjacency matrix of some graph?
- What is Hadamard product of A_i and A_j ? Hadamard product means component wise multiplication. Is $A_1^2 = 2A^0 + 2A_2$? If this is true, then $A_2 = \frac{1}{2}(A_1^2 2I)$. That is A_2 is a polynomial in A_1 .

1. Chris D. Godsil & Gordon Royle, Algebraic Graph Theory, Springer-Verlag,(2001).

- 1. Chris D. Godsil & Gordon Royle, Algebraic Graph Theory, Springer-Verlag, (2001).
- 2. N. L. Biggs, Algebraic Graph Theory (second edition), Cambridge University Press, Cambridge, (1993).

- 1. Chris D. Godsil & Gordon Royle, Algebraic Graph Theory, Springer-Verlag, (2001).
- 2. N. L. Biggs, Algebraic Graph Theory (second edition), Cambridge University Press, Cambridge, (1993).
- 3. R. B. Bapat, Graphs and Matrices, Springer, (2010).

- 1. Chris D. Godsil & Gordon Royle, Algebraic Graph Theory, Springer-Verlag, (2001).
- 2. N. L. Biggs, Algebraic Graph Theory (second edition), Cambridge University Press, Cambridge, (1993).
- 3. R. B. Bapat, Graphs and Matrices, Springer, (2010).
- 4. A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance Regular Graphs, Springer-Verlag,(1989).

- 1. Chris D. Godsil & Gordon Royle, Algebraic Graph Theory, Springer-Verlag, (2001).
- 2. N. L. Biggs, Algebraic Graph Theory (second edition), Cambridge University Press, Cambridge, (1993).
- 3. R. B. Bapat, Graphs and Matrices, Springer, (2010).
- 4. A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance Regular Graphs, Springer-Verlag,(1989).
- 5. Philip J. Davis, Circulant Matrices, A Wiley-Interscience publications, (1979).

- 1. Chris D. Godsil & Gordon Royle, Algebraic Graph Theory, Springer-Verlag, (2001).
- 2. N. L. Biggs, Algebraic Graph Theory (second edition), Cambridge University Press, Cambridge, (1993).
- 3. R. B. Bapat, Graphs and Matrices, Springer, (2010).
- 4. A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance Regular Graphs, Springer-Verlag,(1989).
- 5. Philip J. Davis, Circulant Matrices, A Wiley-Interscience publications, (1979).
- 6. Combinatorial Designs, Constructions and analysis by Douglas Stinson.

- 1. Chris D. Godsil & Gordon Royle, Algebraic Graph Theory, Springer-Verlag, (2001).
- 2. N. L. Biggs, Algebraic Graph Theory (second edition), Cambridge University Press, Cambridge, (1993).
- 3. R. B. Bapat, Graphs and Matrices, Springer, (2010).
- 4. A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance Regular Graphs, Springer-Verlag, (1989).
- 5. Philip J. Davis, Circulant Matrices, A Wiley-Interscience publications, (1979).
- 6. Combinatorial Designs, Constructions and analysis by Douglas Stinson.
- 7. Raghavarao, Constructions and combinatorial problems in Design of Experiments, Wiley, New York (1971).

 Chris D. Godsil, Compact graphs and equitable partitions, Linear algebra and applications, 255:259-266 (1997).

- ► Chris D. Godsil, Compact graphs and equitable partitions, Linear algebra and applications, 255:259-266 (1997).
- M. Klin, C. Rücker and G. Rücker, G. Tinhofer, Algebraic Combinatorics in Mathematical Chemistry. Methods and Algorithms, Match, Vol.40, pp. 7-138(1999).

- ► Chris D. Godsil, Compact graphs and equitable partitions, Linear algebra and applications, 255:259-266 (1997).
- M. Klin, C. Rücker and G. Rücker, G. Tinhofer, Algebraic Combinatorics in Mathematical Chemistry. Methods and Algorithms, Match, Vol.40, pp. 7-138(1999).
- ▶ Distance regular graphs, Survey by Edwin R. van Dam, Jack H. Koolen and Hajime Tanaka: https://doi.org/10.37236/4925

- ► Chris D. Godsil, Compact graphs and equitable partitions, Linear algebra and applications, 255:259-266 (1997).
- M. Klin, C. Rücker and G. Rücker, G. Tinhofer, Algebraic Combinatorics in Mathematical Chemistry. Methods and Algorithms, Match, Vol.40, pp. 7-138(1999).
- ▶ Distance regular graphs, Survey by Edwin R. van Dam, Jack H. Koolen and Hajime Tanaka: https://doi.org/10.37236/4925
- Fouzul Atik, Pratima Panigrahi, On the distance spectrum of distance regular graphs, Linear Algebra and its Applications 478 (2015) 256–273.

$$a(rs)=(ar)s=r(as) \ \ orall a\in \mathbb{F} \ and \ r,s\in R.$$

$$a(rs) = (ar)s = r(as) \ \forall a \in \mathbb{F} \ and \ r, s \in R.$$

That is A is an \mathbb{F} -algebra if A is a vector space over \mathbb{F} it has another binary operation called multiplication (A, +, .) is a ring and \mathbb{F} -multiplication is compatible with the ring multiplication. VS+Ring+compatibility

ightharpoonup C is an algebra over \mathbb{R} .

$$a(rs) = (ar)s = r(as) \ \forall a \in \mathbb{F} \ and \ r, s \in R.$$

- $ightharpoonup \mathbb{C}$ is an algebra over \mathbb{R} .
- ightharpoonup Every field F is an algebra over itself.

$$a(rs) = (ar)s = r(as) \ \forall a \in \mathbb{F} \ and \ r, s \in R.$$

- ightharpoonup C is an algebra over \mathbb{R} .
- ightharpoonup Every field F is an algebra over itself.
- ▶ $M_n(\mathbb{F})$ is an algebra over \mathbb{F} .

$$a(rs) = (ar)s = r(as) \ \forall a \in \mathbb{F} \ and \ r, s \in R.$$

- ightharpoonup C is an algebra over \mathbb{R} .
- ightharpoonup Every field F is an algebra over itself.
- $ightharpoonup M_n(\mathbb{F})$ is an algebra over \mathbb{F} .
- Fix a vector space V over \mathbb{F} . Then L(V, V) is an algebra over F.

$$a(rs) = (ar)s = r(as) \ \forall a \in \mathbb{F} \ and \ r, s \in R.$$

- ightharpoonup C is an algebra over \mathbb{R} .
- ightharpoonup Every field F is an algebra over itself.
- $ightharpoonup M_n(\mathbb{F})$ is an algebra over \mathbb{F} .
- ▶ Fix a vector space V over \mathbb{F} . Then L(V, V) is an algebra over F.
- $ightharpoonup \mathbb{F}[x]$ is an algebra over \mathbb{F} .

$$a(rs) = (ar)s = r(as) \ \forall a \in \mathbb{F} \ and \ r, s \in R.$$

- ightharpoonup C is an algebra over \mathbb{R} .
- ightharpoonup Every field F is an algebra over itself.
- $ightharpoonup M_n(\mathbb{F})$ is an algebra over \mathbb{F} .
- ▶ Fix a vector space V over \mathbb{F} . Then L(V, V) is an algebra over F.
- $ightharpoonup \mathbb{F}[x]$ is an algebra over \mathbb{F} .
- Fix a group G. Then $\mathbb{F}[G]$ is an algebra over \mathbb{F} , known as group algebra.

Let X be a graph on n vertices and let us fix a labeling of the vertices of X .	

Let X be a graph on n vertices and let us fix a labeling of the vertices of X. Then, the *adjacency matrix* of X, denoted $A(X) = [a_{ij}]$ (or A), is an $n \times n$ matrix with $a_{ij} = 1$, if the i-th vertex is adjacent to the j-th vertex and 0, otherwise.

Note that another labeling of the vertices of X gives rise to another matrix B such that $B = P^{-1}AP$, for some permutation matrix P (for a permutation matrix, recall that $P^t = P^{-1}$). Hence, we talk of the adjacency matrix of a graph X and we do not worry about the labeling of the vertices of X.

Let X be a graph on n vertices and let us fix a labeling of the vertices of X. Then, the *adjacency matrix* of X, denoted $A(X) = [a_{ij}]$ (or A), is an $n \times n$ matrix with $a_{ij} = 1$, if the i-th vertex is adjacent to the j-th vertex and 0, otherwise.

- Note that another labeling of the vertices of X gives rise to another matrix B such that $B = P^{-1}AP$, for some permutation matrix P (for a permutation matrix, recall that $P^t = P^{-1}$). Hence, we talk of the adjacency matrix of a graph X and we do not worry about the labeling of the vertices of X.
- ▶ Clearly, the adjacency matrix A is a real symmetric matrix. Hence, A has n real eigenvalues, A is diagonalizable, and the eigenvectors can be chosen to form an orthonormal basis of \mathbb{R}^n .

Let X be a graph on n vertices and let us fix a labeling of the vertices of X. Then, the *adjacency matrix* of X, denoted $A(X) = [a_{ij}]$ (or A), is an $n \times n$ matrix with $a_{ij} = 1$, if the i-th vertex is adjacent to the j-th vertex and 0, otherwise.

- Note that another labeling of the vertices of X gives rise to another matrix B such that $B = P^{-1}AP$, for some permutation matrix P (for a permutation matrix, recall that $P^t = P^{-1}$). Hence, we talk of the adjacency matrix of a graph X and we do not worry about the labeling of the vertices of X.
- ▶ Clearly, the adjacency matrix A is a real symmetric matrix. Hence, A has n real eigenvalues, A is diagonalizable, and the eigenvectors can be chosen to form an orthonormal basis of \mathbb{R}^n .
- ▶ The eigenvalues, eigenvectors, the minimal polynomial and the characteristic polynomial of a graph *X* are defined to be that of its adjacency matrix.

► Let Q be the set of rational numbers.

- ► Let Q be the set of rational numbers.
- ► What do you know about Q?

- Let Q be the set of rational numbers.
- ▶ What do you know about Q?
- \blacktriangleright What do you know about $\mathbb{Q}[x]$?

- Let Q be the set of rational numbers.
- ▶ What do you know about Q?
- \blacktriangleright What do you know about $\mathbb{Q}[x]$?

- Let Q be the set of rational numbers.
- ► What do you know about Q?
- What do you know about $\mathbb{Q}[x]$? Yes. It is a PID, infact Euclidean domain. In PID, one knows, what are all maximal ideals, prime ideals etc.

- Let Q be the set of rational numbers.
- ▶ What do you know about Q?
- What do you know about $\mathbb{Q}[x]$? Yes. It is a PID, infact Euclidean domain. In PID, one knows, what are all maximal ideals, prime ideals etc.
- Let $\alpha \in \mathbb{C}$. Then what you know about $\mathbb{Q}[\alpha]$?

- ▶ Let Q be the set of rational numbers.
- ► What do you know about Q?
- What do you know about $\mathbb{Q}[x]$? Yes. It is a PID, infact Euclidean domain. In PID, one knows, what are all maximal ideals, prime ideals etc.
- ▶ Let $\alpha \in \mathbb{C}$. Then what you know about $\mathbb{Q}[\alpha]$?
- A number $\alpha \in \mathbb{C}$ is an *algebraic element* if α is a root of a non-zero polynomial in $\mathbb{Q}[x]$.

- Let Q be the set of rational numbers.
- What do you know about Q?
- What do you know about $\mathbb{Q}[x]$? Yes. It is a PID, infact Euclidean domain. In PID, one knows, what are all maximal ideals, prime ideals etc.
- Let $\alpha \in \mathbb{C}$. Then what you know about $\mathbb{Q}[\alpha]$?
- A number $\alpha \in \mathbb{C}$ is an *algebraic element* if α is a root of a non-zero polynomial in $\mathbb{Q}[x]$.
- Let $\alpha \in \mathbb{C}$ be an algebraic element. Let $\phi_{\alpha} : \mathbb{Q}[x] \to \mathbb{C}$ be a map defined as $\phi_{\alpha}(f(x)) = f(\alpha)$. Then it is easy to check that ϕ_{α} is onto homomorphism and its range is $\mathbb{Q}[\alpha]$ further $\mathbb{Q}[x]/\langle m_{\alpha}(x)\rangle \cong \mathbb{Q}[\alpha]$, where $m_{\alpha}(x)$ is the minimal polynomial of α .

▶ Is $\mathbb{C}[A]$ a subalgebra of $M_n(\mathbb{C})$?

- ▶ Is $\mathbb{C}[A]$ a subalgebra of $M_n(\mathbb{C})$?
- Let $\phi_A : \mathbb{C}[x] \to M_n(\mathbb{C})$ be a map defined as $\phi_A(f(x)) = f(A)$. Then it is easy to check that ϕ_A is onto homomorphism and its range is $\mathbb{C}[A]$ further $\mathbb{C}[x]/\langle m_A(x)\rangle \cong \mathbb{C}[A]$, where $m_A(x)$ is the minimal polynomial of A.

- ▶ Is $\mathbb{C}[A]$ a subalgebra of $M_n(\mathbb{C})$?
- Let $\phi_A : \mathbb{C}[x] \to M_n(\mathbb{C})$ be a map defined as $\phi_A(f(x)) = f(A)$. Then it is easy to check that ϕ_A is onto homomorphism and its range is $\mathbb{C}[A]$ further $\mathbb{C}[x]/\langle m_A(x)\rangle \cong \mathbb{C}[A]$, where $m_A(x)$ is the minimal polynomial of A.
- ▶ The dimension of $\mathbb{C}[A]$ as a vector space over \mathbb{C} is the degree of the minimal polynomial of A.

- ▶ Is $\mathbb{C}[A]$ a subalgebra of $M_n(\mathbb{C})$?
- Let $\phi_A : \mathbb{C}[x] \to M_n(\mathbb{C})$ be a map defined as $\phi_A(f(x)) = f(A)$. Then it is easy to check that ϕ_A is onto homomorphism and its range is $\mathbb{C}[A]$ further $\mathbb{C}[x]/\langle m_A(x)\rangle \cong \mathbb{C}[A]$, where $m_A(x)$ is the minimal polynomial of A.
- The dimension of $\mathbb{C}[A]$ as a vector space over \mathbb{C} is the degree of the minimal polynomial of A.
- ▶ We know that if A is a diagonalizable matrix, then its minimal polynomial has distinct roots. Hence if A is diagonalizable, then The dimention of $\mathbb{C}[A]$ as a vector space over \mathbb{C} is the number of distinct eigenvalues of A.

- ▶ Is $\mathbb{C}[A]$ a subalgebra of $M_n(\mathbb{C})$?
- Let $\phi_A : \mathbb{C}[x] \to M_n(\mathbb{C})$ be a map defined as $\phi_A(f(x)) = f(A)$. Then it is easy to check that ϕ_A is onto homomorphism and its range is $\mathbb{C}[A]$ further $\mathbb{C}[x]/\langle m_A(x)\rangle \cong \mathbb{C}[A]$, where $m_A(x)$ is the minimal polynomial of A.
- ▶ The dimension of $\mathbb{C}[A]$ as a vector space over \mathbb{C} is the degree of the minimal polynomial of A.
- ▶ We know that if A is a diagonalizable matrix, then its minimal polynomial has distinct roots. Hence if A is diagonalizable, then The dimention of $\mathbb{C}[A]$ as a vector space over \mathbb{C} is the number of distinct eigenvalues of A.
- \blacktriangleright In particular if \overline{A} is a symmetric matrix, then

 $\dim \mathbb{C}[A] = \deg m_A(x) = \text{number of distinct eigenvalues of } A.$

- ▶ Is $\mathbb{C}[A]$ a subalgebra of $M_n(\mathbb{C})$?
- Let $\phi_A : \mathbb{C}[x] \to M_n(\mathbb{C})$ be a map defined as $\phi_A(f(x)) = f(A)$. Then it is easy to check that ϕ_A is onto homomorphism and its range is $\mathbb{C}[A]$ further $\mathbb{C}[x]/\langle m_A(x)\rangle \cong \mathbb{C}[A]$, where $m_A(x)$ is the minimal polynomial of A.
- ▶ The dimension of $\mathbb{C}[A]$ as a vector space over \mathbb{C} is the degree of the minimal polynomial of A.
- ▶ We know that if A is a diagonalizable matrix, then its minimal polynomial has distinct roots. Hence if A is diagonalizable, then The dimention of $\mathbb{C}[A]$ as a vector space over \mathbb{C} is the number of distinct eigenvalues of A.
- In particular if *A* is a symmetric matrix, then

$$\dim \mathbb{C}[A] = \deg m_A(x) = \text{number of distinct eigenvalues of } A.$$

▶ If A(X) is the adjacency matrix of a graph (or digraph) X, then $\mathbb{C}[A]$ is called *Adjacency algebra* of X. Denoted as A(X).

	Grapit	matrix (A)	polynomial	polynomial	$\mathcal{A}(\Lambda)$
	$ \begin{array}{c} 3 \\ \hline & \\ K_3 \end{array} $	$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$	$(x+1)^2(x-2)$	(x+1)(x-2)	$\{lpha I + eta A lpha, eta \in \mathbb{C}\}$

$$\mathcal{A}(X) = \mathbb{C}[A] \cong \mathbb{C}[x]/\langle m_A(x)\rangle.$$

Hence dim $A(X) = \dim (\mathbb{C}[x]/\langle m_A(x)\rangle) = \text{ number of distinct eigenvalues of } A$.

If
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
, then $A^2 = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$, $A^3 = \begin{bmatrix} 2 & 3 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 2 \end{bmatrix}$, $A^4 = \begin{bmatrix} 6 & 5 & 5 \\ 5 & 6 & 5 \\ 5 & 5 & 6 \end{bmatrix}$, ... dim $A(K_n) = 2$. A basis of $A(K_n)$ is $\{I, A = J - I\}$.

dim $A(K_n) = 2$. A basis of $A(K_n)$ is $\{I, A = J - I\}$. dim $A(K_{n,n}) = 3$. A basis of $A(K_{n,n})$ is $\{I, A, A^2\}$, another useful basis is $\{I, A, A^c\}$, where A^c is the adjacency matrix of complement of $K_{n,n}$.

ightharpoonup What is dimention of $\mathbb{C}[I_n]$?

- ▶ What is dimention of $\mathbb{C}[I_n]$?
- ▶ Let *A* be the adjacency matrix of a complete graph K_n . Then find dim $\mathbb{C}[A]$.

- \blacktriangleright What is dimention of $\mathbb{C}[I_n]$?
- \blacktriangleright Let A be the adjacency matrix of a complete graph K_n . Then find dim $\mathbb{C}[A]$.
 - ▶ Let $J_n \in M_n(\mathbb{R})$ be the matrix with all entries are 1. We simply write J if n is clear from the context. Is dim $\mathbb{C}[A(K_n)] = \dim \mathbb{C}[J_n]$?

- \blacktriangleright What is dimention of $\mathbb{C}[I_n]$?
- ▶ Let A be the adjacency matrix of a complete graph K_n . Then find dim $\mathbb{C}[A]$.
 - ▶ Let $J_n \in M_n(\mathbb{R})$ be the matrix with all entries are 1. We simply write J if n is clear from the context. Is dim $\mathbb{C}[A(K_n)] = \dim \mathbb{C}[J_n]$?
- ightharpoonup Is $\mathbb{C}[A(K_n)] = \mathbb{C}[J_n]$?

- \blacktriangleright What is dimention of $\mathbb{C}[I_n]$?
- ▶ Let A be the adjacency matrix of a complete graph K_n . Then find dim $\mathbb{C}[A]$.
- Let $J_n \in M_n(\mathbb{R})$ be the matrix with all entries are 1. We simply write J if n is clear from the context. Is dim $\mathbb{C}[A(K_n)] = \dim \mathbb{C}[J_n]$?
- ightharpoonup Is $\mathbb{C}[A(K_n)] = \mathbb{C}[J_n]$?
 - ▶ Let $\mathcal{B}[A] = \{B \in M_n(\mathbb{R}) | AB = BA\}$. Is $\mathcal{B}[A]$ a subalgebra of $M_n(\mathbb{R})$?

- \blacktriangleright What is dimention of $\mathbb{C}[I_n]$?
- Let A be the adjacency matrix of a complete graph K_n . Then find dim $\mathbb{C}[A]$.
- ▶ Let $I_n \in M_n(\mathbb{R})$ be the matrix with all entries are 1. We simply write I if n is clear from the context. Is dim $\mathbb{C}[A(K_n)] = \dim \mathbb{C}[I_n]$?
- ightharpoonup Is $\mathbb{C}[A(K_n)] = \mathbb{C}[I_n]$?
- ▶ Let $\mathcal{B}[A] = \{B \in M_n(\mathbb{R}) | AB = BA\}$. Is $\mathcal{B}[A]$ a subalgebra of $M_n(\mathbb{R})$?
- ▶ Is $\mathbb{C}[A]$ a subalgebra of $\mathcal{B}[A]$?

- \blacktriangleright What is dimention of $\mathbb{C}[I_n]$?
- ▶ Let A be the adjacency matrix of a complete graph K_n . Then find dim $\mathbb{C}[A]$.
- ▶ Let $J_n \in M_n(\mathbb{R})$ be the matrix with all entries are 1. We simply write J if n is clear from the context. Is dim $\mathbb{C}[A(K_n)] = \dim \mathbb{C}[J_n]$?
- Is $\mathbb{C}[A(K_n)] = \mathbb{C}[J_n]$?
- Let $\mathcal{B}[A] = \{B \in M_n(\mathbb{R}) | AB = BA \}$. Is $\mathcal{B}[A]$ a subalgebra of $M_n(\mathbb{R})$?
- ▶ Is $\mathbb{C}[A]$ a subalgebra of $\mathcal{B}[A]$?
- ▶ Find $\mathcal{B}[I_n]$ and its dimention.

- \blacktriangleright What is dimention of $\mathbb{C}[I_n]$?
- ▶ Let A be the adjacency matrix of a complete graph K_n . Then find dim $\mathbb{C}[A]$.
- Let $J_n \in M_n(\mathbb{R})$ be the matrix with all entries are 1. We simply write J if n is clear from the context. Is dim $\mathbb{C}[A(K_n)] = \dim \mathbb{C}[J_n]$?
- ► Is $\mathbb{C}[A(K_n)] = \mathbb{C}[J_n]$?
- ▶ Let $\mathcal{B}[A] = \{B \in M_n(\mathbb{R}) | AB = BA\}$. Is $\mathcal{B}[A]$ a subalgebra of $M_n(\mathbb{R})$?
- ▶ Is $\mathbb{C}[A]$ a subalgebra of $\mathcal{B}[A]$?
- ightharpoonup Find $\mathcal{B}[I_n]$ and its dimention.
- Find $\mathcal{B}[I_n]$ and its dimention.

- \blacktriangleright What is dimention of $\mathbb{C}[I_n]$?
- ▶ Let A be the adjacency matrix of a complete graph K_n . Then find dim $\mathbb{C}[A]$.
- Let $J_n \in M_n(\mathbb{R})$ be the matrix with all entries are 1. We simply write J if n is clear from the context. Is dim $\mathbb{C}[A(K_n)] = \dim \mathbb{C}[J_n]$?
- ► Is $\mathbb{C}[A(K_n)] = \mathbb{C}[J_n]$?
- ▶ Let $\mathcal{B}[A] = \{B \in M_n(\mathbb{R}) | AB = BA\}$. Is $\mathcal{B}[A]$ a subalgebra of $M_n(\mathbb{R})$?
- ▶ Is $\mathbb{C}[A]$ a subalgebra of $\mathcal{B}[A]$?
- ightharpoonup Find $\mathcal{B}[I_n]$ and its dimention.
- Find $\mathcal{B}[J_n]$ and its dimention.
- $\blacktriangleright \text{ Is } \mathcal{B}[I_n] = \mathcal{B}[A(K_n)]?$

- \blacktriangleright What is dimention of $\mathbb{C}[I_n]$?
- ▶ Let A be the adjacency matrix of a complete graph K_n . Then find dim $\mathbb{C}[A]$.
- ▶ Let $J_n \in M_n(\mathbb{R})$ be the matrix with all entries are 1. We simply write J if n is clear from the context. Is dim $\mathbb{C}[A(K_n)] = \dim \mathbb{C}[J_n]$?
- ▶ Is $\mathbb{C}[A(K_n)] = \mathbb{C}[J_n]$?
- ▶ Let $\mathcal{B}[A] = \{B \in M_n(\mathbb{R}) | AB = BA\}$. Is $\mathcal{B}[A]$ a subalgebra of $M_n(\mathbb{R})$?
- ▶ Is $\mathbb{C}[A]$ a subalgebra of $\mathcal{B}[A]$?
- ▶ Find $\mathcal{B}[I_n]$ and its dimention.
- ▶ Find $\mathcal{B}[J_n]$ and its dimention.
- $\blacktriangleright \operatorname{Is} \mathcal{B}[J_n] = \mathcal{B}[A(K_n)]?$
- ▶ Let $A \in M_n(\mathbb{R})$. Then what is dimention of $\mathcal{B}[A]$?

- \blacktriangleright What is dimention of $\mathbb{C}[I_n]$?
- ▶ Let *A* be the adjacency matrix of a complete graph K_n . Then find dim $\mathbb{C}[A]$.
- Let $J_n \in M_n(\mathbb{R})$ be the matrix with all entries are 1. We simply write J if n is clear from the context. Is dim $\mathbb{C}[A(K_n)] = \dim \mathbb{C}[I_n]$?
- ▶ Is $\mathbb{C}[A(K_n)] = \mathbb{C}[J_n]$?
- ▶ Let $\mathcal{B}[A] = \{B \in M_n(\mathbb{R}) | AB = BA\}$. Is $\mathcal{B}[A]$ a subalgebra of $M_n(\mathbb{R})$?
- ▶ Is $\mathbb{C}[A]$ a subalgebra of $\mathcal{B}[A]$?
- ightharpoonup Find $\mathcal{B}[I_n]$ and its dimention.
- ightharpoonup Find $\mathcal{B}[I_n]$ and its dimention.
- ightharpoonup Is $\mathcal{B}[I_n] = \mathcal{B}[A(K_n)]$?
- ▶ Let $A \in M_n(\mathbb{R})$. Then what is dimention of $\mathcal{B}[A]$?
- Let $A \in M_n(\mathbb{R})$. Let $\lambda_1, \lambda_2, \dots, \lambda_r$ be distinct eigenvalues of A with multiplicities m_1, m_2, \dots, m_r . Then dim $\mathcal{B}[A] = m_1^2 + m_2^2 + \dots + m_r^2$.

we have dim $\mathbb{C}[W_3] < 3$.

Let $W_3 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$. Then $W_3^2 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ and $W_3^3 = I_3$. It is clear that

 W_3 , W_3^2 , $W_3^3 \in \mathbb{C}[W_3]$ and are linearly independent. Hence $3 \leq \dim \mathbb{C}[W_3]$. But

- ▶ Recall $\mathbb{C}[A]$, where $A \in M_n(\mathbb{C})$. Can you show that dim $\mathbb{C}[A] \leq n$?
- Let $W_3 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$. Then $W_3^2 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ and $W_3^3 = I_3$. It is clear that

 $[0 \ 1 \ 0]$ $[0 \ 1 \ 0]$ $W_3, W_3^2, W_3^3 \in \mathbb{C}[W_3]$ and are linearly independent. Hence $3 \le \dim \mathbb{C}[W_3]$. But we have $\dim \mathbb{C}[W_3] \le 3$.

▶ Is $\{I_n, W_n, W_n^2, \dots, W_n^{n-1}\}$ forms group with respect to matrix multiplication?

- Let $W_3 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$. Then $W_3^2 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ and $W_3^3 = I_3$. It is clear that
- W_3 , W_3^2 , $W_3^3 \in \mathbb{C}[W_3]$ and are linearly independent. Hence $3 \leq \dim \mathbb{C}[W_3]$. But we have $\dim \mathbb{C}[W_3] \leq 3$.
- Is {I_n, W_n, W_n²,..., W_nⁿ⁻¹} forms group with respect to matrix multiplication?
 Is B[W_n] = C[W_n]?

- Let $W_3 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$. Then $W_3^2 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ and $W_3^3 = I_3$. It is clear that
- $W_3, W_3^2, W_3^3 \in \mathbb{C}[W_3]$ and are linearly independent. Hence $3 < \dim \mathbb{C}[W_3]$. But we have dim $\mathbb{C}[W_3] < 3$.
- ▶ Is $\{I_n, W_n, W_n^2, \dots, W_n^{n-1}\}$ forms group with respect to matrix multiplication?
- ightharpoonup Is $\mathcal{B}[W_n] = \mathbb{C}[W_n]$?

 \triangleright Is W_n a permutation matrix? What are the eigenvalues and eigenvectors of

 W_{ij} ?

Let $W_3 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$. Then $W_3^2 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ and $W_3^3 = I_3$. It is clear that

- ▶ Is $\{I_n, W_n, W_{n,1}^2, \dots, W_n^{n-1}\}$ forms group with respect to matrix multiplication?
- Is $\{I_n, W_n, W_n^-, \dots, W_n^-\}$ forms group with respect to matrix multiplication Is $\mathcal{B}[W_n] = \mathbb{C}[W_n]$?
- ▶ Is W_n a permutation matrix? What are the eigenvalues and eigenvectors of W_n ?
- ► Is W_n a doubly stochastic matrix?

Let $W_3 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$. Then $W_3^2 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ and $W_3^3 = I_3$. It is clear that

- ▶ Is $\{I_n, W_n, W_{n, \dots}^2, W_n^{n-1}\}$ forms group with respect to matrix multiplication?
- Is $\mathcal{B}[W_n] = \mathbb{C}[W_n]$?
- ▶ Is W_n a permutation matrix? What are the eigenvalues and eigenvectors of W_n ?
- ▶ Is W_n a doubly stochastic matrix?
- For which graph/directed graph W_n is the adjacency matrix?

Let $W_3 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$. Then $W_3^2 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ and $W_3^3 = I_3$. It is clear that

- ▶ Is $\{I_n, W_n, W_{n, \dots}^2, W_n^{n-1}\}$ forms group with respect to matrix multiplication?
- ightharpoonup Is $\mathcal{B}[W_n] = \mathbb{C}[W_n]$?
- ▶ Is W_n a permutation matrix? What are the eigenvalues and eigenvectors of W_n ?
- ightharpoonup Is W_n a doubly stochastic matrix?
- For which graph/directed graph W_n is the adjacency matrix?
- Let $B \in \mathbb{C}[W_n]$. Can you write B? Can you list few properties of B.

- ▶ Recall $\mathbb{C}[A]$, where $A \in M_n(\mathbb{C})$. Can you show that dim $\mathbb{C}[A] \leq n$?
- Let $W_3 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$. Then $W_3^2 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ and $W_3^3 = I_3$. It is clear that

- ▶ Is $\{I_n, W_n, W_{n,1}^2, \dots, W_n^{n-1}\}$ forms group with respect to matrix multiplication?
- ightharpoonup Is $\mathcal{B}[W_n] = \mathbb{C}[W_n]$?
- ▶ Is W_n a permutation matrix? What are the eigenvalues and eigenvectors of W_n ?
- ightharpoonup Is W_n a doubly stochastic matrix?
- \triangleright For which graph/directed graph W_n is the adjacency matrix?
- Let $B \in \mathbb{C}[W_n]$. Can you write B? Can you list few properties of B.
- Let $D_n = W_n + W_n^{n-1}$ What is D_n ? Is D_n symmetric? Is D_n a matrix with entries 0 or 1?

- ▶ Recall $\mathbb{C}[A]$, where $A \in M_n(\mathbb{C})$. Can you show that dim $\mathbb{C}[A] \leq n$?
- Let $W_3 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$. Then $W_3^2 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ and $W_3^3 = I_3$. It is clear that $W_3, W_3^2, W_3^3 \in \mathbb{C}[W_3]$ and are linearly independent. Hence $3 \leq \dim \mathbb{C}[W_3]$. But
- we have dim $\mathbb{C}[W_3] \leq 3$. Is $\{I_n, W_n, W_n^2, \dots, W_n^{n-1}\}$ forms group with respect to matrix multiplication?
- $\blacktriangleright \text{ Is } \mathcal{B}[W_n] = \mathbb{C}[W_n]?$
- ▶ Is W_n a permutation matrix? What are the eigenvalues and eigenvectors of W_n ?
- ► Is W_n a doubly stochastic matrix?
- For which graph/directed graph W_n is the adjacency matrix?
- Let $B \in \mathbb{C}[W_n]$. Can you write B? Can you list few properties of B.
- Let $D_n = W_n + W_n^{n-1}$ What is D_n ? Is D_n symmetric? Is D_n a matrix with entries 0 or 1?
 - For which graph D_n is the adjacency matrix?

The matrices in $C[W_n]$ are the circulant matrices. The dimention of set of circulant matrices is n. They are the Cayley graphs of \mathbb{Z}_n . All the matrices have same eigenvectors and eigenvalues are easy to compute. Construct a polynomial with coefficients as first row of that matrix. Evaluate polynomial at the nth roots of unity to get eigenvalues.

- ▶ The matrices in $\mathbb{C}[W_n]$ are the circulant matrices. The dimention of set of circulant matrices is n. They are the Cayley graphs of \mathbb{Z}_n . All the matrices have same eigenvectors and eigenvalues are easy to compute. Construct a polynomial with coefficients as first row of that matrix. Evaluate polynomial at the nth roots of unity to get eigenvalues.
- Adjacency matrices of cycle graph, complete graph are circulant. A graph *X* is a *circulant graph* if its adjacency matrix is a circulant matrix.

- ▶ The matrices in $\mathbb{C}[W_n]$ are the circulant matrices. The dimention of set of circulant matrices is n. They are the Cayley graphs of \mathbb{Z}_n . All the matrices have same eigenvectors and eigenvalues are easy to compute. Construct a polynomial with coefficients as first row of that matrix. Evaluate polynomial at the nth roots of unity to get eigenvalues.
- Adjacency matrices of cycle graph, complete graph are circulant. A graph *X* is a *circulant graph* if its adjacency matrix is a circulant matrix.

- The matrices in $\mathbb{C}[W_n]$ are the circulant matrices. The dimention of set of circulant matrices is n. They are the Cayley graphs of \mathbb{Z}_n . All the matrices have same eigenvectors and eigenvalues are easy to compute. Construct a polynomial with coefficients as first row of that matrix. Evaluate polynomial at the nth roots of unity to get eigenvalues.
- Adjacency matrices of cycle graph, complete graph are circulant. A graph *X* is a *circulant graph* if its adjacency matrix is a circulant matrix.

A matrix $A \in \mathbb{M}_n(\mathbb{F})$ is said to be a **circulant matrix** if $a_{ij} = a_{1j-i+1(\pmod{n})}$. That is, for each $i \geq 2$, the elements of the i-th row of A are obtained by cyclically shifting the elements of the (i-1)-th row of A, one position to the right. So, it is sufficient to specify its first row.

- The matrices in $\mathbb{C}[W_n]$ are the circulant matrices. The dimention of set of circulant matrices is n. They are the Cayley graphs of \mathbb{Z}_n . All the matrices have same eigenvectors and eigenvalues are easy to compute. Construct a polynomial with coefficients as first row of that matrix. Evaluate polynomial at the nth roots of unity to get eigenvalues.
- Adjacency matrices of cycle graph, complete graph are circulant. A graph *X* is a *circulant graph* if its adjacency matrix is a circulant matrix.

A matrix $A \in \mathbb{M}_n(\mathbb{F})$ is said to be a **circulant matrix** if $a_{ij} = a_{1j-i+1(\pmod{n})}$. That is, for each $i \geq 2$, the elements of the i-th row of A are obtained by cyclically shifting the elements of the (i-1)-th row of A, one position to the right. So, it is sufficient to specify its first row. It is easy to see that W_n is a circulant matrix of order n with its first row as $[0 \ 1 \ 0 \dots 0]$. Then, the following result is easy to prove.

- The matrices in $C[W_n]$ are the circulant matrices. The dimention of set of circulant matrices is n. They are the Cayley graphs of \mathbb{Z}_n . All the matrices have same eigenvectors and eigenvalues are easy to compute. Construct a polynomial with coefficients as first row of that matrix. Evaluate polynomial at the nth roots of unity to get eigenvalues.
- Adjacency matrices of cycle graph, complete graph are circulant. A graph *X* is a *circulant graph* if its adjacency matrix is a circulant matrix.

A matrix $A \in \mathbb{M}_n(\mathbb{F})$ is said to be a **circulant matrix** if $a_{ij} = a_{1j-i+1(\pmod{n})}$. That is, for each $i \geq 2$, the elements of the i-th row of A are obtained by cyclically shifting the elements of the (i-1)-th row of A, one position to the right. So, it is sufficient to specify its first row. It is easy to see that W_n is a circulant matrix of order n with its first row as $[0 \ 1 \ 0 \dots 0]$. Then, the following result is easy to prove.

Lemma

Let $A \in M_n(\mathbb{F})$. Then A is a circulant matrix if and only if it is a polynomial in W_n . That is, the set of circulant matrices in $M_n(\mathbb{F})$ forms a commutative algebra. Note that as a vector space, its basis is $\{I = W_n^0, W_n^1, W_n^2, \dots, W_n^{(n-1)}\}$.

▶ Let $A \in M_n(\mathbb{Z})$ be a circulant matrix. Then, from Lemma 3, there exists a unique polynomial $\gamma_A(x) \in \mathbb{Z}[x]$ of degree $\leq n-1$, called the **representer polynomial** of A such that $A = \gamma_A(W_n)$.

- ▶ Let $A \in M_n(\mathbb{Z})$ be a circulant matrix. Then, from Lemma 3, there exists a unique polynomial $\gamma_A(x) \in \mathbb{Z}[x]$ of degree $\leq n-1$, called the representer polynomial of A such that $A = \gamma_A(W_n)$.
- Further, one can see that if $A \in M_n(\mathbb{Z})$ is a circulant matrix, then $[a_0 \ a_1 \dots a_{n-1}]$ is the first row of A if and only if $\gamma_A(x) = a_0 + a_1x + \dots + a_{n-1}x^{n-1}$.

- ▶ Let $A \in M_n(\mathbb{Z})$ be a circulant matrix. Then, from Lemma 3, there exists a unique polynomial $\gamma_A(x) \in \mathbb{Z}[x]$ of degree $\leq n-1$, called the representer polynomial of A such that $A = \gamma_A(W_n)$.
- Further, one can see that if $A \in M_n(\mathbb{Z})$ is a circulant matrix, then $[a_0 \ a_1 \dots a_{n-1}]$ is the first row of A if and only if $\gamma_A(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$.
- ▶ Consequently, there is a one-to-one correspondence between the set of circulant matrices over \mathbb{C} and the set of polynomials over \mathbb{C} of degree $\leq n-1$.

- ▶ Let $A \in M_n(\mathbb{Z})$ be a circulant matrix. Then, from Lemma 3, there exists a unique polynomial $\gamma_A(x) \in \mathbb{Z}[x]$ of degree $\leq n-1$, called the representer polynomial of A such that $A = \gamma_A(W_n)$.
- Further, one can see that if $A \in M_n(\mathbb{Z})$ is a circulant matrix, then $[a_0 \ a_1 \dots a_{n-1}]$ is the first row of A if and only if $\gamma_A(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$.
- ▶ Consequently, there is a one-to-one correspondence between the set of circulant matrices over \mathbb{C} and the set of polynomials over \mathbb{C} of degree $\leq n-1$.
- In particular, there is a one-to-one correspondence between the set of 0, 1 circulant matrices and the set of 0, 1-polynomials of degree $\leq n-1$.

- ▶ Let $A \in M_n(\mathbb{Z})$ be a circulant matrix. Then, from Lemma 3, there exists a unique polynomial $\gamma_A(x) \in \mathbb{Z}[x]$ of degree $\leq n-1$, called the representer polynomial of A such that $A = \gamma_A(W_n)$.
- Further, one can see that if $A \in M_n(\mathbb{Z})$ is a circulant matrix, then $[a_0 \ a_1 \dots a_{n-1}]$ is the first row of A if and only if $\gamma_A(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$.
- ▶ Consequently, there is a one-to-one correspondence between the set of circulant matrices over \mathbb{C} and the set of polynomials over \mathbb{C} of degree $\leq n-1$.
- In particular, there is a one-to-one correspondence between the set of 0, 1 circulant matrices and the set of 0, 1-polynomials of degree $\leq n 1$.
- ▶ If *X* is a circulant graph/digraph, with *n* vertices, then $A(X) \subseteq \mathbb{C}[W_n]$.

Let ζ_n be the primitive nth root of unity, i.e., $\zeta_n^n = 1$ but $\zeta_n^k \neq 1$, for $1 \leq k \leq n-1$. Then Then the **Fourier matrix** $F_n \in \mathbb{C}^{n \times n}$ is defined as:

$$F_n = egin{bmatrix} 1 & 1 & \cdots & 1 \ 1 & \zeta_n & \zeta_n^2 & \cdots & \zeta_n^{n-1} \ 1 & \zeta_n^2 & \zeta_n^4 & \cdots & \zeta_n^{2(n-1)} \ dots & dots & dots & \ddots & dots \ 1 & \zeta_n^{n-1} & \zeta_n^{2(n-1)} & \cdots & \zeta_n^{(n-1)^2} \end{bmatrix}$$

Let ζ_n be the primitive nth root of unity, i.e., $\zeta_n^n = 1$ but $\zeta_n^k \neq 1$, for $1 \leq k \leq n-1$. Then Then the **Fourier matrix** $F_n \in \mathbb{C}^{n \times n}$ is defined as:

$$F_n = egin{bmatrix} 1 & 1 & 1 & \cdots & 1 \ 1 & \zeta_n & \zeta_n^2 & \cdots & \zeta_n^{n-1} \ 1 & \zeta_n^2 & \zeta_n^4 & \cdots & \zeta_n^{2(n-1)} \ dots & dots & dots & \ddots & dots \ 1 & \zeta_n^{n-1} & \zeta_n^{2(n-1)} & \cdots & \zeta_n^{(n-1)^2} \ \end{bmatrix}$$

Easy to see that columns of F_n are eigenvectors of W_n . Hence for every circulant matrix order n.

Let ζ_n be the primitive nth root of unity, *i.e.*, $\zeta_n^n = 1$ but $\zeta_n^k \neq 1$, for $1 \leq k \leq n-1$. Then Then the **Fourier matrix** $F_n \in \mathbb{C}^{n \times n}$ is defined as:

$$F_n = egin{bmatrix} 1 & 1 & 1 & \cdots & 1 \ 1 & \zeta_n & \zeta_n^2 & \cdots & \zeta_n^{n-1} \ 1 & \zeta_n^2 & \zeta_n^4 & \cdots & \zeta_n^{2(n-1)} \ dots & dots & dots & \ddots & dots \ 1 & \zeta_n^{n-1} & \zeta_n^{2(n-1)} & \cdots & \zeta_n^{(n-1)^2} \ \end{bmatrix}$$

Easy to see that columns of F_n are eigenvectors of W_n . Hence for every circulant matrix order n. Let A be a circulant matrix with representer polynomial $\gamma_A(x)$. Then A is diagonalizable with $\gamma_A(\zeta_n^k)$, for $0 \le i \le n-1$, as its eigenvalues.

Let ζ_n be the primitive nth root of unity, i.e., $\zeta_n^n = 1$ but $\zeta_n^k \neq 1$, for $1 \leq k \leq n-1$. Then Then the **Fourier matrix** $F_n \in \mathbb{C}^{n \times n}$ is defined as:

$$F_{n} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \zeta_{n} & \zeta_{n}^{2} & \cdots & \zeta_{n}^{n-1} \\ 1 & \zeta_{n}^{2} & \zeta_{n}^{4} & \cdots & \zeta_{n}^{2(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \zeta_{n}^{n-1} & \zeta_{n}^{2(n-1)} & \cdots & \zeta_{n}^{(n-1)^{2}} \end{bmatrix}$$

Easy to see that columns of F_n are eigenvectors of W_n . Hence for every circulant matrix order n. Let A be a circulant matrix with representer polynomial $\gamma_A(x)$. Then A is diagonalizaable with $\gamma_A(\zeta_n^k)$, for $0 \le i \le n-1$, as its eigenvalues. We now know eigen(values/vectors) of all circulant graphs/diagraphs. In particular, Eigenvalues of cycle graph C_n are $\lambda_k = \zeta_n^k + \zeta_n^{n-k} = 2\cos\frac{2k\pi i}{n}$. It is clear that $\lambda_k = \lambda_{n-k}$.

Definition

A matrix $A \in M_n(\mathbb{C})$ is diagonalizable, if it is similar to a diagonal matrix.

That is A is diagonalizable if there exists a nonsingular matrix P such that $P^{-1}AP = D$, where D is a diagonal matrix.

Theorem

An $n \times n$ matrix A is diagonalizable if and only if it has n linearly independent eigenvectors.

Part 1: If A has n linearly independent eigenvectors, then A is diagonalizable.

Assume *A* has *n* linearly independent eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$, with corresponding eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$. Note that the eigenvalues are not necessarily distinct.

Let *P* be the $n \times n$ matrix whose columns are these eigenvectors:

$$P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix}.$$

Since the eigenvectors are linearly independent, the matrix P is invertible. Now, consider the product AP. We can compute this column by column:

$$AP = A \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} = \begin{bmatrix} A\mathbf{v}_1 & A\mathbf{v}_2 & \cdots & A\mathbf{v}_n \end{bmatrix}.$$

Because each \mathbf{v}_i is an eigenvector ($A\mathbf{v}_i = \lambda_i \mathbf{v}_i$), this becomes:

$$AP = \begin{bmatrix} \lambda_1 \mathbf{v}_1 & \lambda_2 \mathbf{v}_2 & \cdots & \lambda_n \mathbf{v}_n \end{bmatrix}.$$

This result can be factored as the product of *P* and a diagonal matrix *D*:

$$egin{bmatrix} \left[\lambda_1\mathbf{v}_1 & \lambda_2\mathbf{v}_2 & \cdots & \lambda_n\mathbf{v}_n
ight] = egin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} egin{bmatrix} \lambda_1 & 0 & \cdots & 0 \ 0 & \lambda_2 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & \lambda_n \end{bmatrix} = PD,$$

where $D = diag(\lambda_1, \lambda_2, ..., \lambda_n)$. We have therefore shown that:

$$AP \equiv PD$$
.

Since P is invertible, we can multiply both sides on the left by P^{-1} to obtain:

$$P^{-1}AP = D.$$

This is precisely the condition for A to be diagonalizable. Thus, A is diagonalizable.

Part 2: If A is diagonalizable, then it has n linearly independent eigenvectors.

Assume A is diagonalizable. Then, by definition, there exists an invertible matrix P and a diagonal matrix D such that:

$$P^{-1}AP = D$$
 or, equivalently, $A = PDP^{-1}$.

Let the columns of P be $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$, and let the diagonal entries of D be $\lambda_1, \lambda_2, \dots, \lambda_n$, so that $D = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$. Starting from $A = PDP^{-1}$, we multiply both sides on the right by P:

$$AP = PD$$
.

Now, let's examine this equation column by column. On the left-hand side:

$$AP = A \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} = \begin{bmatrix} A\mathbf{v}_1 & A\mathbf{v}_2 & \cdots & A\mathbf{v}_n \end{bmatrix}.$$

On the right-hand side:

$$PD = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 \mathbf{v}_1 & \lambda_2 \mathbf{v}_2 & \cdots & \lambda_n \mathbf{v}_n \end{bmatrix}.$$

Equating the corresponding columns of AP and PD, we find that for each i = 1, 2, ..., n:

$$A\mathbf{v}_i = \lambda_i \mathbf{v}_i.$$

This means that each column \mathbf{v}_i of P is an eigenvector of A with corresponding eigenvalue λ_i .

Finally, since P is an invertible matrix, its columns $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are, by definition, linearly independent.

Therefore, A has n linearly independent eigenvectors.

Conclusion: We have shown that if A has n linearly independent eigenvectors, then it is diagonalizable, and conversely, if A is diagonalizable, then it has n linearly independent eigenvectors. This completes the proof.

If A is diagonalizable, then the rank of A is equal to the number of nonzero eigenvalues of A.

Proof.

- ▶ First note that eigenvalues of a diagonal matrix are diagonal elements of matrix. Rank of a diagonal matrix is equal to number of nonzero diagonal elements. Thus rank of a diagonal matrix is equal to number of nonzero eigenvalues. Extra info: Hence the minimal poynomial of *A* is the product of distinct linear factors.
- ▶ If A is similar to diagonal matrix, then there exists a nonsingular matrix P such that $PAP^{-1} = D$, where D is the diagonal matrix. Rank of A= Rank of PAP^{-1} = Rank of D. Also eigenvalues of A is same as eigenvalues of D. Hence result follows.

Lemma

Let A be a real symmetric matrix. If u and v are eigenvectors of A with different eigenvalues, then u and v are orthogonal.

Proof.

Suppose $Au = \lambda u$ and $Av = \tau v$, where $\lambda \neq \tau$. Consider $\lambda u^T v$. Then $\lambda u^T v = (\lambda u)^T v = (Au)^T v = u^T A v = \tau u^T v$. Hence $(\lambda - \tau) u^T v = 0$. Thus $u^T v = 0$, follows from the fact that $\lambda \neq \tau$. Note $u^T v$ and $(\lambda - \tau)$ are real numbers.

Lemma

The eigenvalues of a real symmetric matrix A are real numbers.

Proof.

Let u be an eigenvector of A with eigenvalue λ . Then by taking the complex conjugate of the equation $Au = \lambda u$ we get $A\bar{u} = \bar{\lambda}\bar{u}$, and so \bar{u} is also an eigenvector of A. Now, by definition an eigenvector is not zero, so $u^T\bar{u} > 0$. By the previous lemma, u and \bar{u} cannot have different eigenvalues, so $\lambda = \bar{\lambda}$, and the claim is proved.

Lemma

Let A be a real symmetric $n \times n$ matrix. If U is an A-invariant subspace of \mathbb{R}^n , then U^{\perp} is also A-invariant.

Proof.

For any two vectors u and v, we have

$$v^T(Au) = (Av)^T u.$$

If $u \in U$, then $Au \in U$; hence if $v \in U^{\perp}$, then $v^T A u = 0$. Consequently, $(Av)^T u = 0$ whenever $u \in U$ and $v \in U^{\perp}$. This implies that $Av \in U^{\perp}$ whenever $v \in U^{\perp}$, and therefore U^{\perp} is A-invariant.

Lemma

Let A be an $n \times n$ real symmetric matrix. If U is a nonzero A-invariant subspace of \mathbb{R}^n , then U contains a real eigenvector of A.

Proof.

Let R be a matrix whose columns form an orthonormal basis for U. Then, because U is A-invariant, AR = RB for some square matrix B. Since $R^TR = I$, we have

$$R^TAR = R^TRB = B.$$

Which implies that B is symmetric, as well as real. Since every symmetric matrix has at least one eigenvalue, we may choose a real eigenvector u of B with eigenvalue λ . Then $ARu = RBu = \lambda Ru$, and since $u \neq 0$ and the columns of R are linearly independent, $Ru \neq 0$. Therefore, Ru is an eigenvector of A contained in U.

Theorem

Let A be a real symmetric $n \times n$ matrix. Then \mathbb{R}^n has an orthonormal basis consisting of eigenvectors of A.

Proof.

Let $\{u_1, \ldots, u_m\}$ be an orthonormal (and hence linearly independent) set of m < n eigenvectors of A, and let M be the subspace that they span. Since A has at least one eigenvector, $m \ge 1$. The subspace M is A-invariant, and hence M^{\perp} is A-invariant, and so M^{\perp} contains a (normalized) eigenvector u_{m+1} Then $\{u_1, \ldots, u_m, u_{m+1}\}$ is an orthonormal set of m+1 eigenvectors of A. Therefore, by induction, a set consisting of one normalized eigenvector can be extended to an orthonormal basis consisting of eigenvectors of A.

Corollary

If A is an $n \times n$ real symmetric matrix, then there are matrices L and D such that $L^T L = L L^T = I$ and $L A L^T = D$, where D is the diagonal matrix of eigenvalues of A.

Proof.

Let L be the matrix whose rows are an orthonormal basis of eigenvectors of A. So $L^T = \begin{bmatrix} L_1 & L_2 & \dots & L_n \end{bmatrix}$, where L_i is the eigenvector of A corresponding to the

eigenvalue
$$\lambda_i$$
 for all $i=1,2,\ldots,n$. Consider $(L^TL)_{ij}=< L_i, L_j^T>= \begin{cases} 1, & i=j\\ 0, & i\neq j. \end{cases}$

(since the rows of L form an orthonormal basis). Hence, $L^TL = I$. Similarly, since L is orthogonal, let $M = L^T$ then $LL^T = M^TM = I$. To prove the second part of the theorem, consider,

$$LAL^{T} = LA[L_{1}, L_{2}, \cdots, L_{n}] = L[AL_{1}, AL_{2}, \cdots, AL_{n}]$$

$$= L[\lambda_{1}L_{1}, \lambda_{2}L_{2}, \cdots, \lambda_{n}L_{n}] = \begin{bmatrix} \lambda_{1}LL_{1}, \lambda_{2}LL_{2}, \cdots, \lambda_{n}LL_{n} \end{bmatrix}$$

$$= [\lambda_{1}e_{1}, \lambda_{2}e_{2}, \cdots, \lambda_{n}e_{n}] = \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix} = D.$$

Let X be a graph with adjacency matrix A. Then, for every positive integer k, $(A^k)_{ij}$

equals the number of walks of length k from the vertex v_i to the vertex v_i .

Let X be a graph with adjacency matrix A. Then, for every positive integer k, $(A^k)_{ij}$ equals the number of walks of length k from the vertex v_i to the vertex v_j .

Proof.

Proof by induction on *k*.

Base Step: If
$$k = 1$$
, by definition $A_{ij} = \begin{cases} 1, & \text{if } v_i, v_j \text{ areadjacent } \\ 0, & \text{otherwise.} \end{cases}$

Let X be a graph with adjacency matrix A. Then, for every positive integer k, $(A^k)_{ij}$ equals the number of walks of length k from the vertex v_i to the vertex v_j .

Proof.

Proof by induction on *k*.

Base Step: If
$$k = 1$$
, by definition $A_{ij} = \begin{cases} 1, & \text{if } v_i, v_j \text{ areadjacent } \\ 0, & \text{otherwise.} \end{cases}$

Assume the result is true for k = L and let us consider the matrix A^{L+1} . Then,

$$(A^{L+1})_{ij} = \sum_{h=1}^{n} (A^{L})_{ih}.(A)_{hj}.$$

Let X be a graph with adjacency matrix A. Then, for every positive integer k, $(A^k)_{ij}$ equals the number of walks of length k from the vertex v_i to the vertex v_j .

Proof.

Proof by induction on *k*.

Base Step: If
$$k = 1$$
, by definition $A_{ij} = \begin{cases} 1, & \text{if } v_i, v_j \text{ areadjacent } \\ 0, & \text{otherwise.} \end{cases}$

Assume the result is true for k = L and let us consider the matrix A^{L+1} . Then,

$$(A^{L+1})_{ij} = \sum_{h=1}^{n} (A^{L})_{ih}.(A)_{hj}.$$

Therefore, $(A^{L+1})_{ij}$ equals the number of walks of length L from v_i to v_h and then a walk of length one (adjacency) from v_h to v_j , for all vertices $v_h \in V(X)$.

Let X be a graph with adjacency matrix A. Then, for every positive integer k, $(A^k)_{ij}$ equals the number of walks of length k from the vertex v_i to the vertex v_j .

Proof.

Proof by induction on *k*.

Base Step: If
$$k = 1$$
, by definition $A_{ij} = \begin{cases} 1, & \text{if } v_i, v_j \text{ areadjacent } \\ 0, & \text{otherwise.} \end{cases}$

Assume the result is true for k = L and let us consider the matrix A^{L+1} . Then,

$$(A^{L+1})_{ij} = \sum_{h=1}^{n} (A^{L})_{ih}.(A)_{hj}.$$

Therefore, $(A^{L+1})_{ij}$ equals the number of walks of length L from v_i to v_h and then a walk of length one (adjacency) from v_h to v_j , for all vertices $v_h \in V(X)$. Thus, $(A^{L+1})_{ij}$ equals the number of walks of length L+1 from v_i to v_j .

$$d+1 \le \dim(\mathcal{A}(X)) \le n$$
.

Let X be a connected simple graph on n vertices. If d = dia(X) is the diameter of X, then $d+1 \le dim(A(X)) \le n$.

$$d+1 \le \dim(\mathcal{A}(X)) \le n$$
.

Let X be a connected simple graph on n vertices. If d = dia(X) is the diameter of X, then $d + 1 \le dim(A(X)) \le n$.

Proof.

Since d is the diameter of X, there exists $x, y \in V$ with d(x, y) = d. Suppose $x = w_0, w_1, \dots, w_d = y$ is a path of length d in X.

$$d+1 \leq \dim(\mathcal{A}(X)) \leq n$$
.

Let X be a connected simple graph on n vertices. If d = dia(X) is the diameter of X, then $d + 1 \le dim(A(X)) \le n$.

Proof.

Since d is the diameter of X, there exists $x, y \in V$ with d(x, y) = d. Suppose $x = w_0, w_1, \dots, w_d = y$ is a path of length d in X.

Then, from Lemma 8, for each $i \in \{1, 2, ..., d\}$, there is at least one path of length i from w_0 to w_i , but no shorter walk. Consequently, A^i has a non-zero entry in a position where the corresponding entries of I, A, A^2 , ..., A^{i-1} are zero.

$$d+1 \leq \dim(\mathcal{A}(X)) \leq n$$
.

Let X be a connected simple graph on n vertices. If d = dia(X) is the diameter of X, then $d + 1 \le dim(A(X)) \le n$.

Proof.

Since d is the diameter of X, there exists $x, y \in V$ with d(x, y) = d. Suppose $x = w_0, w_1, \dots, w_d = y$ is a path of length d in X.

Then, from Lemma 8, for each $i \in \{1,2,\ldots,d\}$, there is at least one path of length i from w_0 to w_i , but no shorter walk. Consequently, A^i has a non-zero entry in a position where the corresponding entries of I,A,A^2,\ldots,A^{i-1} are zero. So $\{I,A,A^2,\ldots,A^{i-1},A^i\}$ is a linearly independent set. Thus $\{I,A,A^2,\ldots,A^{d-1},A^d\}$ is a linearly independent set and hence $d+1 \leq \dim(\mathcal{A}(X))$. Further, the upper bound is achieved by the well known Cayley-Hamilton theorem. Hence, the result follows.

d + 1 distinct eigenvalues

The above result has a nice consequence. In particular, it relates the number of distinct eigenvalues of a simple connected graph with the diameter of the graph. We state it next.

d+1 distinct eigenvalues

The above result has a nice consequence. In particular, it relates the number of distinct eigenvalues of a simple connected graph with the diameter of the graph. We state it next.

Corollary

A connected simple graph X with diameter d has at least d + 1 distinct eigenvalues.

d+1 distinct eigenvalues

The above result has a nice consequence. In particular, it relates the number of distinct eigenvalues of a simple connected graph with the diameter of the graph. We state it next.

Corollary

A connected simple graph X with diameter d has at least d + 1 distinct eigenvalues.

Proof.

Since the adjacency matrix is a real symmetric matrix, its minimal polynomial is the product of distinct linear polynomials. Hence, $\dim(\mathcal{A}(X))$ also equals the number of distinct eigenvalues of A. Thus, if the graph X has diameter d, then it has at least d+1 distinct eigenvalues.

If all eigenvalues of a simple graph are equal, then its diameter is zero. Thus, a simple graph has only one distinct eigenvalue if and only if it is a null graph.

The above obsertavtion need not be true for directed graphs.

Note:

If all eigenvalues of a simple graph are equal, then its diameter is zero. Thus, a simple graph has only one distinct eigenvalue if and only if it is a null graph.

Note:

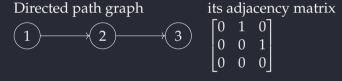
The above obsertavtion need not be true for directed graphs. For example, the adjacency matrix of following directed path has only 0 as an eigenvalue.

If all eigenvalues of a simple graph are equal, then its diameter is zero. Thus, a simple graph has only one distinct eigenvalue if and only if it is a null graph. Note:

The above obsertavtion need not be true for directed graphs. For example, the adjacency matrix of following directed path has only 0 as an eigenvalue. Note that its adjacency matrix is a nilpotent matrix.

If all eigenvalues of a simple graph are equal, then its diameter is zero. Thus, a simple graph has only one distinct eigenvalue if and only if it is a null graph. Note:

The above obsertavtion need not be true for directed graphs. For example, the adjacency matrix of following directed path has only 0 as an eigenvalue. Note that its adjacency matrix is a nilpotent matrix.



ightharpoonup A path graph on n vertices has n distinct eigenvalues.

- ightharpoonup A path graph on n vertices has n distinct eigenvalues.
- Let *X* be a connected graph. Then, it has exactly two distinct eigenvalues if and only if it is complete graph (as diameter of the complete graph is one).

- ightharpoonup A path graph on n vertices has n distinct eigenvalues.
- Let *X* be a connected graph. Then, it has exactly two distinct eigenvalues if and only if it is complete graph (as diameter of the complete graph is one).
- Let X be a graph with two distinct eigenvalues. Then, X is a regular graph. (Here we are not assuming X is a connected graph. If X is connected, then it is n-1 regular.)

- ightharpoonup A path graph on n vertices has n distinct eigenvalues.
- Let *X* be a connected graph. Then, it has exactly two distinct eigenvalues if and only if it is complete graph (as diameter of the complete graph is one).
- Let X be a graph with two distinct eigenvalues. Then, X is a regular graph. (Here we are not assuming X is a connected graph. If X is connected, then it is n-1 regular.)

- ightharpoonup A path graph on n vertices has n distinct eigenvalues.
- Let *X* be a connected graph. Then, it has exactly two distinct eigenvalues if and only if it is complete graph (as diameter of the complete graph is one).
- Let X be a graph with two distinct eigenvalues. Then, X is a regular graph. (Here we are not assuming X is a connected graph. If X is connected, then it is n-1 regular.)

Proof.

Let X be a graph with two distinct eigenvalues, then dim A(X) = 2. Hence, I and A form a basis of A(X). Consequently $A^2 = aI + bA$, for some $a, b \in \mathbb{N}$. Thus, $(A^2)_{ii} = a$ for all i.

- ightharpoonup A path graph on n vertices has n distinct eigenvalues.
- Let *X* be a connected graph. Then, it has exactly two distinct eigenvalues if and only if it is complete graph (as diameter of the complete graph is one).
- Let X be a graph with two distinct eigenvalues. Then, X is a regular graph. (Here we are not assuming X is a connected graph. If X is connected, then it is n-1 regular.)

Proof.

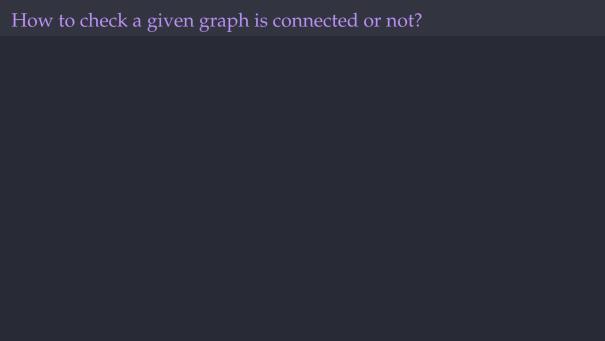
Let X be a graph with two distinct eigenvalues, then dim A(X) = 2. Hence, I and A form a basis of A(X). Consequently $A^2 = aI + bA$, for some $a, b \in \mathbb{N}$. Thus, $(A^2)_{ii} = a$ for all i.

- ightharpoonup A path graph on n vertices has n distinct eigenvalues.
- Let *X* be a connected graph. Then, it has exactly two distinct eigenvalues if and only if it is complete graph (as diameter of the complete graph is one).
- Let X be a graph with two distinct eigenvalues. Then, X is a regular graph. (Here we are not assuming X is a connected graph. If X is connected, then it is n-1 regular.)

Proof.

Let X be a graph with two distinct eigenvalues, then dim $\mathcal{A}(X)=2$. Hence, I and A form a basis of $\mathcal{A}(X)$. Consequently $A^2=aI+bA$, for some $a,b\in\mathbb{N}$. Thus, $(A^2)_{ii}=a$ for all i.

Are are able to see? A graph *X* has two distinct eigenvalues if and only if *X* is disjoint union of complete graphs with same number of vertices.



Lemma (Biggs [2])

Let X be a connected graph on n vertices. If A is it's adjacency matrix, then every entry of $(I+A)^{n-1}$ is positive.

Lemma (Biggs [2])

Let X be a connected graph on n vertices. If A is it's adjacency matrix, then every entry of $(I+A)^{n-1}$ is positive.

Proof.

From Lemma 8, we know that the *ij*-th entry of $I + A + A^2 + A^3 + ... + A^{n-1}$ equals the total number of walks of length less than or equal to n - 1.

Lemma (Biggs [2])

Let X be a connected graph on n vertices. If A is it's adjacency matrix, then every entry of $(I+A)^{n-1}$ is positive.

Proof.

From Lemma 8, we know that the ij-th entry of $I+A+A^2+A^3+\ldots+A^{n-1}$ equals the total number of walks of length less than or equal to n-1. As X is a connected graph on n vertices, $d(X) \le n-1$. Hence, each entry in $I+A+A^2+A^3+\ldots+A^{n-1}$ is positive. Thus, the required result follows as $(I+A)^{n-1} \ge I+A+A^2+A^3+\cdots+A^{n-1}$.

Lemma (Biggs [2])

Let X be a connected graph on n vertices. If A is it's adjacency matrix, then every entry of $(I+A)^{n-1}$ is positive.

Proof.

From Lemma 8, we know that the ij-th entry of $I + A + A^2 + A^3 + \ldots + A^{n-1}$ equals the total number of walks of length less than or equal to n-1. As X is a connected graph on n vertices, $d(X) \le n-1$. Hence, each entry in $I + A + A^2 + A^3 + \ldots + A^{n-1}$ is positive. Thus, the required result follows as $(I + A)^{n-1} \ge I + A + A^2 + A^3 + \cdots + A^{n-1}$.

What about the converse? If every entry of $(I + A)^{n-1}$ is positive, then X is a connected graph.

k-th distance matrix of a graph

Definition

Let X = (V, E) be a connected graph with diameter d. Then, for $0 \le k \le d$, the k-th distance matrix of X, denoted A_k , is defined as

$$(A_k)_{rs} = \begin{cases} 1, & \text{if } d(v_r, v_s) = k \\ 0, & \text{otherwise.} \end{cases}$$

k-th distance matrix of a graph

Definition

Let X = (V, E) be a connected graph with diameter d. Then, for $0 \le k \le d$, the k-th distance matrix of X, denoted A_k , is defined as

$$(A_k)_{rs} = \begin{cases} 1, & \text{if } d(v_r, v_s) = k \\ 0, & \text{otherwise.} \end{cases}$$

If $X = C_4$, the cycle graph on four vertices, then

$$A_0 = I_4, A_1 = egin{bmatrix} 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \end{bmatrix}, A_2 = egin{bmatrix} 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \end{bmatrix}.$$

- 1. Are able to see A_2 is the adjacency matrix of X^c in the above example?
- 2. If X is connected graph with a diameter $d \ge 2$, then $A_2 + A_3 + \cdots + A_d = ??$

$$(x,y)|u(x,y) = 0, \quad (x,y)|u(x,y) = 1, \quad (x,y)|u(x,y) = 2, \quad (x,y)|u(x,y) = 1,$$

$$A_1^2 = A_2^2 = 2A_0 + A_2, A_3^2 = A_0, A_1A_2 = A_1 + 2A_3, A_1A_3 = A_2, A_1A_3 = A_1.$$

$$A_1 = A, A_2 = A^2 - 2I, A_3 = \frac{1}{2}A^3 - \frac{3}{2}A.$$

 \blacktriangleright A_0 is the identity matrix and A_1 is the adjacency matrix of X.

- $ightharpoonup A_0$ is the identity matrix and A_1 is the adjacency matrix of X.
- ► Can you check $A_0 + A_1 + \cdots + A_d = \mathbf{J}$, where \mathbf{J} is the matrix of all 1's.

- $ightharpoonup A_0$ is the identity matrix and A_1 is the adjacency matrix of X.
- ightharpoonup Can you check $A_0 + A_1 + \cdots + A_d = \mathbf{J}$, where \mathbf{J} is the matrix of all 1's.
- ▶ Is it true that A_k , for 0 < k < d is a symmetric matrix.

- \triangleright A_0 is the identity matrix and A_1 is the adjacency matrix of X.
- ightharpoonup Can you check $A_0 + A_1 + \cdots + A_d = \mathbf{I}$, where \mathbf{I} is the matrix of all 1's.
- ▶ Is it true that A_k , for 0 < k < d is a symmetric matrix.
- ▶ Is the set $\{A_0, A_1, ..., A_d\}$ is a linearly independent set in $M_n(\mathbb{R})$?

- \triangleright A_0 is the identity matrix and A_1 is the adjacency matrix of X.
- ightharpoonup Can you check $A_0 + A_1 + \cdots + A_d = \mathbf{I}$, where \mathbf{I} is the matrix of all 1's.
- ▶ Is it true that A_k , for 0 < k < d is a symmetric matrix.
- ▶ Is the set $\{A_0, A_1, ..., A_d\}$ is a linearly independent set in $M_n(\mathbb{R})$?

- $ightharpoonup A_0$ is the identity matrix and A_1 is the adjacency matrix of X.
- ▶ Can you check $A_0 + A_1 + \cdots + A_d = J$, where **J** is the matrix of all 1's.
- ▶ Is it true that A_k , for $0 \le k \le d$ is a symmetric matrix.
- ▶ Is the set $\{A_0, A_1, ..., A_d\}$ is a linearly independent set in $M_n(\mathbb{R})$?

Definition (Paul M. Weichsel [2])

Let X be a connected graph with diameter d and let $A_k(X)$, for $0 \le k \le d$, be the k-th distance matrix of X. Then, X is said to be a **distance polynomial graph** if $A_k(X) \in \mathcal{A}(X)$, for $0 \le k \le d$.

- $ightharpoonup A_0$ is the identity matrix and A_1 is the adjacency matrix of X.
- ▶ Can you check $A_0 + A_1 + \cdots + A_d = \mathbf{J}$, where \mathbf{J} is the matrix of all 1's.
- ▶ Is it true that A_k , for $0 \le k \le d$ is a symmetric matrix.
- ▶ Is the set $\{A_0, A_1, ..., A_d\}$ is a linearly independent set in $M_n(\mathbb{R})$?

Definition (Paul M. Weichsel [2])

Let X be a connected graph with diameter d and let $A_k(X)$, for $0 \le k \le d$, be the k-th distance matrix of X. Then, X is said to be a **distance polynomial graph** if $A_k(X) \in \mathcal{A}(X)$, for $0 \le k \le d$.

The complete graph K_n , Cycle graph C_n , Complete bipartite graph $K_{n,n}$ and Petersen graph are few examples of distance polynomial graphs.

Natural question is which graphs are distance polynomial graphs? We will prove few results to see the necessary conditions for a graph to be a distance polynomial graph.

Lemma (Biggs [2])

Let X be a k-regular graph. Then,

Lemma (Biggs [2])

Let X be a k-regular graph. Then,

1. k is an eigenvalue of X.

Lemma (Biggs [2])

Let X be a k-regular graph. Then,

- 1. k is an eigenvalue of X.
- 2. if X is connected, then the multiplicity of k is one.

Lemma (Biggs [2])

Let X be a k-regular graph. Then,

- 1. k is an eigenvalue of X.
- 2. *if* X *is connected, then the multiplicity of* k *is one.*
- 3. for an eigenvalue λ of X, $|\lambda| \leq k$.

Lemma (Biggs [2])

Let X be a k-regular graph. Then,

- 1. k is an eigenvalue of X.
- 2. *if* X *is connected, then the multiplicity of* k *is one.*
- 3. for an eigenvalue λ of X, $|\lambda| \leq k$.

Proof of Part 1

Proof.

Let $\mathbf{e} = [1, 1, ..., 1]^T$. Then $A\mathbf{e} = k\mathbf{e}$. Consequently, k is an eigenvalue with corresponding eigenvector \mathbf{e} .

Proof of Part 2 Let $\mathbf{a} = [a_1, a_2, \dots, a_n]^T$ be an eigenvector of A corresponding to the eigenvalue k. Proof of Part 2 Let $\mathbf{a} = [a_1, a_2, \dots, a_n]^T$ be an eigenvector of A corresponding to the eigenvalue k. Suppose a_j is an entry of \mathbf{a} having the largest absolute value.

Let $\mathbf{a} = [a_1, a_2, \dots, a_n]^T$ be an eigenvector of A corresponding to the eigenvalue k. Suppose a_j is an entry of \mathbf{a} having the largest absolute value. Without loss of generality, we also assume that a_j is positive

Let $\mathbf{a} = [a_1, a_2, \dots, a_n]^T$ be an eigenvector of A corresponding to the eigenvalue k.

Suppose a_i is an entry of **a** having the largest absolute value. Without loss of generality, we also assume that a_i is positive as one can take $-\mathbf{a}$ in place of \mathbf{a} as an eigenvector of *k*.

Let $\mathbf{a} = [a_1, a_2, \dots, a_n]^T$ be an eigenvector of A corresponding to the eigenvalue k. Suppose a_j is an entry of \mathbf{a} having the largest absolute value. Without loss of generality, we also assume that a_j is positive as one can take $-\mathbf{a}$ in place of \mathbf{a} as an eigenvector of k. So,

$$k\mathbf{a}_j = (A\mathbf{a})_j = \sum_{\{v_i,v_i\} \in E} \mathbf{a}_i \leq k\mathbf{a}_j$$

as is vertex of X is adjacent to exactly k vertices and $\mathbf{a}_i \geq \mathbf{a}_i$, for all $i = 1, \dots, n$.

Let $\mathbf{a} = [a_1, a_2, \dots, a_n]^T$ be an eigenvector of A corresponding to the eigenvalue k. Suppose a_j is an entry of \mathbf{a} having the largest absolute value. Without loss of generality, we also assume that a_j is positive as one can take $-\mathbf{a}$ in place of \mathbf{a} as an eigenvector of k. So,

$$k\mathbf{a}_j = (A\mathbf{a})_j = \sum_{\{v_i,v_j\} \in E} \mathbf{a}_i \leq k\mathbf{a}_j$$

as is vertex of X is adjacent to exactly k vertices and $\mathbf{a}_j \ge \mathbf{a}_i$, for all i = 1, ..., n. Hence, $\mathbf{a}_i = \mathbf{a}_i$ for all vertices that are adjacent to the vertex v_i . Proof of Part 2

Let $\mathbf{a} = [a_1, a_2, \dots, a_n]^T$ be an eigenvector of A corresponding to the eigenvalue k. Suppose a_j is an entry of \mathbf{a} having the largest absolute value. Without loss of generality, we also assume that a_j is positive as one can take $-\mathbf{a}$ in place of \mathbf{a} as an eigenvector of k. So,

$$k\mathbf{a}_j = (A\mathbf{a})_j = \sum_{\{v_i, v_j\} \in E} \mathbf{a}_i \le k\mathbf{a}_j$$

as is vertex of X is adjacent to exactly k vertices and $\mathbf{a}_j \geq \mathbf{a}_i$, for all $i = 1, \ldots, n$. Hence, $\mathbf{a}_i = \mathbf{a}_j$ for all vertices that are adjacent to the vertex v_j . Further, the condition that X is connected implies that we can recursively obtain $\mathbf{a}_i = \mathbf{a}_j$ for all i and j. Consequently, \mathbf{a} is multiple of \mathbf{e} .

Proof of Part 2

Let $\mathbf{a} = [a_1, a_2, \dots, a_n]^T$ be an eigenvector of A corresponding to the eigenvalue k. Suppose a_j is an entry of \mathbf{a} having the largest absolute value. Without loss of generality, we also assume that a_j is positive as one can take $-\mathbf{a}$ in place of \mathbf{a} as an eigenvector of k. So,

$$k\mathbf{a}_j = (A\mathbf{a})_j = \sum_{\{v_i, v_i\} \in E} \mathbf{a}_i \le k\mathbf{a}_j$$

as is vertex of X is adjacent to exactly k vertices and $\mathbf{a}_j \geq \mathbf{a}_i$, for all $i = 1, \ldots, n$. Hence, $\mathbf{a}_i = \mathbf{a}_j$ for all vertices that are adjacent to the vertex v_j . Further, the condition that X is connected implies that we can recursively obtain $\mathbf{a}_i = \mathbf{a}_j$ for all i and j. Consequently, \mathbf{a} is multiple of \mathbf{e} .

Proof of Part 3

Let $A\mathbf{b} = \lambda \mathbf{b}$. As above, let b_j be an entry of \mathbf{b} having the largest absolute value.

Proof of Part 2

Let $\mathbf{a} = [a_1, a_2, \dots, a_n]^T$ be an eigenvector of A corresponding to the eigenvalue k. Suppose a_j is an entry of \mathbf{a} having the largest absolute value. Without loss of generality, we also assume that a_j is positive as one can take $-\mathbf{a}$ in place of \mathbf{a} as an eigenvector of k. So,

$$k\mathbf{a}_j = (A\mathbf{a})_j = \sum_{\{v_i, v_j\} \in E} \mathbf{a}_i \le k\mathbf{a}_j$$

as is vertex of X is adjacent to exactly k vertices and $\mathbf{a}_j \geq \mathbf{a}_i$, for all $i = 1, \ldots, n$. Hence, $\mathbf{a}_i = \mathbf{a}_j$ for all vertices that are adjacent to the vertex v_j . Further, the condition that X is connected implies that we can recursively obtain $\mathbf{a}_i = \mathbf{a}_j$ for all i and j. Consequently, \mathbf{a} is multiple of \mathbf{e} .

Proof of Part 3

Let $A\mathbf{b} = \lambda \mathbf{b}$. As above, let b_j be an entry of \mathbf{b} having the largest absolute value. We again assume \mathbf{b}_j is positive. Then

$$|\lambda|\mathbf{b}_j = |(\lambda\mathbf{b})_j| = |(A\mathbf{b})_j| = |\sum_{\{v_i, v_j\} \in E} \mathbf{b}_i| \le \sum_{\{v_i, v_j\} \in E} |\mathbf{b}_i| \le k|\mathbf{b}_j|.$$

Thus, $|\lambda| \le k$

$\mathbf{J} \in \mathcal{A}(X)$

Lemma 11 implies that if X is a connected k-regular graph then the minimal polynomial of X will have the form (x - k)q(x) for some polynomial q(x) with integer entries and $q(k) \neq 0$, as k is an eigenvalue of multiplicity 1. We use this idea in the next result.

$$J \in \mathcal{A}(X)$$

Lemma 11 implies that if X is a connected k-regular graph then the minimal polynomial of X will have the form (x - k)q(x) for some polynomial q(x) with integer entries and $q(k) \neq 0$, as k is an eigenvalue of multiplicity 1. We use this idea in the next result.

Lemma (Hoffman [3])

Let X be a connected k-regular graph on n vertices. Then, the matrix J, consisting of all 1's, equals $\frac{n}{a(k)}q(A)$, i.e., $J \in \mathcal{A}(X)$.

Proof: As *X* is a *k*-regular graph, its adjacency matrix *A* satisfies $A\mathbf{e} = k\mathbf{e}$. Let $(x - k)q(x) \in \mathbb{Z}[x]$ be the minimal polynomial of *X*. Hence,

$$\mathbf{J}A = A\mathbf{J} = k\mathbf{J}$$
 and $q(A)\mathbf{e} = q(k)\mathbf{e}$. (1)

Continuation of Proof

Let $\left\{\frac{1}{\sqrt{n}}\mathbf{e}, \mathbf{x}_2, \dots, \mathbf{x}_n\right\}$ be an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A with corresponding eigenvalues $k, \lambda_2, \dots, \lambda_n$. Thus, $\mathbf{x}_i^T \mathbf{e} = 0$, for $2 \le i \le n$. Hence, $\mathbf{J}\mathbf{x}_i = \mathbf{0}$.

Continuation of Proof

Let $\left\{\frac{1}{\sqrt{n}}\mathbf{e}, \mathbf{x}_2, \dots, \mathbf{x}_n\right\}$ be an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A with corresponding eigenvalues $k, \lambda_2, \dots, \lambda_n$. Thus, $\mathbf{x}_i^T \mathbf{e} = 0$, for $2 \le i \le n$.

Hence, $Jx_i = \hat{0}$. Now, Equation (1) gives

$$\mathbf{J}\frac{1}{\sqrt{n}}\mathbf{e} = \frac{n}{\sqrt{n}}\mathbf{e} = \left(\frac{n}{q(k)}q(k)\right)\frac{1}{\sqrt{n}}\mathbf{e} = \frac{n}{q(k)}q(A)\frac{1}{\sqrt{n}}\mathbf{e}.$$
 (2)

As (x - k)q(x) is the minimal polynomial of X, $q(\lambda_i) = 0$. So, $q(A)\mathbf{x}_i = q(\lambda_i)\mathbf{x}_i = \mathbf{0}$, *i.e.*, $\frac{n}{q(k)}q(A)\mathbf{x}_i = \mathbf{0}$.

Continuation of Proof

Let $\left\{\frac{1}{\sqrt{n}}\mathbf{e}, \mathbf{x}_2, \dots, \mathbf{x}_n\right\}$ be an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A with corresponding eigenvalues $k, \lambda_2, \dots, \lambda_n$. Thus, $\mathbf{x}_i^T \mathbf{e} = 0$, for $2 \le i \le n$. Hence, $\mathbf{J}\mathbf{x}_i = \mathbf{0}$. Now, Equation (1) gives

$$\mathbf{J}\frac{1}{\sqrt{n}}\mathbf{e} = \frac{n}{\sqrt{n}}\mathbf{e} = \left(\frac{n}{q(k)}q(k)\right)\frac{1}{\sqrt{n}}\mathbf{e} = \frac{n}{q(k)}q(A)\frac{1}{\sqrt{n}}\mathbf{e}.$$
 (2)

As (x-k)q(x) is the minimal polynomial of X, $q(\lambda_i)=0$. So, $q(A)\mathbf{x}_i=q(\lambda_i)\mathbf{x}_i=\mathbf{0}$, i.e., $\frac{n}{q(k)}q(A)\mathbf{x}_i=\mathbf{0}$. Thus, we see that the image of the two matrices \mathbf{J} and $\frac{n}{q(k)}q(A)$ on the basis $\left\{\frac{1}{\sqrt{n}}\mathbf{e},\mathbf{x}_2,\ldots,\mathbf{x}_n\right\}$ of \mathbb{R}^n are same. Hence, the two matrices are equal. Therefore, $\mathbf{J}=\frac{n}{q(k)}q(A)$.

Let X *be a graph on n vertices. If* $J \in A(X)$ *, then* X *is a connected, regular graph.*

Lemma

Lemma

Let X be a graph on n vertices. If $J \in \mathcal{A}(X)$, then X is a connected, regular graph.

Proof

Let *A* be the adjacency matrix of *A*. Then, $J \in A(X)$ implies that

$$\mathbf{J} = a_0 I + a_1 A + \dots + a_r A^r, \tag{3}$$

Lemma

Let X be a graph on n vertices. If $J \in A(X)$, then X is a connected, regular graph.

Proof

Let *A* be the adjacency matrix of *A*. Then, $J \in \mathcal{A}(X)$ implies that

$$\mathbf{J} = a_0 I + a_1 A + \dots + a_r A^r, \tag{3}$$

for some positive integer r and $a_i \in \mathbb{R}$, $0 \le i \le r$. As each entry of **J** is non-zero, for each pair i, j, there exists the smallest power of A, say $t \le r$, which has a non-zero entry. Hence, by definition there is a walk of length t from the vertex v_i to the vertex v_j . Thus, X is connected.

Lemma

Let X be a graph on n vertices. If $J \in A(X)$, then X is a connected, regular graph.

Proof

Let *A* be the adjacency matrix of *A*. Then, $J \in \mathcal{A}(X)$ implies that

$$\mathbf{J} = a_0 I + a_1 A + \dots + a_r A^r, \tag{3}$$

for some positive integer r and $a_i \in \mathbb{R}$, $0 \le i \le r$. As each entry of **J** is non-zero, for each pair i, j, there exists the smallest power of A, say $t \le r$, which has a non-zero entry. Hence, by definition there is a walk of length t from the vertex v_i to the vertex v_j . Thus, X is connected. By Equation (3), we see that $A\mathbf{J} = \mathbf{J}A$. So, if d_i equals $\deg(v_i)$, for $1 \le i \le n$, then

$$\begin{bmatrix} d_1 & d_2 & \cdots & d_n \\ d_1 & d_2 & \cdots & d_n \\ \vdots & \vdots & \ddots & \vdots \\ d_1 & d_2 & \cdots & d_n \end{bmatrix} = \mathbf{J}A = A\mathbf{J} = \begin{bmatrix} d_1 & d_1 & \cdots & d_1 \\ d_2 & d_2 & \cdots & d_2 \\ \vdots & \vdots & \ddots & \vdots \\ d_n & d_n & \cdots & d_n \end{bmatrix}.$$

Thus, $d_i = d_i$, for all i and j and hence X is a regular graph. Hence the proof.

▶ If X is a conected regular graph with n vertices, then K_n is a polynomial in X.

- \blacktriangleright If X is a conected regular graph with n vertices, then K_n is a polynomial in X.
- Let X be a connected regular graph and let $k = \lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \cdots \ge \lambda_n$ be the eigenvalues of X.

- \blacktriangleright If X is a conected regular graph with n vertices, then K_n is a polynomial in X.
- Let X be a connected regular graph and let $k = \lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \cdots \ge \lambda_n$ be the eigenvalues of X.

- ▶ If X is a conected regular graph with n vertices, then K_n is a polynomial in X.
- Let X be a connected regular graph and let $k = \lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \cdots \ge \lambda_n$ be the eigenvalues of X. Define, $h(x) = n \prod_{i=2}^{n} \frac{x \lambda_i}{k \lambda_i}$. Then, the eigenvalues of h(A) are

 $\{h(k), h(\lambda_2), \dots, h(\lambda_n)\} = \{n, 0\}.$ Consequently, $h(A) - \mathbf{J}$ vanish at all eigenvectors of A or equivalently $h(A) = \mathbf{J} = \frac{n}{q(k)}q(A)$.

The eigenvalues of X^c , when X is a regular graph.

Corollary

Let X be a connected k-regular graph on n vertices with eigenvalues $k = \lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \cdots \ge \lambda_n$. Then, the eigenvalues of X^c are $n - k - 1, -1 - \lambda_2, \ldots, -1 - \lambda_n$.

The eigenvalues of X^c , when X is a regular graph.

Corollary

Let X be a connected k-regular graph on n vertices with eigenvalues $k = \lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \cdots \ge \lambda_n$. Then, the eigenvalues of X^c are $n - k - 1, -1 - \lambda_2, \ldots, -1 - \lambda_n$.

Proof.

Let A be the adjacency matrix of X. Then, $A(X^c) = \mathbf{J} - I - A$, the adjacency matrix of X^c . Now, using Lemma 12, the matrices I, \mathbf{J} and A have the same set of eigenvectors.

The eigenvalues of X^c , when X is a regular graph.

Corollary

Let X be a connected k-regular graph on n vertices with eigenvalues $k = \lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \cdots \ge \lambda_n$. Then, the eigenvalues of X^c are $n - k - 1, -1 - \lambda_2, \ldots, -1 - \lambda_n$.

Proof.

Let A be the adjacency matrix of X. Then, $A(X^c) = \mathbf{J} - I - A$, the adjacency matrix of X^c . Now, using Lemma 12, the matrices I, \mathbf{J} and A have the same set of eigenvectors. So, let U be an orthogonal matrix formed using the eigenvectors of A as columns. Then, $UAU^T = diag(k, \lambda_2, \lambda_3, \dots, \lambda_n)$ and

$$UA^{c}U^{T} = U(\mathbf{J} - I - A)U^{T} = UJU^{T} - UIU^{T} - UAU^{T}$$

$$= diag(n,0,0,\ldots,0) - diag(1,1,\ldots,1) - diag(k,\lambda_{2},\lambda_{3},\ldots,\lambda_{n})$$

$$= diag(n-k-1,-1-\lambda_{2},\ldots,-1-\lambda_{n}).$$

Let X be a connected regular graph. Then X^c is connected if and only if $A(X) = A(X^c)$.

Let X be a connected regular graph. Then X^c is connected if and only if $A(X) = A(X^c)$.

Proof. As $J \in \mathcal{A}(X)$, $A(X^c) = J - I - A \in \mathcal{A}(X)$ and hence $\mathcal{A}(X^c) \subseteq \mathcal{A}(X)$.

Let X *be a connected regular graph. Then* X^c *is connected if and only if* $A(X) = A(X^c)$.

Proof.

As $\mathbf{J} \in \mathcal{A}(X)$, $A(X^c) = \mathbf{J} - I - A \in \mathcal{A}(X)$ and hence $\mathcal{A}(X^c) \subseteq \mathcal{A}(X)$.

As $J \in \mathcal{A}(X)$, $A(X^{\circ}) = J - I - A \in \mathcal{A}(X)$ and hence $\mathcal{A}(X^{\circ}) \subseteq \mathcal{A}(X)$

As X^c is a (n-k-1)-regular connected graph, $\mathbf{J} \in \mathcal{A}(X^c)$. Hence, $A = \mathbf{J} - I - A(X^c) \in \mathcal{A}(X^c)$. Thus, $\mathcal{A}(X^c) \subseteq \mathcal{A}(X)$, Thus, the two sets are equal.

Let X be a connected regular graph. Then X^c is connected if and only if $A(X) = A(X^c)$.

Proof.

As $J \in \mathcal{A}(X)$, $A(X^c) = J - I - A \in \mathcal{A}(X)$ and hence $\mathcal{A}(X^c) \subseteq \mathcal{A}(X)$.

As X^c is a (n-k-1)-regular connected graph, $\mathbf{J} \in \mathcal{A}(X^c)$. Hence,

 $A = \mathbf{J} - I - A(X^c) \in \mathcal{A}(X^c)$. Thus, $\mathcal{A}(X^c) \subseteq \mathcal{A}(X)$, Thus, the two sets are equal.

Now, suppose that the two sets are equal. Then, $\mathbf{J} \in \mathcal{A}(X) = \mathcal{A}(X^c)$. Thus, by

Lemma 13, the graph X^c is connected and regular. Hence, the required result follows.

Let X be a connected regular graph. Then X^c is connected if and only if $A(X) = A(X^c)$.

Proof.

As $\mathbf{J} \in \mathcal{A}(X)$, $A(X^c) = \mathbf{J} - I - A \in \mathcal{A}(X)$ and hence $\mathcal{A}(X^c) \subseteq \mathcal{A}(X)$.

As X^c is a (n-k-1)-regular connected graph, $\mathbf{J} \in \mathcal{A}(X^c)$. Hence,

 $A = \mathbf{J} - I - A(X^c) \in \mathcal{A}(X^c)$. Thus, $\mathcal{A}(X^c) \subseteq \mathcal{A}(X)$, Thus, the two sets are equal.

Now, suppose that the two sets are equal. Then, $\mathbf{J} \in \mathcal{A}(X) = \mathcal{A}(X^c)$. Thus, by Lemma 13, the graph X^c is connected and regular. Hence, the required result follows.

Corollary

Let X be a distance polynomial graph. Then X is a connected regular graph.

Let X be a connected regular graph. Then X^c is connected if and only if $A(X) = A(X^c)$.

Proof.

As $J \in \mathcal{A}(X)$, $A(X^c) = J - I - A \in \mathcal{A}(X)$ and hence $\mathcal{A}(X^c) \subseteq \mathcal{A}(X)$.

As X^c is a (n - k - 1)-regular connected graph, $\mathbf{J} \in \mathcal{A}(X^c)$. Hence,

 $A = \mathbf{J} - I - A(X^c) \in \mathcal{A}(X^c)$. Thus, $\mathcal{A}(X^c) \subseteq \mathcal{A}(X)$, Thus, the two sets are equal.

Now, suppose that the two sets are equal. Then, $\mathbf{J} \in \mathcal{A}(X) = \mathcal{A}(X^c)$. Thus, by Lemma 13, the graph X^c is connected and regular. Hence, the required result follows.

Corollary

Let X be a distance polynomial graph. Then X is a connected regular graph.

Proof.

As X is a distance polynomial graph, by definition, X is already connected. If X has diameter d, then by definition, $A_k(X) \in \mathcal{A}(X)$, for $0 \le k \le d$. Consequently,

 $\mathbf{J} = \sum_{k=1}^{n} A_k(X) \in \mathcal{A}(X)$ and hence using Lemma 12, the result follows.

 C_5 : connected 2 regular graph.

- ► Find number of common neighbors of two adjacent vertices?
- Find number of common neighbors of two non-adjacent vertices?
- ► Is the distance partition of any node is an equitable partition? Is it same for all vertices?

 C_5 : connected 2 regular graph.

 $K_{3,3}$: connected 3-regular graph.

- ► Find number of common neighbors of two adjacent vertices?
- Find number of common neighbors of two non-adjacent vertices?
- ► Is the distance partition of any node is an equitable partition? Is it same for all vertices?
- ► Find number of common neighbors of two adjacent vertices?
- ► Find number of common neighbors of two non-adjacent vertices?
- Is the distance partition of any node is an equitable partition? Is it same for all vertices?

Definition

A k-regular graph X on n vertices is said to be a **strongly regular graph**, with parameters (n, k, a, c) if

Definition

A k-regular graph X on n vertices is said to be a **strongly regular graph**, with parameters (n, k, a, c) if

1. X is neither the complete graph nor the null graph,

Definition

A k-regular graph X on n vertices is said to be a **strongly regular graph**, with parameters (n, k, a, c) if

- 1. X is neither the complete graph nor the null graph,
- 2. any two adjacent vertices, say u and v, have exactly a common neighbors, and

Definition

A k-regular graph X on n vertices is said to be a **strongly regular graph**, with parameters (n,k,a,c) if

- 1. X is neither the complete graph nor the null graph,
- 2. any two adjacent vertices, say u and v, have exactly a common neighbors, and
- 3. any two non-adjacent vertices, say s and t, have exactly c common neighbors.

Definition

A k-regular graph X on n vertices is said to be a **strongly regular graph**, with parameters (n,k,a,c) if

- 1. *X* is neither the complete graph nor the null graph,
- 2. any two adjacent vertices, say u and v, have exactly a common neighbors, and
- 3. any two non-adjacent vertices, say s and t, have exactly c common neighbors.

The number of common neighbors of two vertices is k, a, c depending on whether they are equal, adjacent or nonadjacent.

Definition

A k-regular graph X on n vertices is said to be a **strongly regular graph**, with parameters (n,k,a,c) if

- 1. X is neither the complete graph nor the null graph,
- 2. any two adjacent vertices, say u and v, have exactly a common neighbors, and
- 3. any two non-adjacent vertices, say s and t, have exactly c common neighbors.

The number of common neighbors of two vertices is k, a, c depending on whether they are equal, adjacent or nonadjacent.

d(u,v)	number of
	common neighbours
0	k
1	a
2	c

For C_4 or $K_{2,2}: k = 2, a = 0, c = 2$.

Definition

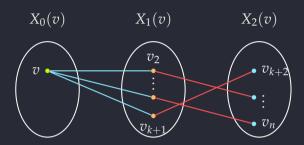
A k-regular graph X on n vertices is said to be a **strongly regular graph**, with parameters (n, k, a, c) if

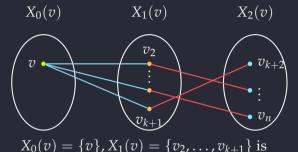
- 1. X is neither the complete graph nor the null graph,
- 2. any two adjacent vertices, say u and v, have exactly a common neighbors, and
- 3. any two non-adjacent vertices, say s and t, have exactly c common neighbors.

The number of common neighbors of two vertices is k, a, c depending on whether they are equal, adjacent or nonadjacent.

	<u> </u>
d(u,v)	number of
	common neighbours
0	k
1	a
2	С

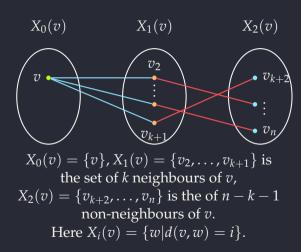
For C_4 or $K_{2,2}$: k = 2, a = 0, c = 2. For $K_{n,n}$: k = n, a = 0, c = n.





the set of
$$k$$
 neighbours of v , $X_2(v) = \{v_{k+2}, \ldots, v_n\}$ is the of $n-k-1$ non-neighbours of v .

Here
$$X_i(v) = \{w | d(v, w) = i\}.$$



 $\{X_0(v), X_1(v), X_2(v)\}$ forms an equitable partition of X called distance partition of X w.r.to v. That is independent of vertex chosen, *i.e.*, all will have same quotient graph/matrix.

The quotient matrix is

$$\begin{bmatrix} 0 & k & 0 \\ 1 & a & k - a - 1 \\ 0 & c & k - c \end{bmatrix}$$

$$\begin{bmatrix}
0 & 3 & 0 \\
1 & 0 & 2 \\
0 & 3 & 0
\end{bmatrix}$$

▶ For example, C_5 is a (5,2,0,1) strongly regular graph.

▶ For example, C_5 is a (5,2,0,1) strongly regular graph.

- ▶ For example, C_5 is a (5,2,0,1) strongly regular graph.
- ▶ Petersen graph is a strongly regular with parameters (10, 3, 0, 1).

- ▶ For example, C_5 is a (5,2,0,1) strongly regular graph.
- ▶ Petersen graph is a strongly regular with parameters (10, 3, 0, 1).

- ▶ For example, C_5 is a (5,2,0,1) strongly regular graph.
- \triangleright Petersen graph is a strongly regular with parameters (10,3,0,1).
- The Paley graph on q = 4t + 1 vertices is a strongly regular with parameters (4t + 1, 2t, t 1, t).

- ▶ For example, C_5 is a (5,2,0,1) strongly regular graph.
- \triangleright Petersen graph is a strongly regular with parameters (10,3,0,1).
- The Paley graph on q = 4t + 1 vertices is a strongly regular with parameters (4t + 1, 2t, t 1, t).

- ▶ For example, C_5 is a (5,2,0,1) strongly regular graph.
- ▶ Petersen graph is a strongly regular with parameters (10,3,0,1).
- The Paley graph on q = 4t + 1 vertices is a strongly regular with parameters (4t + 1, 2t, t 1, t).
- ▶ Recall that the triangular graphs, denote $lg(K_n)$, were the line graphs of the complete graphs and it can be easily verified that they are strongly regular graphs with parameters $(\frac{n(n-1)}{2}, 2(n-2), n-2, 4)$.

- ▶ For example, C_5 is a (5,2,0,1) strongly regular graph.
- ▶ Petersen graph is a strongly regular with parameters (10,3,0,1).
- The Paley graph on q = 4t + 1 vertices is a strongly regular with parameters (4t + 1, 2t, t 1, t).
- ▶ Recall that the triangular graphs, denote $lg(K_n)$, were the line graphs of the complete graphs and it can be easily verified that they are strongly regular graphs with parameters $(\frac{n(n-1)}{2}, 2(n-2), n-2, 4)$.

- \triangleright For example, C_5 is a (5,2,0,1) strongly regular graph.
- ▶ Petersen graph is a strongly regular with parameters (10, 3, 0, 1).
- ▶ The Paley graph on q = 4t + 1 vertices is a strongly regular with parameters (4t + 1, 2t, t 1, t).
- ▶ Recall that the triangular graphs, denote $lg(K_n)$, were the line graphs of the complete graphs and it can be easily verified that they are strongly regular graphs with parameters $(\frac{n(n-1)}{2}, 2(n-2), n-2, 4)$.
- The line graphs of the complete bipartite graphs, $lg(K_{n,n})$ are strongly regular with parameters $(n^2, 2(n-1), n-2, 2)$. This is also a rook graph on square chess board. For example if we consider rook graph on $n \times n$ chess board, then the distance partition w.r. to (1,1) is an equitable partition. Here the cells are

$$C_0 = \{(1,1)\}, C_1 = \{(1,j) \mid j \neq 1\} \cup \{(i,1) \mid i \neq 1\}, C_2 = \{(i,j) \mid i \neq 1, j \neq 1\}.$$

 $|V| = 1 + 2(n-1) + (n-1)^2 = n^2$. Distinct eigenvalues are $2n - 2, n - 2, -2$.

Let X be a strongly regular graph. Then diam(X) = 2.

Let X be a strongly regular graph. Then diam(X) = 2.

Proof.

Let X be a strongly regular graph with parameters (n, k, a, c), and suppose there are two vertices u, x of X that are distance 3 apart. Let (u, v, w, x) be a path of length 3.

Let X be a strongly regular graph. Then diam(X) = 2.

Proof.

Let X be a strongly regular graph with parameters (n, k, a, c), and suppose there are two vertices u, x of X that are distance 3 apart. Let (u, v, w, x) be a path of length 3.

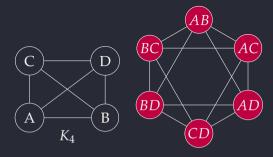
▶ The pair of vertices u and x are non-adjacent, therefore they must have exactly c neighbors in common. It is clear in this case that c must equal zero: if u and x shared some neighbor y, then (u, y, x) would be a path of length 2 from u to x, a contradiction.

Let X be a strongly regular graph. Then diam(X) = 2.

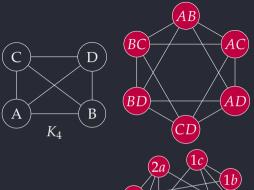
Proof.

Let X be a strongly regular graph with parameters (n, k, a, c), and suppose there are two vertices u, x of X that are distance 3 apart. Let (u, v, w, x) be a path of length 3.

- The pair of vertices u and x are non-adjacent, therefore they must have exactly c neighbors in common. It is clear in this case that c must equal zero: if u and x shared some neighbor y, then (u, y, x) would be a path of length 2 from u to x, a contradiction.
- The pair of vertices u and w must also be non-adjacent, or else (u, w, x) would be a path of length 2 from u to x. As u and w are non-adjacent, they have c = 0 common neighbors. But, v is a common neighbor of u and w, a contradiction. Thus X must have a diameter of at most 2. But we are not considering complete graph or a null graph.



 $lg(K_4), srg(6,4,2,4).$



 $lg(K_{3,3}), srg(9,4,1,2).$

► There is relationship among the parameters. That is if we know three of them, then it is possible to find fourth parameter.

► There is relationship among the parameters. That is if we know three of them, then it is possible to find fourth parameter.

- There is relationship among the parameters. That is if we know three of them, then it is possible to find fourth parameter. Let X be strongly regular graph with parameters (n, k, a, c).
- Let $x \in V(X)$. Then x has k neighbors and n k 1 non-neighbors. We will count the total number of edges between neighbors and non-neighbors of x in two ways.

- ▶ There is relationship among the parameters. That is if we know three of them, then it is possible to find fourth parameter. Let X be strongly regular graph with parameters (n, k, a, c).
- Let $x \in V(X)$. Then x has k neighbors and n k 1 non-neighbors. We will count the total number of edges between neighbors and non-neighbors of x in two ways.
- Let v_1, v_2, \ldots, v_k be neighbors of x, then the number of common neighbors of x and v_i is a. Hence number of edges between neighbors of x, non common neighbors of x are k(k-a-1).

- ▶ There is relationship among the parameters. That is if we know three of them, then it is possible to find fourth parameter. Let X be strongly regular graph with parameters (n, k, a, c).
- Let $x \in V(X)$. Then x has k neighbors and n k 1 non-neighbors. We will count the total number of edges between neighbors and non-neighbors of x in two ways.
- Let v_1, v_2, \ldots, v_k be neighbors of x, then the number of common neighbors of x and v_i is a. Hence number of edges between neighbors of x, non common neighbors of x are k(k-a-1).
- ▶ On the other hand there are n k 1 vertices not adjacent to x, each of which adjacent to c neighbors of x. Hence total number of edges between neighbors of x, non common neighbors of x are c(n k 1).

- ▶ There is relationship among the parameters. That is if we know three of them, then it is possible to find fourth parameter. Let X be strongly regular graph with parameters (n, k, a, c).
- Let $x \in V(X)$. Then x has k neighbors and n k 1 non-neighbors. We will count the total number of edges between neighbors and non-neighbors of x in two ways.
- Let v_1, v_2, \ldots, v_k be neighbors of x, then the number of common neighbors of x and v_i is a. Hence number of edges between neighbors of x, non common neighbors of x are k(k-a-1).
- ▶ On the other hand there are n k 1 vertices not adjacent to x, each of which adjacent to c neighbors of x. Hence total number of edges between neighbors of x, non common neighbors of x are c(n k 1).

- ▶ There is relationship among the parameters. That is if we know three of them, then it is possible to find fourth parameter. Let X be strongly regular graph with parameters (n, k, a, c).
- Let $x \in V(X)$. Then x has k neighbors and n k 1 non-neighbors. We will count the total number of edges between neighbors and non-neighbors of x in two ways.
- Let v_1, v_2, \ldots, v_k be neighbors of x, then the number of common neighbors of x and v_i is a. Hence number of edges between neighbors of x, non common neighbors of x are k(k-a-1).
- ▶ On the other hand there are n k 1 vertices not adjacent to x, each of which adjacent to c neighbors of x. Hence total number of edges between neighbors of x, non common neighbors of x are c(n k 1).

Thus we have k(k - a - 1) = c(n - k - 1).

Theorem (Godsil and Royle [3])

Let A be the adjacency matrix of an (n,k,a,c)-strongly regular graph X. Then,

- 1. $A^2 = kI + aA + c(\mathbf{J} I A)$.
- 2. the eigenvalues of X are k and roots of equation $x^2 (a c)x (k c) = 0$.

Proof of first part:

To prove the first part, note that he $(i, j)^{th}$ entry of A^2 is the number of walks of length of 2 from the vertex i to the vertex j. Moreover, this number determined only by whether the vertices i and j are adjacent, non-adjacent or same.

Theorem (Godsil and Royle [3])

Let A be the adjacency matrix of an (n, k, a, c)-strongly regular graph X. Then, 1. $A^2 = kI + aA + c(\mathbf{J} - \mathbf{I} - A)$.

- 2. the eigenvalues of X are k and roots of equation $x^2 (a-c)x (k-c) = 0$.

Proof of first part:

To prove the first part, note that he $(i, j)^{th}$ entry of A^2 is the number of walks of length of 2 from the vertex i to the vertex j. Moreover, this number determined only by whether the vertices i and j are adjacent, non-adjacent or same. Thus, by definition of the graph X, we have

$$(A^2)_{ij} = \begin{cases} k & \text{whenever } i = j, \\ a & \text{if } i \neq j \text{ but } i \text{ and } j \text{ are adjacent,} \\ c & \text{if } i \neq j \text{ but } i \text{ and } j \text{ are not adjacent.} \end{cases}$$

Or equivalently, $A^2 = kI + aA + cA^c = kI + aA + c(\mathbf{I} - I - A)$.

Proof of second part

Proof.

For the second part, note that k is indeed an eigenvalue of X with eigenvector \mathbf{e} . Now, let λ be an eigenvalue of X with corresponding eigenvector \mathbf{x} . Then, $\mathbf{e}^T\mathbf{x}=0$. Hence, using the first part

$$a(\lambda \mathbf{x}) = a(A\mathbf{x}) = (A^2 - kI - c(\mathbf{J} - I - A)) \mathbf{x}$$

= $\lambda^2 \mathbf{x} - k\mathbf{x} - c(0 - 1 - \lambda)\mathbf{x} = (\lambda^2 + c\lambda - (k - c))\mathbf{x}$.

As $\mathbf{x} \neq \mathbf{0}$, we must have $\lambda^2 - (a - c)\lambda - (k - c) = 0$. That is, λ satisfies the required equation.

The eigenvalues are k, $\frac{(a-c)\pm\sqrt{\Delta}}{2}$, where $\Delta=(a-c)^2+4(k-c)$.

The following result characterizes connected regular graphs with three distinct eigenvalues. The proof is easy and is left as an exercise.

The following result characterizes connected regular graphs with three distinct eigenvalues. The proof is easy and is left as an exercise.

Theorem (Shrikhande and Bhagwandas)

Let X be a connected regular graph which is not a complete graph. Then,

The following result characterizes connected regular graphs with three distinct eigenvalues. The proof is easy and is left as an exercise.

Theorem (Shrikhande and Bhagwandas)

Let X be a connected regular graph which is not a complete graph. Then,

1. X is a strongly regular if and only if A^2 is linear combination of the matrices I, J and A.

The following result characterizes connected regular graphs with three distinct eigenvalues. The proof is easy and is left as an exercise.

Theorem (Shrikhande and Bhagwandas)

Let X be a connected regular graph which is not a complete graph. Then,

- 1. X is a strongly regular if and only if A^2 is linear combination of the matrices I, J and A.
- 2. X is a strongly regular if and only if it has exactly three distinct eigenvalues.

Euler conjectured that no orthogonal Latin squares existed for oddly even numbers (even numbers not divisible by 4.).

Gaston Tarry (1843 - 1913) proved that n=6 was indeed impossible by laboriously checking all possible cases. But Euler's conjecture that orthogonality was impossible for all oddly even numbers remained to be resolved. Until 1959, when R.C. Bose, Shrikhande and E.T. Parker disproved the conjecture.

Once Shrikhande said:

"had the rare privilege of seeing our works reported on the front page of the

This conjecture by Euler was in 1782. In 1901, a French mathematician named

"had the rare privilege of seeing our works reported on the front page of the Sunday Edition of the New York Times of April 26, 1959."

Theorem (Friendship Theorem)

Let X be a finite graph such that any two distinct vertices have exactly one common neighbor. Then, there exists a vertex adjacent to all other vertices.

Proof.

Sketch of the Proof: Suppose, for contradiction, that no vertex is adjacent to all others.

Step 1: Regularity

The graph X is regular of degree k.

Theorem (Friendship Theorem)

Let X be a finite graph such that any two distinct vertices have exactly one common neighbor. Then, there exists a vertex adjacent to all other vertices.

Proof.

Sketch of the Proof: Suppose, for contradiction, that no vertex is adjacent to all others.

Step 1: Regularity

The graph X is regular of degree k.

Step 2: Strongly Regular Graph

X is strongly regular with parameters srg(n, k, 1, 1).

The eigenvalues of X are k, $\sqrt{k-1}$, $-\sqrt{k-1}$. And we know that multiplicity of k as an eigenvalue is 1. Let r, s be multiplicities of $\sqrt{k-1}$, $-\sqrt{k-1}$ respectively, then $k + r\sqrt{k-1} - s\sqrt{k-1} = 0$ That is $k + (r-s)\sqrt{k-1} = 0$. Since k = 0 not possible, hence r = s also not possible. Then $(r-s)^2(k-1) = k^2$ or $(k-1)|k^2$, and this is possible only when k = 2. This is also leads to a contradiction.

Graph	Parameters (v, k, a, c)	Degree	Vertices
$K_{n,n}$	(2n,n,0,n)	n	2n
C_5	(5, 2, 0, 1)	2	5
Petersen	(10, 3, 0, 1)	3	10
Clebsch	(16, 5, 0, 2)	5	16
Hoffman-Singleton	(50, 7, 0, 1)	7	50
Gewirtz	(56, 10, 0, 2)	10	56
M_{22}	(77, 16, 0, 4)	16	77
Higman-Sims	(100, 22, 0, 6)	22	100

Table: Strongly regular triangle-free graphs

Here $K_{n,n}$ is an infinite family of graphs. Rest are unique. Refer: https://www.math.ru.nl/OpenGraphProblems/Tjapko/30.html $\overline{\mathcal{A}(X)}$ of SRG

If *X* is a connected strongly regular graph, then $\dim(\mathcal{A}(X)) = 3$ and $\{I, A, A^c\} = \{A_0, A_1, A_2\}$ forms a basis for $\mathcal{A}(X)$.

 $\mathcal{A}(X)$ of SRG

If *X* is a connected strongly regular graph, then $\dim(\mathcal{A}(X)) = 3$ and $\{I, A, A^c\} = \{A_0, A_1, A_2\}$ forms a basis for $\mathcal{A}(X)$.

Definition

A connected graph X is said to be a **distance regular graph** if for any two vertices u, v of X, the number of vertices at distance i from u and distance j from v depends only on i, j and d(u, v), the distance between u and v.

 $\mathcal{A}(X)$ of SRG

If *X* is a connected strongly regular graph, then $\dim(\mathcal{A}(X)) = 3$ and $\{I, A, A^c\} = \{A_0, A_1, A_2\}$ forms a basis for $\mathcal{A}(X)$.

Definition

A connected graph X is said to be a **distance regular graph** if for any two vertices u, v of X, the number of vertices at distance i from u and distance j from v depends only on i, j and d(u, v), the distance between u and v.

Theorem (Damerell [2])

Let X be a distance regular graph of diameter d. Then the set of distance matrices of X, $\{A_0(X), A_1(X), \dots, A_d(X)\}$, forms a basis of the adjacency algebra $\mathcal{A}(X)$.

 $\mathcal{A}(X)$ of SRG

If *X* is a connected strongly regular graph, then $\dim(\mathcal{A}(X)) = 3$ and $\{I, A, A^c\} = \{A_0, A_1, A_2\}$ forms a basis for $\mathcal{A}(X)$.

Definition

A connected graph X is said to be a **distance regular graph** if for any two vertices u, v of X, the number of vertices at distance i from u and distance j from v depends only on i, j and d(u, v), the distance between u and v.

Theorem (Damerell [2])

Let X be a distance regular graph of diameter d. Then the set of distance matrices of X, $\{A_0(X), A_1(X), \ldots, A_d(X)\}$, forms a basis of the adjacency algebra $\mathcal{A}(X)$.

A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance regular Graphs, Springer-Verlag, (1989).

Let X be a graph with diameter d and any vertices u, v of X.

$$s_{hj}(u,v) = |\{w \in V | d(u,w) = h, \& d(v,w) = j\}|.$$

That is the number of vertices w whose distance from u is h and whose distance from v is j. In distance regular graph, this number is independent of u and v but it depends on distance between the vertices. That is if d(u,v) = i, then $s_{hij} = s_{hi}(u,v)$.

Definition

The intersection numbers of a distance regular graph with diameter d are the 3(d+1) numbers S_{hij} , where h, i and j belong to the set $\{0,1,\ldots,d\}$.

Let $v \in V(X)$ be vertex fixed. Let $u \in V(X)$ such that d(v, u) = i, where $i \in \{1, 2, ..., d\}$. If $r \in N(u)$ then $d(v, r) \in \{i - 1, i, i + 1\}$.

Let $v \in V(X)$ be vertex fixed. Let $u \in V(X)$ such that d(v,u) = i, where $i \in \{1,2,\ldots,d\}$. If $r \in N(u)$ then $d(v,r) \in \{i-1,i,i+1\}$. If X is a distance regular graph, then there exists three numbers depend on i (not on v,u) such that \bullet a_i number of neighbours of u at a distance i from v that is $a_i = |N(u) \cap X_i(v)|$

$$d(v,x) = 1 \qquad d(v,y) = 3 \qquad d(v,u) = i$$

Let $v \in V(X)$ be vertex fixed. Let $u \in V(X)$ such that d(v,u) = i, where $i \in \{1,2,\ldots,d\}$. If $r \in N(u)$ then $d(v,r) \in \{i-1,i,i+1\}$. If X is a distance regular graph, then there exists three numbers depend on i (not on v,u) such that

- ▶ a_i number of neighbours of u at a distance i from v that is $a_i = |N(u) \cap X_i(v)|$
- ▶ b_i number of neighbours of u at a distance i + 1 from v, $b_i = |N(u) \cap X_{i+1}(v)|$.

$$d(v,x) = 1 \qquad d(v,y) = 3 \qquad d(v,u) = i$$

$$v \cdot \begin{pmatrix} x \\ \cdot \end{pmatrix} \qquad \begin{pmatrix} y \\ \cdot \end{pmatrix} \qquad \cdots \qquad \begin{pmatrix} u \\ \cdot \end{pmatrix} \qquad \cdots \qquad \begin{pmatrix} u \\ \cdot \end{pmatrix} \qquad \cdots \qquad \begin{pmatrix} v \\ \cdot \end{pmatrix} \qquad$$

Let $v \in V(X)$ be vertex fixed. Let $u \in V(X)$ such that d(v, u) = i, where $i \in \{1, 2, ..., d\}$. If $r \in N(u)$ then $d(v, r) \in \{i - 1, i, i + 1\}$. If X is a distance regular graph, then there exists three numbers depend on i (not on v, u) such that

- ▶ a_i number of neighbours of u at a distance i from v that is $a_i = |N(u) \cap X_i(v)|$ ▶ b_i number of neighbours of u at a distance i+1 from v, $b_i = |N(u) \cap X_{i+1}(v)|$.
- c_i number of neighbours of u at a distance i+1 from v, $c_i = |N(u) \cap X_{i+1}(v)|$.

$$d(v, x) = 1$$
 $d(v, y) = 3$ $d(v, u) = i$

$$v \cdot \begin{pmatrix} x \\ \bullet \end{pmatrix} \qquad \begin{pmatrix} y \\ \bullet \end{pmatrix} \qquad \cdots \qquad \begin{pmatrix} u \\ \bullet \end{pmatrix} \qquad \cdots \qquad \begin{pmatrix} u \\ \bullet \end{pmatrix} \qquad \begin{pmatrix} v \\ \bullet \end{pmatrix} \qquad \begin{pmatrix} v$$

Let $v \in V(X)$ be vertex fixed. Let $u \in V(X)$ such that d(v, u) = i, where $i \in \{1, 2, ..., d\}$. If $r \in N(u)$ then $d(v, r) \in \{i - 1, i, i + 1\}$. If X is a distance regular graph, then there exists three numbers depend on i (not on v, u) such that

- ▶ a_i number of neighbours of u at a distance i from v that is $a_i = |N(u) \cap X_i(v)|$ ▶ b_i number of neighbours of u at a distance i+1 from v, $b_i = |N(u) \cap X_{i+1}(v)|$.
- c_i number of neighbours of u at a distance i+1 from v, $c_i = |N(u) \cap X_{i+1}(v)|$.

$$d(v, x) = 1$$
 $d(v, y) = 3$ $d(v, u) = i$

$$v \cdot \begin{pmatrix} x \\ \bullet \end{pmatrix} \qquad \begin{pmatrix} y \\ \bullet \end{pmatrix} \qquad \cdots \qquad \begin{pmatrix} u \\ \bullet \end{pmatrix} \qquad \cdots \qquad \begin{pmatrix} u \\ \bullet \end{pmatrix} \qquad \begin{pmatrix} v \\ \bullet \end{pmatrix} \qquad \begin{pmatrix} v$$

Let $v \in V(X)$ be vertex fixed. Let $u \in V(X)$ such that d(v,u) = i, where $i \in \{1,2,\ldots,d\}$. If $r \in N(u)$ then $d(v,r) \in \{i-1,i,i+1\}$. If X is a distance regular graph, then there exists three numbers depend on i (not on v,u) such that

- a_i number of neighbours of u at a distance i from v that is $a_i = |N(u) \cap X_i(v)|$ b_i number of neighbours of u at a distance i+1 from v, $b_i = |N(u) \cap X_{i+1}(v)|$.
- c_i number of neighbours of u at a distance i-1 from v, $c_i = |N(u) \cap X_{i-1}(v)|$.

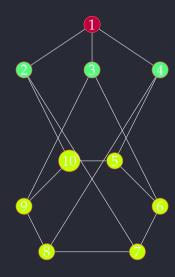
It is clear that b_d , and c_0 are undefined. We will take $c_0 = b_d = 0$.

$$v \cdot \begin{pmatrix} x \\ \bullet \end{pmatrix} \qquad \begin{pmatrix} y \\ \bullet \end{pmatrix} \qquad \cdots \qquad \begin{pmatrix} u \\ \bullet \end{pmatrix} \qquad \cdots \qquad \begin{pmatrix} u \\ \bullet \end{pmatrix} \qquad \cdots \qquad \begin{pmatrix} v \\ \bullet \end{pmatrix} \qquad$$

d(v, x) = 1 d(v, y) = 3 d(v, u) = i

The intersection array of X denoted i(X) given as $\begin{pmatrix} * & c_1 & c_2 & \dots & c_{d-1} & c_d \\ a_0 & a_1 & a_2 & \dots & a_{d-1} & a_d \\ b_0 & b_1 & b_2 & \dots & b_{d-1} & * \end{pmatrix}.$

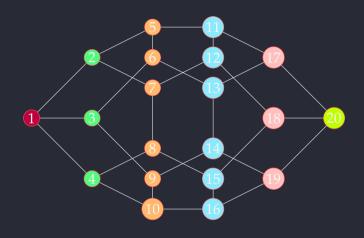
Further it is clear that $a_i + b_i + c_i = b_0$, $b_0 = k$, if X is a k- regular graph. Hence $i(X) = (k, b_1, \dots, b_{d-1}; 1, c_2, \dots, c_d)$.



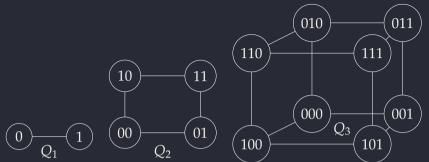
- ▶ Distance partition of Petersen graph.
- ► It is an equitable partition.
- ▶ Intersection array is (3,2;1,1).

$$\begin{bmatrix}
a_0 & b_0 & 0 \\
c_1 & a_1 & b_1 \\
0 & c_2 & a_2
\end{bmatrix} = \begin{bmatrix}
0 & 3 & 0 \\
1 & 0 & 2 \\
0 & 1 & 2
\end{bmatrix}$$

- Distance regular graph with diameter 2.
- Strongly regular graph.



- ► The Dodecahedron
- $\begin{bmatrix} * & 1 & 1 & 1 & 2 & 3 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 3 & 2 & 1 & 1 & 1 & * \end{bmatrix}$
- ▶ Distance transitive hence distance regular.



The k-cube, Q_k is the graph defined as follows: the vertices of Q_k are the $(\epsilon_1, \epsilon_2, \ldots, \epsilon_k)$, where $\epsilon_i = 0$ or 1 for $1 \le i \le k$ and two vertices are adjacent when their symbols differ in exactly one coordinate. The graph Q_k $(k \ge 2)$ is distance-transitive, with valency k, diameter k, and intersection array $\{k, k-1, k-2, \ldots, 1; 1, 2, 3, \ldots, k\}$. For Q_3 $\{X_0(000), \ldots, X_3(000)\} = \{\{000\}, \{100, 010, 001\}, \{110, 101, 110\}, \{111\}\}$.

The number of vertices can be obtained from the intersection array. In fact, every vertex has a constant number of vertices k_i at given distance i, that is, $k_i = |X_i(z)|$ for all $z \in V$. Indeed, this follows by induction and counting the number of edges between $X_i(z)$ and $X_{i+1}(z)$ in two ways. In particular, it follows that $k_0 = 1$ and

$$k_{i+1} = \frac{b_i k_i}{c_{i+1}}$$

for all $i=0,1,\ldots,d-1$. The number of vertices now follows as $v=k_0+k_1+\cdots+k_d$. In combinatorial arguments such as the above, it helps to draw pictures; in particular, of the so-called *distance-distribution diagram*, as depicted in Figure.

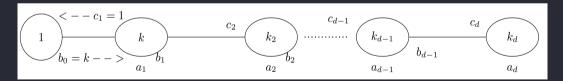


Figure: Distance-distribution diagram

Proposition

With notation as above, the following conditions hold:

- (i) $k_{i+1} = \frac{b_0 b_1 \cdots b_i}{c_1 c_2 \cdots c_{i+1}}$ is an integer for $i = 0, 1, \dots, d-1$,
- (ii) numbers nk_i , k_ia_i are even for i = 1, 2, ..., d,
- (iii) nka_1 is divisible by 6.

Proof.

we already observed the recurrence $k_{i+1} = b_i k_i / c_{i+1}$ for all i = 0, 1, ..., d-1, and this implies that $k_{i+1} = \frac{b_0 b_1 \cdots b_i}{c_1 c_2 \cdots c_{i+1}}$ for i = 0, 1, ..., d-1. These numbers are clearly positive integers. By doubly counting all pairs (z, e), where z is an end vertex of edge e in X_i , it follows that the number of edges in X_i equals $vk_i/2$, which should be an integer. Similarly, there are $k_i a_i/2$ edges of X within $X_i(z)$ for a fixed vertex z, and this should be an integer. Finally, the number of triangles in X equals $vka_1/6$.

Proposition

With notation as above, the following conditions hold:

(i)
$$1 = c_1 \le c_2 \le \cdots \le c_d$$
, $k = b_0 \ge b_1 \ge \cdots \ge b_{d-1}$,

- (ii) If $i + j \le d$, then $c_i \le b_j$,
- (iii) There is an i such that $k_0 \le k_1 \le \cdots \le k_i$ and $k_{i+1} \ge k_{i+2} \ge \cdots \ge k_d$.

Proof.

Let $i=1,2,\ldots,d$. Consider two vertices x and y at distance i, and a vertex z that is adjacent to x and at distance i-1 from y. Now the c_{i-1} neighbors of y that are at distance i-2 from z are all at distance i-1 from x. Therefore $c_i \geq c_{i-1}$. Similarly, the b_i neighbors of y that are at distance i+1 from x are at distance i from z, hence $b_{i-1} \geq b_i$. (ii) Consider two vertices x and y at distance i+j, and a vertex z at distance i from x and y from y. Then the c_i neighbors of z that are at distance i-1 from x are at distance y and y thence y in y. Hence y in y

- \blacktriangleright Let A be the adjacency matrix of the cycle graph C_n .
- ► Then, $\gamma_A(x) = x + x^{n-1}$ is its representer polynomial and its eigenvalues are given by $\lambda_r = 2\cos(\frac{2\pi r}{r})$, for $r = 0, 1, \dots, n-1$. It is easy to see that $\lambda_r = \lambda_{n-r}$ $\overline{\text{for } r} = 1, \dots, n-1.$
- ightharpoonup As, the diameter of C_n is $\left|\frac{n}{2}\right|$, we see that C_n has $\left|\frac{n}{2}\right|+1$ distinct eigenvalues and dim($\mathcal{A}(C_n)$) = $\lfloor \frac{n}{2} \rfloor + \overline{1}$. It is easy to see that the cycle graph is a distance polynomial graph, i.e., its distance matrices belong to its adjacency algebra. In fact they form a basis of the adjacency algebra.
- Cycle graph is an example of distance regular graph, infact it is distance transitive graph, we will define distance transitive graphs shortly.

For example, the basis for $\mathcal{A}(C_4)$ is $\{I, A, A^2\}$ another basis is

 $\{I, A = A_1, A^c = A_2\}$. Same with C_5 .

For C_6 and C_7 the basis are $\{I, A, A^2, A^3\}$ or $\{I, A_1, A_2, A_3\}$.

The following result shows that every symmetric circulant matrix is a polynomial

in the cycle graph. Hence, the eigenvalues of every circulant graph can be

computed using the eigenvalues of C_n .

The following result shows that every symmetric circulant matrix is a polynomial in the cycle graph. Hence, the eigenvalues of every circulant graph can be computed using the eigenvalues of C_n .

Theorem

Let $B \in M_n(\mathbb{Q})$. Then B is symmetric circulant matrix if and only if $B \in \mathcal{A}(C_n)$.

The following result shows that every symmetric circulant matrix is a polynomial in the cycle graph. Hence, the eigenvalues of every circulant graph can be computed using the eigenvalues of C_n .

Theorem

Let $B \in M_n(\mathbb{Q})$. Then B is symmetric circulant matrix if and only if $B \in \mathcal{A}(C_n)$.

Proof.

By the definition of the adjacency algebra of a graph, every element in $\mathcal{A}(C_n)$ is a symmetric circulant matrix. We now show that if B is a symmetric circulant matrix, then $B \in \mathcal{A}(C_n)$.

The following result shows that every symmetric circulant matrix is a polynomial in the cycle graph. Hence, the eigenvalues of every circulant graph can be computed using the eigenvalues of C_n .

Theorem

Let $B \in M_n(\mathbb{Q})$. Then B is symmetric circulant matrix if and only if $B \in \mathcal{A}(C_n)$.

Proof.

By the definition of the adjacency algebra of a graph, every element in $\mathcal{A}(C_n)$ is a symmetric circulant matrix. We now show that if B is a symmetric circulant matrix, then $B \in \mathcal{A}(C_n)$.

Let B be a symmetric circulant matrix with the representer polynomial $\gamma_B(x) = \sum_{i=0}^{n-1} b_i x^i$. Then $B = \sum_{i=0}^{n-1} b_i W_n^i$ and $B^T = \sum_{i=0}^{n-1} b_i W_n^{n-i}$. Consequently $b_i = b_{n-i}$, for $1 \le i \le n-1$. Thus, $B = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} b_i A_i$ and hence, the required result follows.

A.K.Lal and A.Satyanarayana Reddy, *Non-singular circulant graphs and digraphs*, Electronic Journal of Linear Algebra, Volume 26,(2013), 248–257.

Few examples of distance regular graphs and their intersection array.

Graph	Intersection array $(k, b_1, \ldots, b_{d-1}; 1, c_2, \ldots, c_d)$
K_n	(n-1;1)
C_n	$(2,1,1,\ldots,1;1,1,\ldots,1)$ if n is odd.
	$(2,1,1,\ldots,1;1,1,\ldots,2)$ if <i>n</i> is even.

For an integer $k \ge 2$, the vertices of the Odd graph O_k are the (k-1)-subsets of a set of size 2k-1, and two vertices are adjacent if the corresponding subsets are disjoint. The Odd graph O_k is distance-regular with diameter k-1.

For odd k = 2l - 1, its intersection array is

$$(k, k-1, k-1, \ldots, l+1, l+1, l; 1, 1, 2, 2, \ldots, l-1, l-1).$$

For even k = 2l, the intersection array is $(k, k - 1, k - 1, \ldots, l + 1, l + 1; 1, 1, 2, 2, \ldots, l - 1, l - 1, l)$. Consequently, the numbers a_i are zero for all $i = 0, 1, \ldots, d - 1$, but $a_d = l > 0$.

The Johnson graph J(n,k) is a distance-regular graph with diameter $d = \min(k, n - k)$. For $0 \le i \le d$, the intersection numbers are given by:

For I(7,3), we have n=7, k=3, and diameter $d=\min(3,4)=3$.

$$b_i = (k-i)(n-k-i), \ a_i = i(n-2i) + i^2, \ c_i = i^2$$

for i = 0, 1, 2, ..., d, where $d = \min(k, n - k)$.

The intersection numbers are: $b_0 = (3-0)(7-3-0) = 12$ $b_1 = (3-1)(7-3-1) = 6$ $b_2 = (3-2)(7-3-2) = 2$

$$b_0 = (3-0)(7-3-0) = 12, b_1 = (3-1)(7-3-1) = 6, b_2 = (3-2)(7-3-2) = 2,$$

$$c_1 = 1^2, c_2 = 2^2, c_3 = 3^2.$$

The intersection array is: $\{12, 6, 2, 1, 4, 9\}$

Recall that the adjacency algebra $\mathcal{A}(X)$ of a distance regular graph X has a basis $\{A_0, A_1, \ldots, A_d\}$ and $A_h A_i = \sum s_{hij} A_j$. This equation can be interpreted as saying that left multiplication by A_h (regarded as linear mapping of $\mathcal{A}(X)$ w.r.to given basis) is faithfully represented by $(d+1) \times (d+1)$ matrix B_h with $(B_h)_{ii} = s_{hii}$.

Proposition

The adjacency algebra A(X) of a distance regular graph with diameter d can be faithfully represented by an algebra of matrices with d+1 rows and columns. A basis of this representation is the set $\{B_0, B_1, \ldots, B_d\}$ where $(B_h)_{ij}$ is the intersection number S_{hij} for $h, i, j \in \{0, 1, \ldots, d\}$.

$$B_1 = \begin{bmatrix} 0 & k & 0 & 0 & \dots & 0 \\ c_1 & a_1 & b_1 & 0 & \dots & 0 \\ 0 & c_2 & a_2 & b_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ \dots & \dots & \dots & c_{d-1} & a_{d-1} & b_{d-1} \\ 0 & 0 & 0 & \dots & c_d & a_d \end{bmatrix}$$

It is cleat that B_1 is quotient matrix (B). Hence similar to symmetric matrix. Since $c_1c_2\cdots c_d\neq 0$ the rank of $B-\theta I$ is d+1 for every $\theta\in\mathbb{R}$. Hence all eigenvalues of B are distinct. The members of $\mathcal{A}(X)$ can now be regarded as square matrices of size d+1 (instead of n) a considerable simplification. What is more important is the matrix B_1 it self is sufficient. If you call B_1 as B, then

$$BB_i = b_{i-1}B_{i-1} + a_iB_i + c_{i+1}B_{i+1}.$$

Consequently each B_i ($i \ge 2$) is a polynomial in B with coefficients depend only on the entries of B.

Since B is the image of adjacency matrix A under faithful representation, the minimal polynomial of A and B coincide.

$$AA_i = b_{i-1}A_{i-1} + a_iA_i + c_{i+1}A_{i+1} \text{ for } i \in \{0, 1, \dots, d\}$$

Theorem

A connected graph Γ is distance-regular if and only if:

- 1. For every vertex $v \in V$, the distance partition $\{V_0(v), V_1(v), \dots, V_d(v)\}$ is equitable
- 2. The intersection numbers p_{ij} are independent of the choice of vertex v

Proof.

(\Rightarrow) Suppose Γ is distance-regular with intersection numbers $\{b_k\}$ and $\{c_k\}$. For any vertex v, consider its distance partition $\{V_0(v), V_1(v), \dots, V_d(v)\}$. For $u \in V_k(v)$:

- Any neighbor w of u with $\partial(v,w)=k-1$ contributes to $p_{k,k-1}$, and by distance-regularity, there are exactly c_k such neighbors
- Any neighbor w of u with $\partial(v,w)=k$ contributes to $p_{k,k}$, and there are $a_k=\deg(u)-b_k-c_k$ such neighbors
- Any neighbor w of u with $\partial(v, w) = k + 1$ contributes to $p_{k,k+1}$, and there are exactly b_k such neighbors

Thus the partition is equitable with intersection numbers:

$$p_{k,k-1} = c_k$$
, $p_{k,k} = a_k$, $p_{k,k+1} = b_k$, and $p_{ij} = 0$ for $|i - j| > 1$

These numbers are independent of the choice of v by the definition of distance-regularity.

- (\Leftarrow) Suppose for every vertex v, the distance partition is equitable with intersection numbers independent of v. Let $u,v\in V$ with $\partial(u,v)=k$. Consider the distance partition from u: $\{V_0(u),V_1(u),\ldots,V_d(u)\}$ where $v\in V_k(u)$. By the equitable condition:
 - ► The number of neighbors of v in $V_{k-1}(u)$ is $p_{k,k-1}$
 - ► The number of neighbors of v in $V_{k+1}(u)$ is $p_{k,k+1}$

Since these intersection numbers are independent of the choice of u, we can define:

$$c_k = p_{k,k-1}$$
 and $b_k = p_{k,k+1}$

for all $0 \le k \le d$ (with appropriate boundary conditions $c_0 = b_d = 0$). Therefore, Γ is distance-regular with intersection numbers $\{b_k\}$ and $\{c_k\}$.

Table: Distance-Regular Graphs of Valency 3

Graph	Description	Vertices
Complete graph K ₄	Complete graph on 4 vertices	4
$K_{3,3}$	Complete bipartite graph	6
3-cube Q_3	Cube graph (Hamming graph $H(3,2)$)	8
Petersen graph	Famous symmetric graph	10
Heawood graph	(3,6)-cage	14
Pappus graph	Incidence graph of the Pappus configuration	18
Desargues graph	Incidence graph of Desargues config.	20
Dodecahedron graph	Vertices of a dodecahedron	20
Coxeter graph	Symmetric cubic graph	28
Tutte-Coxeter graph	Symmetric cubic distance-transitive graph	30
Foster graph	Smallest cubic symmetric graph with girth 10	90
Biggs-Smith graph	Sporadic example, girth 9	102
Tutte 12-cage	(3,12)-cage, also called Tutte's 12-cage	126

Table: Distance-regular graphs with valency 3

Intersection array	п	d	g	Name
{3;1}	4	1	3	K_4
{3,2,1,3}	6	2	4	$K_{3,3}$
{3,2,1;1,2,3}	8	3	4	Cube $\sim K^*_{3'3}$
{3,2;1,1}	10	2	5	Petersen $\sim O_3$
{3,2,2;1,1,3}	14	3	6	Heawood $\sim IG(7,3,1)$
{3,2,2,1;1,1,2,3}	18	4	6	Pappus $\sim IG(AG(2,3) \setminus pc)$
{3,2,2,1,1;1,1,2,2,3}	20	5	6	Desargues $\sim DO_3$
{3,2,1,1,1;1,1,1,2,3}	20	5	5	Dodecahedron
{3,2,2,1,1,1;1,1,1,1,2}	28	4	7	Coxeter
${3,2,2,2,1,1,1;1,1,1,1,3}$	30	4	8	Tutte's 8-cage $\sim IG(GQ(2,2))$
${3,2,2,2,2,1,1,1;1,1,1,1,2,2,2,3}$	90	8	10	Foster
${3,2,2,2,1,1,1;1,1,1,1,1,1,3}$	102	7	9	Biggs-Smith
{3,2,2,2,2,2;1,1,1,1,1,3}	126	6	12	Tutte's 12-cage $\sim IG(GH(2,2))$

Definition

A graph X is said to be **distance transitive** if for all vertices u, v, x, y of X with d(u, v) = d(x, y), there is a $g \in Aut(X)$ satisfying g(u) = x and g(v) = y.

Definition

A graph X is said to be **distance transitive** if for all vertices u, v, x, y of X with d(u, v) = d(x, y), there is a $g \in Aut(X)$ satisfying g(u) = x and g(v) = y.

The distance transitive graphs are both vertex and edge transitive.

Definition

A graph X is said to be **distance transitive** if for all vertices u, v, x, y of X with d(u, v) = d(x, y), there is a $g \in Aut(X)$ satisfying g(u) = x and g(v) = y.

The distance transitive graphs are both vertex and edge transitive. Complete graphs K_n , cycle graphs C_n and complete bipartite graphs $K_{m,n}$ with m = n are a few examples of distance transitive graphs.

Definition

A graph X is said to be **distance transitive** if for all vertices u, v, x, y of X with d(u, v) = d(x, y), there is a $g \in Aut(X)$ satisfying g(u) = x and g(v) = y.

The distance transitive graphs are both vertex and edge transitive. Complete graphs K_n , cycle graphs C_n and complete bipartite graphs $K_{m,n}$ with m=n are a few examples of distance transitive graphs. There are a few class of graphs which attain the lower bound in the inequality $d+1 \le \dim(\mathcal{A}(X)) \le n$. The class of distance transitive graphs are one among them.

Definition

A graph X is said to be **distance transitive** if for all vertices u, v, x, y of X with d(u,v) = d(x,y), there is a $g \in Aut(X)$ satisfying g(u) = x and g(v) = y.

The distance transitive graphs are both vertex and edge transitive. Complete graphs K_n , cycle graphs C_n and complete bipartite graphs $K_{m,n}$ with m=n are a few examples of distance transitive graphs. There are a few class of graphs which attain the lower bound in the inequality $d+1 \le \dim(\mathcal{A}(X)) \le n$. The class of distance transitive graphs are one among them.

Theorem

Let X be a distance transitive graph with diameter \overline{d} . Then $\dim(\mathcal{A}(X)) = d + 1$.

- Suppose G = Aut(X) acts distance transitively on X and $u \in V(X)$. If v and w are two vertices at distance i from u, there is an element of G that maps (u, v) to (u, w), i.e., there is an element of G_u that maps v to w, and so G acts transitively on $X_i(u)$.
- ▶ Thus, the cells of the distance partition with respect to u are the orbits of G_u . ▶ If X has diameter d, then it follows that G acts distance transitively on X if
- ▶ If X has diameter d, then it follows that G acts distance transitively on X if and only if it acts transitively and, for any vertex $u \in V(X)$, the vertex stabilizer G_u has exactly d + 1 orbits.

In other words, the group G is transitive with rank d + 1.

Orbital Matrices

In fact, in case of distance transitive graphs something more is true and to state it, we need the following definition.

Orbital Matrices

In fact, in case of distance transitive graphs something more is true and to state it, we need the following definition.

Definition

Let G be a group acting on a non-empty set V. Then G also acts on $V \times V$, by g(x,y) = (g(x),g(y)). For each fixed element $(u,v) \in V \times V$, the set $Orb(u,v) = \{g(u,v) : g \in G\}$ is called the orbit of (u,v), under the action of G. The distinct orbits of $V \times V$ under the action of G are called orbitals.

In the context of a graph X = (V, E), the orbitals of X are the distinct orbits of $E \subset V \times V$ under the action of $\operatorname{Aut}(X)$. That is, the *orbitals* are the orbits of the arcs/non-arcs of the graph X.

In the context of a graph X = (V, E), the orbitals of X are the distinct orbits of $E \subset V \times V$ under the action of $\operatorname{Aut}(X)$. That is, the *orbitals* are the orbits of the arcs/non-arcs of the graph X. The number of orbitals is called the *rank* of $\operatorname{Aut}(X)$.

Note that, for each fixed $(u, v) \in V \times V$, we can associate a 0, 1-matrix, say $M = [m_{ij}]$, where m_{ij} equals 1, if $(i, j) \in Orb(u, v)$ and 0, otherwise.

In the context of a graph X = (V, E), the orbitals of X are the distinct orbits of $E \subset V \times V$ under the action of $\operatorname{Aut}(X)$. That is, the *orbitals* are the orbits of the arcs/non-arcs of the graph X. The number of orbitals is called the *rank* of $\operatorname{Aut}(X)$. Note that, for each fixed $(u, v) \in V \times V$, we can associate a 0,1-matrix, say $M = [m_{ij}]$, where m_{ij} equals 1, if $(i, j) \in \operatorname{Orb}(u, v)$ and 0, otherwise. The matrices obtained by the above method are called *orbital matrices*. Also, note that for any orbital matrix all its non-zero entries either appear on the main diagonal or they appear on off-diagonal as g(v, v) = (g(v), g(v)), for all $v \in V$ and $g \in \operatorname{Aut}(X)$. The

orbitals containing 1's on the diagonal will be called *diagonal* orbitals.

In the context of a graph X = (V, E), the orbitals of X are the distinct orbits of $E \subset V \times V$ under the action of Aut(X). That is, the *orbitals* are the orbits of the Note that, for each fixed $(u, v) \in V \times V$, we can associate a 0, 1-matrix, say

arcs/non-arcs of the graph X. The number of orbitals is called the *rank* of Aut(X). $M = [m_{ij}]$, where m_{ij} equals 1, if $(i, j) \in Orb(u, v)$ and 0, otherwise. The matrices obtained by the above method are called *orbital matrices*. Also, note that for any orbital matrix all its non-zero entries either appear on the main diagonal or they appear on off-diagonal as g(v,v)=(g(v),g(v)), for all $v\in V$ and $g\in \operatorname{Aut}(X)$. The orbitals containing 1's on the diagonal will be called *diagonal* orbitals. If X is a distance transitive graph then orbital matrices and the distance matrices

defined earlier will coincide. Moreover, they form a basis for adjacency algebra $\mathcal{A}(X)$.

- ► The theory which underlies our treatment of the adjacency algebra of a distance regular graph was developed in two quite different contexts.
- First, the association schemes used by Bose in the statistical design of experiments led to an association algebra (Bose and Mesner 1959), which corresponds to our adjacency algebra.
- ➤ Concurrently, the work of Schur (1933) and Wielandt ring, of a permutation group,(1964) on the commuting algebra, or centralizer culminated in the paper of Higman (1967) which employs graph-theoretic ideas very closely related to those of this discussions.
- ▶ The connection between the theory of the commuting algebra and distance transitive graphs is also can be found.

▶ Let $A, B \in \mathbb{M}_n(\mathbb{C})$. Then the *Hadamard product* of $A = [a_{ij}]$ and $B = [b_{ij}]$, denoted $A \odot B$, is defined as $(A \odot B)_{ij} = a_{ij}b_{ij}$, for $1 \le i, j \le n$.

- ▶ Let $A, B \in \mathbb{M}_n(\mathbb{C})$. Then the Hadamard product of $A = [a_{ij}]$ and $B = [b_{ij}]$, denoted $A \odot B$, is defined as $(A \odot B)_{ij} = a_{ij}b_{ij}$, for $1 \le i, j \le n$.
- ▶ Two matrices $A, B \in \mathbb{M}_n(\mathbb{C})$ are said to be *disjoint* if their Hadamard product is the zero matrix.

- ▶ Let $A, B \in \mathbb{M}_n(\mathbb{C})$. Then the Hadamard product of $A = [a_{ij}]$ and $B = [b_{ij}]$, denoted $A \odot B$, is defined as $(A \odot B)_{ij} = a_{ij}b_{ij}$, for $1 \le i, j \le n$.
- Two matrices $A, B \in \mathbb{M}_n(\mathbb{C})$ are said to be *disjoint* if their Hadamard product is the zero matrix.
- Let *S* be a non-empty subset of $\mathbb{M}_n(\mathbb{C})$. Then *S* is said to be closed under conjugate transposition if $A^* \in S$, for all $A \in S$

- ▶ Let $A, B \in \mathbb{M}_n(\mathbb{C})$. Then the Hadamard product of $A = [a_{ij}]$ and $B = [b_{ij}]$, denoted $A \odot B$, is defined as $(A \odot B)_{ij} = a_{ij}b_{ij}$, for $1 \le i, j \le n$.
- Two matrices $A, B \in \mathbb{M}_n(\mathbb{C})$ are said to be *disjoint* if their Hadamard product is the zero matrix.
- Let S be a non-empty subset of $\mathbb{M}_n(\mathbb{C})$. Then S is said to be closed under conjugate transposition if $A^* \in S$, for all $A \in S$ and is said to be closed under Hadamard product if $A \odot B \in S$, whenever $A, B \in S$. We denote the matrices with entries either 0 or 1 as 0, 1-matrices.

- ▶ Let $A, B \in \mathbb{M}_n(\mathbb{C})$. Then the Hadamard product of $A = [a_{ij}]$ and $B = [b_{ij}]$, denoted $A \odot B$, is defined as $(A \odot B)_{ij} = a_{ij}b_{ij}$, for $1 \le i, j \le n$.
- Two matrices $A, B \in \mathbb{M}_n(\mathbb{C})$ are said to be *disjoint* if their Hadamard product is the zero matrix.
- Let S be a non-empty subset of $\mathbb{M}_n(\mathbb{C})$. Then S is said to be closed under conjugate transposition if $A^* \in S$, for all $A \in S$ and is said to be closed under Hadamard product if $A \odot B \in S$, whenever $A, B \in S$. We denote the matrices with entries either 0 or 1 as 0,1-matrices.

Theorem (Higman [2], Brouwer, Cohen & Neumaier [4])

Let $\mathcal M$ be a vector subspace of symmetric $n \times n$ matrices. Then $\mathcal M$ has a basis of mutually disjoint 0, 1-matrices if and only if $\mathcal M$ is closed under Hadamard multiplication.

A subalgebra of $\mathbb{M}_n(\mathbb{C})$ containing the matrices I (Identity matrix) and \mathbb{J} (matrix with all entries being 1) is called a coherent algebra if it is closed under conjugate-transposition and Hadamard product.

 $ightharpoonup \mathbb{M}_n(\mathbb{C})$ is the largest coherent algebra.

- ▶ $\mathbf{M}_n(\mathbb{C})$ is the largest coherent algebra.
- ▶ The minimal polynomial of **J** is $p_{\mathbf{J}}(x) = x(x n)$.

- $ightharpoonup \mathbb{M}_n(\mathbb{C})$ is the largest coherent algebra.
- ▶ The minimal polynomial of **J** is $p_{\mathbf{J}}(x) = \overline{x(x-n)}$.
 - ▶ Hence $\dim(\mathbb{C}[J]) = 2$.

- $ightharpoonup \mathbb{M}_n(\mathbb{C})$ is the largest coherent algebra.
- ▶ The minimal polynomial of **J** is $p_{\mathbf{I}}(x) = x(x n)$.
 - ▶ Hence dim($\mathbb{C}[J]$) = 2. Also, the set $\{I, J I\}$ is the mutually disjoint 0, 1-matrix basis for $\mathbb{C}[J]$.

- ▶ $\mathbf{M}_n(\mathbb{C})$ is the largest coherent algebra.
- ▶ The minimal polynomial of **J** is $p_{\mathbf{I}}(x) = x(x n)$.
 - ▶ Hence dim($\mathbb{C}[J]$) = 2. Also, the set $\{I, J I\}$ is the mutually disjoint 0, 1-matrix basis for $\mathbb{C}[J]$.
 - ▶ Thus, from Theorem 126, $\mathbb{C}[J]$ is a coherent algebra.

- $ightharpoonup \mathbb{M}_n(\mathbb{C})$ is the largest coherent algebra.
- ▶ The minimal polynomial of **J** is $p_{\mathbf{I}}(x) = x(x-n)$.
 - ▶ Hence dim($\mathbb{C}[J]$) = 2. Also, the set $\{I, J I\}$ is the mutually disjoint 0, 1-matrix basis for $\mathbb{C}[J]$.
 - ▶ Thus, from Theorem 126, $\mathbb{C}[J]$ is a coherent algebra.
 - As any coherent algebra contains both I and J, it is clear that $\mathbb{C}[J]$ is the smallest coherent algebra.

- ▶ $\mathbb{M}_n(\mathbb{C})$ is the largest coherent algebra.
- ▶ The minimal polynomial of **J** is $p_{\mathbf{J}}(x) = x(x n)$.
 - ▶ Hence dim($\mathbb{C}[J]$) = 2. Also, the set $\{I, J I\}$ is the mutually disjoint 0, 1-matrix basis for $\mathbb{C}[J]$.
 - ightharpoonup Thus, from Theorem 126, C[J] is a coherent algebra.
 - As any coherent algebra contains both I and J, it is clear that C[J] is the smallest coherent algebra.
- Note that C[J] = C[J I] which is same as $A(K_n)$.

matrices which commute with *P* is a non-trivial example of a coherent algebra.

Let $P(\neq I)$ be a permutation matrix. Then it is easy to check that the set of all

Let $P(\neq I)$ be a permutation matrix. Then it is easy to check that the set of all matrices which commute with P is a non-trivial example of a coherent algebra. For example, let

$$W_n = egin{bmatrix} 0 & 1 & 0 & \dots & 0 \ 0 & 0 & 1 & \dots & 0 \ dots & dots & dots & \ddots & dots \ 0 & 0 & 0 & \dots & 1 \ 1 & 0 & 0 & \dots & 0 \end{bmatrix}.$$

The minimal polynomial of W_n is $x^n - 1 = \prod_{d|n} \Phi_d(x)$

Let $P(\neq I)$ be a permutation matrix. Then it is easy to check that the set of all matrices which commute with *P* is a non-trivial example of a coherent algebra. For example, let

$$W_n = egin{bmatrix} 0 & 1 & 0 & \dots & 0 \ 0 & 0 & 1 & \dots & 0 \ dots & dots & dots & \ddots & dots \ 0 & 0 & 0 & \dots & 1 \ 1 & 0 & 0 & \dots & 0 \end{bmatrix}.$$

The minimal polynomial of W_n is $x^n - 1 = \prod \Phi_d(x)$ and $\{I_n = W_n^0, W_n^1, W_n^2, \dots, W_n^{n-1}\}\$ forms a basis of $\mathbb{F}[W_n]$.

$$\{I_n=W_n^0,W_n^1,W_n^2,\ldots,W_n^{n-1}\}$$
 forms a basis of $\mathbb{F}[W]$

Let $P(\neq I)$ be a permutation matrix. Then it is easy to check that the set of all matrices which commute with P is a non-trivial example of a coherent algebra. For example, let

$$W_n = egin{bmatrix} 0 & 1 & 0 & \dots & 0 \ 0 & 0 & 1 & \dots & 0 \ dots & dots & dots & \ddots & dots \ 0 & 0 & 0 & \dots & 1 \ 1 & 0 & 0 & \dots & 0 \end{bmatrix}.$$

The minimal polynomial of W_n is $x^n - 1 = \prod_{d|n} \Phi_d(x)$ and

 $\{I_n = W_n^0, W_n^1, W_n^2, \dots, W_n^{n-1}\}\$ forms a basis of $\mathbb{F}[W_n]$.

We already observed that W_n is the adjacency matrix of a directed cycle.

The theory offers a unifying frame work for studying combinatorial objects like codes, designs, finite geometries and graphs with high regularity. (Bannai-Ito Perspective).

1900's: Finite group theory and Character theory (dating back to Frobenious, Burnside and Schur).

The theory offers a unifying frame work for studying combinatorial objects like codes, designs, finite geometries and graphs with high regularity. (Bannai-Ito Perspective).

1900's: Finite group theory and Character theory (dating back to Frobenious, Burnside and Schur).

1940's: C-Algebras (Y-Kawada)

The theory offers a unifying frame work for studying combinatorial objects like codes, designs, finite geometries and graphs with high regularity. (Bannai-Ito Perspective).

1900's: Finite group theory and Character theory (dating back to Frobenious, Burnside and Schur).

1940's: C-Algebras (Y-Kawada)

1952's: Experimental designs in statistics

(R.C.Bose, T. Shimatoto).

The theory offers a unifying frame work for studying combinatorial objects like codes, designs, finite geometries and graphs with high regularity. (Bannai-Ito Perspective).

1900's: Finite group theory and Character theory (dating back to Frobenious, Burnside and Schur).

1940's: C-Algebras (Y-Kawada)

1952's: Experimental designs in statistics (R.C.Bose, T. Shimatoto).

1959's: Algebras from association schemes (R.C.Bose and D. Mesner).

The theory offers a unifying frame work for studying combinatorial objects like codes, designs, finite geometries and graphs with high regularity. (Bannai-Ito Perspective).

1900's: Finite group theory and Character 1970's: Coherent configurations (D.G. theory (dating back to Frobenious, Higman).

Burnside and Schur).

1940's: C-Algebras (Y-Kawada)

1952's: Experimental designs in statistics (R.C.Bose, T. Shimatoto).

1959's: Algebras from association schemes (R.C.Bose and D. Mesner).

The theory offers a unifying frame work for studying combinatorial objects like codes, designs, finite geometries and graphs with high regularity. (Bannai-Ito Perspective).

1900's: Finite group theory and Character 1970's: Coherent configurations (D.G. theory (dating back to Frobenious, Higman).

Burnside and Schur). 1973's: P. Delsarto's Thesis. "An algebraic problem of the configuration of the configuration

Burnside and Schur). 1973's: P Delsarte's Thesis. "An algebraic 1940's: C-Algebras (Y-Kawada) approach to the association

1952's: Experimental designs in statistics schemes of coding theory". (R.C.Bose, T. Shimatoto).

1959's: Algebras from association schemes (R.C.Bose and D. Mesner).

The theory offers a unifying frame work for studying combinatorial objects like codes, designs, finite geometries and graphs with high regularity. (Bannai-Ito Perspective).

1900's:	Finite group theory and Character theory (dating back to Frobenious,		Coherent configurations (D.G. Higman).
	Burnside and Schur).	1973's:	P Delsarte's Thesis. " An algebraic
1940's:	C-Algebras (Y-Kawada)		approach to the association
1952's:	Experimental designs in statistics		schemes of coding theory".
	(R.C.Bose, T. Shimatoto).	1984's:	Bannai-Ito book "Algebraic
1959's:	Algebras from association scheme	s	Combinatorics Part-1, Association
	(R.C. Bose and D. Mesner)		schemes"

Association Scheme: $X = (\Omega, \{R_i\}_{i=0}^m)$ of class m on a set Ω . $\{R_i\}_{i=0}^m$ is partition of $\Omega \times \Omega$.

1. If $(x,y) \in R_k$, then $|\{w \in \Omega : (x,w) \in R_i, (w,y) \in R_j\}| = p_{ij}^k$.

- 2. $\{R_i\}_{i=0}^m = \{R_i^T\}_{i=0}^m$.
- 3. $R_0 = I$.
- $\triangleright p_{ii}^k$: intersection numbers.
- $ightharpoonup p_{ii}^0 = k_i \text{ valency}$
- ightharpoonup X is symmetric $\Leftrightarrow R_i = R_i^T$.
- ightharpoonup X is commutative $\Leftrightarrow p_{ii}^k = p_{ii}^k$.

- Let *G* be a finite group acting transitively on a finite set Ω . Then acts on $\Omega \times \Omega$ as g(x,y) = (g(x),g(y)). Let R_0,R_1,\ldots,R_d be the *G* orbits of $\Omega \times \Omega$ with $R_0 = \{(x,x)|x \in \Omega\}$.
- Let G be a finite group with conjugacy classes C_0, C_2, \ldots, C_d . Define $(x,y) \in R_i \Leftrightarrow yx^{-1} \in C_i$. Then $(G, \{R_i\})$ is a commutative association scheme called group association scheme denoted $\chi(G)$.

The Bose Mesner algebra of $\chi(G)$ is isomorphic to the center of the group algebra $\mathbb{C}[G]$. In this sense the theory of finite groups is "contained" in the theory of association schemes.

Primitive Schemes:Building blocks of all schemes

- ▶ Ambitious goal: Classify all primitive commutative Schemes
- ▶ Primitive Schemes serve as "building blocks" just like simple groups in the finite group theory and prime numbers for the integers.
- An association scheme is primitive if all the relation graphs (Ω, R_i) are connected graphs.
- The group-case $\chi(G)$ is primitive if the 1-point stabilizer of the action is a maximal subgroup og G.
- ▶ The group association scheme $\chi(G)$ is primitive if G is finite simple group.

- Tom M. Apostol, *Introduction to Analytic Number theory*, Springer-Verlag, New York, (1976).
- M. Artin, *Algebra*, Prentice Hall India, New Delhi, (1996).
- R. B. Bapat, *Graphs and Matrices*, Springer, (2010).
- Robert A. Beezer, *Orbit polynomial graphs of prime order*, Discrete Mathematics 67 139-147(1987).
- Robert A. Beezer, *Trivalent orbit polynomial graphs*, Linear Algebra and its Applications Volume 73, Pages 133-146(1986).
- Robert A. Beezer, *On the polynomial of a path*, Linear Algebra and its Applications Volume 63,221-225 (1984).

- Robert A. Beezer, *A disrespectful polynomial*, Linear Algebra and its Applications, Volume 128, Pages 139-146(1990).
- N. L. Biggs, *Algebraic Graph Theory (second edition)*, Cambridge University Press, Cambridge, (1993).
- R. C. Bose, D. M. Mesner, On linear associative algebras corresponding to association schemes of partially balanced designs, Annals of Mathematical Statistics 30 (1): 21-38(1959).
- A. E. Brouwer, A. M. Cohen, A. Neumaier, *Distance regular Graphs, Springer-Verlag*,(1989).

- Dragoš M. Cvetković, Michael Doob and Horst Sachs, *Spectra of graphs theory and applications*, VEB Deutscher Verlag d. Wiss., Berlin, 1979; Acad. Press, New York, (1979).
- R. M. Damerell, *On Moore graphs*, Proc. Camb Phil. Soc, sec.74, 227-236(1973).
- Philip J. Davis, *Circulant matrices*, A Wiley-Interscience publications, (1979).
- Michael Doob, Circulant graphs with det(-A(G)) = -deg(G): codeterminants with K_n , Linear algebra and its applications, 340: 87-96 (2002).
- David S. Dummit and Richard M. Foote, *Abstract Algebra (second edition)*, John Wiley and Sons, (2002).

- Michael Filaseta and Andrzej Schinzel, On Testing the Divisibility of Lacunary Polynomials by Cyclotomic Polynomials, Mathematics of Computation, Vol. 73, No. 246, pp. 957-965, (2004).
- D. Geller, I. Kra, S. Popescu and S. Simanca, *On circulant matrices*, (http://www.math.sunysb.edu/sorin/eprints/circulant.pdf)
- Chris D. Godsil & Gordon Royle, *Algebraic Graph Theory*, Springer-Verlag, (2001).
- Chris. D. Godsil, Eigenvalues of Graphs and Digraphs, LAA, vol. 46, 43-50 (1982).
- Chris. D. Godsil and B. D. McKay, Feasibility conditions for the existence of walk-regular graphs, Linear algebra and its applications 30:51-61 (1980).

- Chris D. Godsil, *Compact graphs and equitable partitions*, Linear algebra and applications, 255:259-266 (1997).
- D. G. Higman, *Coherent algebras*, LAA 93: 209-239 (1987).
- A. J. Hoffman *On the polynomial of a graph,* The American Mathematical Monthly, Vol. 70, No. 1, pp. 30-36 (1963).
- A. J. Hoffman and M. H. McAndrew, *The Polynomial of a Directed Graph*, Proceedings of the American Mathematical Society, Vol. 16, No. 2, 303-309(1965).
- A. J. Hoffman, *On eigenvalues and colorings of graphs* In Selected Papers of Alan J Hoffman: With Commentary, pages 407–419. World Scientific, 2003.
- Kenneth Hoffman and Ray Kunge, *Linear Algebra* (second edition), Prentice-Hall, (1971).

- M. Klin, C. Rücker and G. Rücker, G. Tinhofer, *Algebraic Combinatorics in Mathematical Chemistry. Methods and Algorithms*, Match, Vol.40, pp. 7-138(1999).
- Mikhail Klin, Mikhail Muzychuk & Matan Ziv-Av, *Higmanian Rank-5 Association Schemes on 40 Points*, Michigan Math. J. Volume 58, Issue 1, 255-284 (2009).
- M. Klin, A. Munemasa, M. Muzychuk & P.-H. Zieschang, *Directed strongly regular graphs via coherent (cellular) algebras*, Preprint, Kyushu MPS 1997 12, Kyushu University, Fukuoka, Japan,p. 57((1997).
- R. P. Kurshan and A. M. Odlyzko, *Values of cyclotomic polynomials at roots of unity* Math. Scand. 49, 15-35 (1981).

- Pieter Moree and Huib Hommerson, Value distribution of Ramanujan sums and of cyclotomic polynomial coefficients, arXiv:math/0307352v1 [math.NT] 27 Jul 2003.
- M. Peterdorf and H. Sachs , *Spektrum und automorphismemengruppe eines Graphen*, combinatorial theory and its applications, III (North-Holland, Amsterdam), pp.891-907 (1969).
- Victor V. Prasolov, *Polynomials*, Springer, (2001).
- Raghavarao, Constructions and combinatorial problems in Design of Experiments, Wiley, New York (1971).
- Leonor Aquino-Ruivivar, *Singular and Nonsingular Circulant Graphs*, Journal of Research in Science, Computing and Engineering (JRSCE), Vol. 3 No. 3 (2006).

- S. R. Searle, *On inverting circulant matrices*, Linear algebra and its applications, 25: 77-89 (1979).
- Sergio Cabello and Primož Lukšič, *The complexity of obtaining a distance-balanced graph*, The electronic journal of combinatorics 18, P49 (2011).
- E. Spence, *Regular two-graphs on 36 vertices*, Linear Alg. Appl. 226-228;, 459-497(1995).
- Štefko Miklavič and Primož Potočnik, *Distance-regular circulants*, European Journal of Combinatorics 24 (2003) 777-784.
- John P. Steinberger, Minimal Vanishing Sums of Roots of Unity with Large Coefficients, Proc. London Math. Soc., (3) 97, 689-717, (2008).

- James Turner, *Point-symmetric graphs with a prime number of points*, Journal of Combinatorial theory, vol. 3, 136-145 (1967).
- Paul M. Weichsel, *On distance-regularity in graphs*, Journal of combinatorial theory, Series B 32, 156-161 (1982).
- Paul M. Weichsel, *Polynomials on graphs*, Linear algebra and its applications 93:179-186 (1987).
- Boris Weisfeiler, On Construction and Identification of Graphs, Lecture Notes in Mathematics, Springer, New York, (1976).

Khush Raho