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Graph (K3, 4) Adjacency matrix Spectrum
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)
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Eigenvalues of complete bipartite graph Km,n

▶ The adjacency matrix of Km,n has rank 2. So, λ = 0 is an eigenvalue with
multiplicity m + n − 2.

▶ Let λ1, λ2 be the remaining two non-zero eigenvalues.
▶ As trace(A(Km,n)) = 0, λ1 = −λ2. Hence we have 2λ2

1 = 2mn and hence
λ1 =

√
mn.

▶ Thus,

Spec(Km,n) =

(
−
√

mn 0
√

mn
1 m + n − 2 1

)
.
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1

2 3

4 5

K5

Eigenvectors (XT):
[1, 1, 1, 1, 1]T

[1,−1, 0, 0, 0]T

[1, 0,−1, 0, 0]T

[1, 0, 0,−1, 0]T

[1, 0, 0, 0,−1]T

Spec(Kn) =

(
4 −1
1 4

)
.

Note that the adjacency matrix of Kn equals

A =


0 1 1 . . . 1
1 0 1 . . . 1
...

...
...

...
...

1 1 1 . . . 0

 = J − I.

Thus, the eigenpairs are (e, n − 1) and (e1 − ei,−1), for
2 ≤ i ≤ n. Thus,

Spec(Kn) =

(
n − 1 −1

1 n − 1

)
.

e ∈ Rn is the column vector of all 1′s.
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Problem-1 Let X = (V, E) be a simple undirected connected graph with n
vertices, and let A denote its adjacency matrix. Many properties of X
such as regularity or bipartiteness can be characterized from the
spectrum of A. If X is large, however, investigating the spectrum of X
might be cumbersome, which motivates to study “condensed”
versions of A that preserve properties of its spectrum.
How to find these condensed versions of A?

Problem-2 A graph Y is a polynomial in a graph X if the adjacency matrix of Y,
A(Y) is a polynomial in A(X). That is ∃p(x) ∈ C[x] such that
A(Y) = p(A(X)). Given a graph X, what are all graphs which are
polynomials in X? To attack this problem, we introduce adjacency
algebra of X that is exactly set of all polynomials in A. If a given
graph has few nice regular properties, then adjacency algebra of X
will have a basis such that whose elements are symmetric matrices
with entries 0, 1.

How to find those graphs which have these nice basis?
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▶ Both problems are related to partition of sets. Hence related to equivalence
relations.

▶ Problem-1 related to partition of the vertex set V.
▶ Problem-2 related to partition of the set V × V.
▶ Group actions provides partial answers to both the problems.
▶ If X is a graph, then Aut(X), the set of all automorphisms of X is a group

which acts on the vertices of V of X hence on V × V whose orbits provides
partitions to both V and V × V.

▶ Thus knowledge on automorphism group of a graph and group actions will
be very useful.
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▶ One of the most popular methods to shrink A is based on equitable partitions.

▶ To define this, let P = {V1, . . . , Vm} (m < n) be a partition of V, and,
for i, j ∈ [m] = {1, . . . , m} and u ∈ Vi, let bij(u) be the number of neighbors
of u in Vj.

▶ The partition P is called equitable (or regular) if bij(u) is independent from the
concrete choice of u ∈ Vi, i.e., bij(u) = bij(v) for all u, v ∈ Vi.

▶ In this case, the matrix B = (bij)i,j∈[m] is called the quotient matrix of P . Since it
is known that for an equitable partition the eigenvalues of B are also
eigenvalues of A, some spectral properties of B carry over to A. We will see
them in a while, most of the content is taken from the book Godsil and Royle
[3].

▶ Equitable partitions have been proven to be useful to derive, among many
others, sharp eigenvalue bounds on the independence number like the
celebrated ratio bound by Hoffman [5], but such results only hold when the
underlying graph is regular.
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5 6

7 8

1 4 2 3 5 6 7 8
1
4
2
3
5
6
7
8



0 0 1 0 1 0 1 0
0 0 0 1 0 1 0 1
1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
1 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0
1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0



V1 V2

13

1
V1 V2

V1 0 3
V2 1 1



1 2
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6 7

8
1 3 2 4 6 7 5 8



1 0 0 1 1 1 0 1 0
3 0 0 1 1 0 1 0 1

. . . . . . . . . . . . . . . . . . . . . . . . . . .
2 1 1 0 0 0 1 1 0
4 1 1 0 0 1 0 0 1

. . . . . . . . . . . . . . . . . . . . . . . . . . .
6 1 0 0 1 0 1 1 1
7 0 1 1 0 1 0 1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . .
5 1 0 1 0 1 1 0 1
8 0 1 0 1 1 1 1 0

0 2 1 1
2 0 1 1
1 1 1 2
1 1 2 1


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1 0 0 1 0 1 0 1 0 1 1
2 0 0 0 1 0 1 0 1 1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 1 0 0 0 0 1 0 0 0 0
4 0 1 0 0 0 0 0 1 0 0
5 1 0 0 0 0 0 1 0 0 0
6 0 1 1 0 0 0 0 0 0 0
7 1 0 0 0 1 0 0 0 0 0
8 0 1 0 1 0 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9 1 1 0 0 0 0 0 0 0 1
10 1 1 0 0 0 0 0 0 1 0

3 1 2

1 2

2

3

1

1

0 3 2
1 1 0
2 0 1





Let X = (V, E) be a graph with V = {v1, v2, . . . , vn}. Then the partition
▶ π = {{v1}, {v2}, . . . , {vn}} always an equitable partition.
▶ π = {{v1, v2, . . . , vn}} is an equitable partition if and only if X is a regular

graph.

1

2

3

4

5

6



0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

 {{1}, {2, 3, 4, 5, 6}}
[

0 5
1 0

]

V1 V2

5

1
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3
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5

6



0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0



{{2}, {1}, {3, 4, 5, 6}}

0 1 0
1 0 4
0 1 0


V1 V2 V3

1

1

4

1

This partition is called distance partition with respect to a vertex v. We denote
Xi(v) = {w ∈ V|d(v, w) = i}.
In this example v = 2, X0(2) = {2}, X1(2) = {1}, X2(2) = {3, 4, 5, 6}.



Graph Quotient graph Quotient Matrix Eigenvalues
1

2

3 4

56
7
8 9

10 V1 V2

2
1

1

2

[
2 1
1 2

]
{1, 3}

1

2

3 4

56
7
8 9

10 V1 V2 V3

3

1

2

1

2

0 3 0
1 0 2
0 1 2

 {−1, 3, 1}distance partition

1

2

3 4

56
7
8 9

10

V1

3

[
3
]

{3}



There is an elegant linear-algebraic way to characterize an equitable partition, that is very useful and gives insight into the structure of the eigenvectors of a graph.

Let S = {1, 2, 3, . . . , 10} and π = {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}} be a partition of S.

Let P =



1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1


. Then PTP =

[
1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1

]



1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1


=

[
5 0
0 5

]
.

(PTP)−1PT =

[ 1
5 0
0 1

5

] [
1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1

]
=[ 1

5
1
5

1
5

1
5

1
5 0 0 0 0 0

0 0 0 0 0 1
5

1
5

1
5

1
5

1
5

]
.



There is an elegant linear-algebraic way to characterize an equitable partition, that is very useful and gives insight into the structure of the eigenvectors of a graph.

Let S = {1, 2, 3, . . . , 10} and π = {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}} be a partition of S.

Let P =



1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1


. Then PTP =

[
1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1

]



1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1


=

[
5 0
0 5

]
.

(PTP)−1PT =

[ 1
5 0
0 1

5

] [
1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1

]
=[ 1

5
1
5

1
5

1
5

1
5 0 0 0 0 0

0 0 0 0 0 1
5

1
5

1
5

1
5

1
5

]
.



N = P(PTP)−1PT = P
[ 1

5
1
5

1
5

1
5

1
5 0 0 0 0 0

0 0 0 0 0 1
5

1
5

1
5

1
5

1
5

]

=



1
5

1
5

1
5

1
5

1
5 0 0 0 0 0

1
5

1
5

1
5

1
5

1
5 0 0 0 0 0

1
5

1
5

1
5

1
5

1
5 0 0 0 0 0

1
5

1
5

1
5

1
5

1
5 0 0 0 0 0

1
5

1
5

1
5

1
5

1
5 0 0 0 0 0

0 0 0 0 0 1
5

1
5

1
5

1
5

1
5

0 0 0 0 0 1
5

1
5

1
5

1
5

1
5

0 0 0 0 0 1
5

1
5

1
5

1
5

1
5

0 0 0 0 0 1
5

1
5

1
5

1
5

1
5

0 0 0 0 0 1
5

1
5

1
5

1
5

1
5


N is a doubly stochastic matrix.
A partition π is equitable if and only if N commutes with A.



If V = {1, 2, 3, 4, 5, 6, 7, 8} then π = {{1, 4, 6}, {2, 5}, {7, 8}, {3}} is a partition of V
with cells C1 = {1, 4, 6}, C2 = {2, 5}, C3 = {7, 8}, C4 = {3}, and π is a 4-partition.

The characteristic matrix of π is P = [c1, c2, c3, c4], P =



1 0 0 0
0 1 0 0
0 0 0 1
1 0 0 0
0 1 0 0
1 0 0 0
0 0 1 0
0 0 1 0


,

PTP =


cT

1 c1 0 0 0
0 cT

2 c2 0 0
0 0 cT

3 c3 0
0 0 0 cT

4 c4

 =


3 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

 .

Now, since P has orthogonal columns then we have Notice that the diagonals are
just the cardinalities of the cells, i.e., cT

i ci = |Ci|.



Let S = {1, 2, 3, 4, 5} and π = {{3}, {2, 4}, {1, 5}} be a partition of S.

▶ Let P =


0 0 1
0 1 0
1 0 0
0 1 0
0 0 1

 . Then PTP =

0 0 1 0 0
0 1 0 1 0
1 0 0 0 1




0 0 1
0 1 0
1 0 0
0 1 0
0 0 1

 =

1 0 0
0 2 0
0 0 2

 .

▶ Further (PTP)−1PT =

1 0 0
0 1

2 0
0 0 1

2

0 0 1 0 0
0 1 0 1 0
1 0 0 0 1

 =

0 0 1 0 0
0 1

2 0 1
2 0

1
2 0 0 0 1

2

 .

▶ Finally P(PTP)−1PT =


0 0 1
0 1 0
1 0 0
0 1 0
0 0 1


0 0 1 0 0

0 1
2 0 1

2 0
1
2 0 0 0 1

2

 =


1
2 0 0 0 1

2
0 1

2 0 1
2 0

0 0 1 0 0
0 1

2 0 1
2 0

1
2 0 0 0 1

2

 .



Is there a graph with this partition as an equitable partition? Of course every
partition is equitable for K5. We look for a nontrivial graph.

Consider the path graph P5. 1 2 3 4 5
Consider the distance partition of P5 w.r.to vertex 3.

12
3

4 5

(PTP)−1PT A =

0 0 1 0 0
0 1

2 0 1
2 0

1
2 0 0 0 1

2




0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

 =

0 1 0 1 0
1
2 0 1 0 1

2
0 1

2 0 1
2 0

 . Now

(PTP)−1PT AP =

0 1 0 1 0
1
2 0 1 0 1

2
0 1

2 0 1
2 0

 P =

0 2 0
1 0 1
0 1 0

 = B, the quotient matrix.
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AP =


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0




0 0 1
0 1 0
1 0 0
0 1 0
0 0 1

 =


0 1 0
1 0 1
0 2 0
1 0 1
0 1 0



PB =


0 0 1
0 1 0
1 0 0
0 1 0
0 0 1


0 2 0

1 0 1
0 1 0

 =


0 1 0
1 0 1
0 2 0
1 0 1
0 1 0

 .

Let u ∈ V(X). Then the uj-entry of AP is the number of neighbours of u that lie
in cell Cj. If u ∈ Ci, then this number is bij. Now, the uj-entry of PB is also bij,
because the only nonzero entry in the u−row of P is a 1 in the i-column.
Therefore AP = PB and so PT AP = PTPB or equivalently (PTP)−1PT AP = B.



Graph Partition of {1, 2, 3} Ch Matrix Quotient Matrix Eigenvalues

1 2

3

K3 {{1}, {2}, {3}} P =

1 0 0
0 1 0
0 0 1

 0 1 1
1 0 1
1 1 0

 {−1,−1, 2}

K3 {{1, 2, 3}} P =

1
1
1

 [
2
]

{2}

K3 {{1}, {2, 3}} P =

1 0
0 1
0 1

 [
0 2
1 1

]
{−1, 2}

{{2}, {1, 3}}
{{3}, {1, 2}}

Every partition of {1, 2, 3} is an equitable partition for K3.



First case:
(PTP)−1PT AP = A = B.

Second case:

(PTP)−1PT AP =
1
3
[
1 1 1

]
A

1
1
1

 =
1
3
[6] = [2] = B.

Third case:

(PTP)−1PT AP =

[
1 0
0 1

2

] [
1 0 0
0 1 1

] 0 1 1
1 0 1
1 1 0

1 0
0 1
0 1


=

[
1 0 0
0 1

2
1
2

] 0 2
1 1
1 1

 =

[
0 2
1 1

]
= B.



▶ Let A ∈ Mn(R).
▶ Suppose that W is A-invariant subspace of Rn and let β = {y1, y2, . . . , yk} be

a basis for W and consider the matrix P =
[
y1 y2 · · · yk

]
.

▶ Now, since W is A-invariant then Ayi ∈ W and therefore Ayi can be written
as a linear combination of the basis vectors β. Therefore, there is some vector
bi ∈ Rk such that Ayi = Pbi. This holds for each i = 1, 2, . . . , k and therefore
if we set B =

[
b1 b2 · · · bk

]
then

AP = PB.

Lemma
Let X be a graph with adjacency matrix A and let π be a partition of V(X) with
characteristic matrix P. Then π is equitable if and only if the column space of P is
A-invariant.

Proof.
The column space of P is A-invariant if and only if there is a matrix B such that
AP = PB. If π is equitable, we can choose B as its quotient matrix.



▶ Let B be the quotient matrix of an equitable partition. Then B is similar to a
symmetric matrix. We have (PTP)−1PT AP = B. Let PTP = K = D2 and
M = PT AP. Then it is clear that M is a symmetric matrix. We have
B = K−1M = D−2M. Then DBD−1 = D−1MD−1. That is B is similar to a
symmetric matrix D−1MD−1. Hence all eigenvalues of B real.

▶ Let P =


0 0 1
0 1 0
1 0 0
0 1 0
0 0 1

 be the characteristic matrix corresponding to partition of

{{3}, {2, 4}, {1, 5} of {1, 2, 3, 4, 5}. Then
0 0 1
0 1 0
1 0 0
0 1 0
0 0 1


x1

x2
x3

 =


x3
x2
x1
x2
x3

 .



If AP = PB, then it is easy to see by induction that AkP = PBk for k ∈ N and more
generally, if f (x) is a polynomial, then f (A)P = P f (B). If f is a polynomial such
that f (A) = 0, then P f (B) = 0. Since the columns of P are linearly independent,
this implies that f (B) = 0. This shows that the minimal polynomial of B divides the
minimal polynomial of A, and therefore every eigenvalue of B is an eigenvalue of A.

Theorem
If π is an equitable partition of a graph X, then the characteristic polynomial of B
divides the characteristic polynomial of A(X).



Proof.
Let P be the characteristic matrix of π. If X has n vertices, then let Q be an
n × (n − |π|) matrix whose columns, together with those of P, form a basis for Rn.
Then there are matrices C and D such that AQ = PC + QD. That is we have

AP = PB, AQ = PC + QD.

A[P Q] = [AP AQ] = [PB PC + QD = [P Q]

[
B C
O D

]
[P Q]−1 A[P Q] =

[
B C
O D

]
.

Thus A is similar to
[

B C
O D

]
.



▶ We can also get information about few eigenvectors of A from eigenvectors of
B. Let v is an eigenvector of B with eigenvalue θ. That is Bv = θv. But we have
AP = PB hence A(Pv) = (AP)v = (PB)v = P(Bv) = θPv.

▶ Thus Pv is eigenvector of A with same eigen value θ.
▶ We say that the eigenvector v of B “lifts” to an eigenvector of A.
▶ Alternatively, we may argue that if the column space of P is A-invariant, then

it must have a basis consisting of eigenvectors of A. Each of these
eigenvectors is constant on the cells of P, and hence has the form Pv, where
v ̸= 0. If APv = θPv, then it follows that Bv = θv.

▶ If the column space of P is A-invariant, then so is its orthogonal complement;
from this it follows that we may divide the eigenvectors of A into two classes;
▶ those that are constant on the cells of π, which have the form Pv for some

eigenvector of B, and
▶ those that sum to zero on each cell of π.



C
A1

B1

A2
B2

A3

B3

A4

B4

A5
B5

▶ It is Friendship graph F5 with 11 vertices. Any two
vertices have exactly one common neighbor.

▶ Friendship graph (or Dutch windmill) Fk with 2k + 1
vertices and 3k edges. Easy to see Fk is connected
with diameter 2, as any of two vertices have a
common neighbor.

▶ There is a vertex which is adjacent to all the vertices
(Friendship Theorem). Note this is not a part of
definition. This is a property of Fk. Once we prove
this theorem star graph is a subgraph of Fk.

▶ Let {{C}, {A1, B1, . . . , A5, B5}} be a partition of
vertex set.

▶ Then it is an equitable partition and its quotient

matrix B =

[
0 10
1 1

]
. In general B =

[
0 2k
1 1

]
.
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▶ The characteristic polynomial of B of Fk is x2 − x − 2k. Hence the eigenvalues
of B are 1±

√
1+8k
2 .

▶ [0, 1, 1,−1,−1, 0, 0 . . . , 0, 0], [0, 1, 1, 0, 0,−1,−1, . . . , 0, 0],
. . . , [0, 1, 1, 0, 0, 0, 0 . . . ,−1,−1] are k − 1, LI eigenvectors with eigenvalue 1.

▶
[0, 1,−1, 0, 0, 0, 0, . . . , 0, 0], [0, 0, 0, 1,−1, 0, 0 . . . , 0, 0], . . . , [0, 0, 0, 0, 0, 0, 0 . . . ,−1, 1]
are k, LI eigenvectors with eigenvalue −1.

▶ The spectrum of Fk is

(
1−

√
1+8k
2 −1 1 1+

√
1+8k
2

1 k k − 1 1

)
.

▶ The characteristic polynomial of Fk is (x + 1)(x2 − 1)k−1(x2 − x − 2k).
▶ For a complete graph Kn, V with a single cell is an equitable partition, with

characteristic matrix P = [1, 1, . . . , 1]T and quotient matrix B = [n − 1]. The
eigenvalue of B is n − 1 with eigenvector [1]. Then P[1] = e = P. The
remaining eigenvectors are
{x ∈ Rn|x ⊥ P} = {(x1, x2, . . . , xn)T|x1 + x2 + · · ·+ xn = 0}.
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▶ There is an edge between any two vertices (any two vertices are adjacent).

▶ Total number of edges are n(n−1)
2 .

▶ The degree of each vertex is n − 1.
▶ Every simple graph with n vertices is obtained from Kn by deleting some

edges.
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▶ All the vertices form a cycle.

▶ The degree of each vertex is 2.

▶ There are n edges.



▶ Let G be a group and let S be a non-empty subset of G that does not contain
the identity element of G. Then the Cayley digraph/graph associated with the
pair (G, S), denoted Cay(G, S), has the set G as its vertex set and for any two
vertices x, y ∈ G, (x, y) is an edge if xy−1 ∈ S.

▶ Observe that Cay(G, S) is a graph if and only if S is closed with respect to
inverse (S = S−1 = {s−1 : s ∈ S}). Also, the graph is k-regular, where |S| = k.
The set S is called the connection set of the graph.

1 (12)

(13) (123)

(132) (23)

For example,

G = S3 = {1, (12), (13), (23), (123), (132)},

be symmetric group on 3 symbols and
S = {(12), (13), (23)} then S is
generating set of G as every permutation
can be expressed as product of
transpositions. The corresponding
Cayley graph Cay(G, S) is K3,3 as shown .
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Cayley graphs on cyclic groups are called circulant graphs.
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An important class of circulant graphs are Paley
graphs. Let q be a prime power such that q ≡ 1
(mod 4), and Fq denote a finite field of order q,
The Paley graph P(q) of order q is a graph whose
vertices are elements of the finite field Fq in
which two vertices are adjacent if and only if
their difference is a non-zero square in Fq. Since
in Fq there are q−1

2 non-zero squares (quadratic
residues) hence P(q) is q−1

2 -regular graph. As we
aware −1 is a square in modulo q if and only if
q ≡ 1 (mod 4). Consequently a − b is a square if
and only if b − a is a square. On the other hand if
q ≡ 3 (mod 4), then P(q) is a digraph.The
following graph is P(13).



The Kneser graph K(n, k) is an undirected graph whose vertices correspond to the
k-element subsets of the set {1, 2, . . . , n}, and where two vertices are adjacent if
and only if the corresponding subsets are disjoint.

V(K(n, k)) = {A ⊆ {1, . . . , n} | |A| = k}

E(K(n, k)) = {{A, B} | A ∩ B = ∅}

Note: The graph is well-defined only when n ≥ 2k, because otherwise no two
k-subsets can be disjoint.
▶ Number of vertices:

|V(K(n, k))| =
(

n
k

)
▶ Edges: Two k-subsets are adjacent if they are disjoint.
▶ Degree: The degree of each vertex is

deg =

(
n − k

k

)



▶ Automorphism group: The automorphism group of K(n, k) is isomorphic to
the symmetric group Sn acting on the k-subsets of {1, . . . , n}.

▶ Vertex-transitivity: Kneser graphs are vertex-transitive.
Important Theorem (Lovász, 1978):
Lovász used the Borsuk–Ulam theorem to prove the chromatic number of Kneser
graphs:

χ(K(n, k)) = n − 2k + 2

This was a solution to the famous Kneser conjecture.
▶ Can you see K(n, 1) is the complete graph Kn?
▶ For n ≥ 5, show that diameter of K(n, 2) is 2.
▶ Let n ≥ 5, K(n, 2) is (n

2)-regular. Let u, v ∈ V(K(n, 2)). Then the number of
common neighbours of u and v is (n−4

2 ) if they are adjacent, else (n−3
2 ) and is

independent of vertices chosen. That is the graphs K(n, 2) are Strongly
regular graphs.
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▶ Are there any triangles in the graph?
▶ That is two adjacent vertices can’t have a

common neighbour.
▶ Two non-adjacent vertices have exactly one

common neighbour.
▶ Number vertices common to two given

vertices is dependent on whether they are
adjacency or not but not on the chosen
vertices.

▶ The diameter of the graph is 2.
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Johnson graph (J(n,k))

Property Value / Description

Vertex set All k-element subsets of an n-element set
Number of vertices (n

k)
Adjacency rule Two vertices are adjacent

if their subsets intersect in k − 1 elements
Degree of each vertex k(n − k)
Number of edges 1

2 · (
n
k) · k(n − k)

Regular Yes, k(n − k)-regular
Connected Yes, for n > k ≥ 1
Diameter min(k, n − k)
Girth 3 if k ≥ 2
Vertex-transitive Yes
Edge-transitive Yes
Distance-transitive Yes
Strongly regular Only in some special cases (e.g., J(5, 2))
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Property Value / Description

Number of vertices (5
2) = 10

Number of edges 10·6
2 = 30

Vertex degree 6 (regular)
Connectivity Connected
Diameter 2
Girth 3 (contains triangles)
Chromatic number 4
Clique number 4
Is strongly regular Yes
Strongly regular parameters (10, 6, 3, 4)
Line graph of K5
Complement to Petersen graph



Recall a permutation group S3.
S3 = {(1), (1 2), (1 3), (2 3), (1 2 3), (1 3 2)} .

S3 =


1 0 0

0 1 0
0 0 1

 ,

0 1 0
1 0 0
0 0 1

 ,

0 0 1
0 1 0
1 0 0

 ,

1 0 0
0 0 1
0 1 0

 ,

0 1 0
0 0 1
1 0 0

 ,

0 0 1
1 0 0
0 1 0

 .

Number of bijective maps of a set with n elements to itself
= Number of ways placing n rooks on n × n chess board
=Number of permutation matrices of order n.
Is a permutation matrix doubly stochastic?
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Automorphism group of a graph X

▶ The collection of all automorphisms of a graph X, denoted Aut(X), forms a
group under composition of maps.

▶ If X is graph on n vertices then, Aut(X) is a subgroup of Sn, the symmetric
group on n symbols.

Under this correspondence, the maps in Aut(X) consist
of n × n permutation matrices.

▶ Also, for each g ∈ Aut(X) the corresponding permutation matrix is be

denoted by Pg. If g = (1 2 3) ∈ S3, then Pg =

0 1 0
0 0 1
1 0 0

 .

What is

1 1 1
1 1 1
1 1 1

a b c
d e f
g h i

 =?? What is

a b c
d e f
g h i

1 1 1
1 1 1
1 1 1

 =??

Is JPg = Pg J?
Is ∀g ∈ Sn A(Kn)Pg = Pg A(Kn)?
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g ∈ Aut(X) if and only if Pg A = APg

Lemma
Let A be the adjacency matrix of a graph X. Then g ∈ Aut(X) if and only if Pg A = APg.

Proof.
Let g be a permutation of V(X) = {v1, v2, . . . , vn}, and g(vi) = vh, g(vj) = vk.

As
each row of Pg has only one non-zero entry, namely 1, one has

(Pg A)ik =
n
∑

t=1
(Pg)it Atk = (Pg)ih Ahk = Ahk

(APg)ik =
n

∑
t=1

Ait(Pg)tk = Aij(Pg)jk = Aij.

Pg A = APg ⇔ Ahk = Aij ⇔ {vh, vk} ∈ E if and only if {vi, vj} ∈ E
⇔ g is an automorphism of X.
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Aut(X) = Aut(Xc)

Now we will see few applications of above lemma (Pg A = APg).

Corollary
Let X be a graph. Then Aut(X) = Aut(Xc)

Proof.
First note that a matrix B commutes with J if its every row sum is equal to its every
column sum. Consequently every permutation matrix commutes with J. Hence

Pg A = APg ⇔ Pg(J − I − A) = (J − I − A)Pg.
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Theorem
Let X = (V, E) be a graph and g ∈ Aut(X). Then

1. If v ∈ V, then deg(v) = deg(g(v)).
2. If u, v ∈ V, then d(u, v) = d(g(u), g(v)).

Definition
Let X be a graph. If H ≤ Aut(X) is a group of automorphisms of X, we say that u
and v are similar under H if there is an automorphism in H which maps u to v.
The equivalence classes defined by this similarity are called the orbits of the graph
by H. The partition of X consisting of the set of orbits by H is called an orbit
partition of X.



Proposition
An orbit partition is an equitable partition.

Proof.
Let O1, O2, . . . , Or be an orbit partition of X. Suppose u, v ∈ Oi. Then there is an
automorphism ϕ ∈ Aut(X) such that ϕ(u) = v. Since ϕ maps Oj to Oj and
preserves valency, u and v must have same number of neighbors in Cj.
Let DS(A) denotes the set of all doubly stochastic matrices that commute with A.

Definition
Let A be the adjacency matrix of a graph X. If every extreme point of DS(A) is a
permutation matrix, then the graph X is called compact.

Note that DS(A) is a convex set and contains all of the permutation matrices that
commute with A, i.e., all automorphisms of X. Hence, if X is compact, then the
automorphisms of X are precisely the extreme points of DS(A).



Proposition

If X is compact, then every equitable partition
is an orbit partition.
▶ A graph X = (V, E) is said to be a vertex transitive (edge transitive) graph if

Aut(X) acts transitively on V (E).
▶ That is X is vertex transitive if for any two vertices x, y ∈ V, x ̸= y there exists

g ∈ Aut(X) such that g(x) = y.
▶ For example, Aut(Kn) ∼= Sn and Aut(Cn) ∼= Dn, hence the graphs Kn and Cn

are vertex transitive.



Cayley graph is vertex transitive

Theorem
Every Cayley graph is vertex transitive.

Proof.
Let X = Cay(G, S) be a Cayley graph. Then, for every g ∈ G

{x, y} ∈ E(X) ⇔ xy−1 ∈ S ⇔ (xg)(yg)−1 ∈ S ⇔ {xg, yg} ∈ E(X).

Thus, G ⊆ Aut(X). Hence, if a, b ∈ V = G then, the group element a−1b takes a to
b.

Theorem
Let X be a vertex transitive graph and π the orbit partition of some subgroup G of
Aut(X). If π has a singleton cell {u}, then every eigenvalue of X is an eigenvalue of B.
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▶ Let A be a nonempty finite set. What you mean by a relation on A?

▶ Let R be a relation on A, then MR be the corresponding 0,1-matrix
representation of R. How do you check given relation R is symmetric or not
from the matrix MR.?

▶ Let A be a set with n elements.Then how many symmetric relations are there
on A?

▶ Let A = {1, 2}. Then A × A = {(1, 1), (1, 2), (2, 1), (2, 2)}. Let
R1 = {(1, 1)}, R2 = {(1, 2)}, R3 = {(2, 1)}, R4 = {(2, 2)} find ∪Ri.

▶ What is the vector space spanned by the set {MR1 , MR2 , MR3 , MR4}. Is it closed
with respect to multiplication?

▶ What is the vector space spanned by the set {MR1 , MR2 + MR3 , MR4}. Is it closed
with respect to multiplication?

▶ What is the vector space spanned by the set {MR1 + MR4 , MR2 + MR3}. Is it
closed with respect to multiplication?

▶ Let A = {1, 2, 3}. and R0 = {(1, 1), (2, 2), (3, 3)} and R1 = A × A \ R0. Find
MR1 and MR0 + MR1 . Find the vector space spanned by {MR0 , MR1}. Is it
closed with respect to multiplication.
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R0 = R1 = R2 =
{(1, 1), (2, 2), (3, 3), (4, 4)} {{1, 2}, {1, 4}, {2, 3}, {3, 4}} {{1, 3}, {2, 4}}

Here {a, b} means (a, b), (b, a)
|R0| = 4 |R1| = 8 |R3| = 4

A0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 A1 =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 A2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



▶ Is R0 ∪ R1 ∪ R2 = V × V? Find A = A1 + A2. Is A a adjacency matrix of some graph?
▶ What is Hadamard product of Ai and Aj? Hadamard product means component

wise multiplication. Is A2
1 = 2A0 + 2A2? If this is true, then A2 = 1

2 (A2
1 − 2I). That is

A2 is a polynomial in A1.
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Let F be a field. Then a ring (R,+, .) is an F-algebra if R is a vector space over F,
and the F-multiplication is compatible with the ring multiplication in the sence
that

a(rs) = (ar)s = r(as) ∀a ∈ F and r, s ∈ R.

That is A is an F-algebra if A is a vector space over F it has another binary
operation called multiplication (A,+, .) is a ring and F-multiplication is
compatible with the ring multiplication. VS+Ring+compatibility

▶ C is an algebra over R.
▶ Every field F is an algebra over itself.
▶ Mn(F) is an algebra over F.
▶ Fix a vector space V over F. Then L(V, V) is an algebra over F.
▶ F[x] is an algebra over F.
▶ Fix a group G. Then F[G] is an algebra over F, known as group algebra.
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Let X be a graph on n vertices and let us fix a labeling of the vertices of X.

Then,
the adjacency matrix of X, denoted A(X) = [aij] (or A), is an n × n matrix with
aij = 1, if the i-th vertex is adjacent to the j-th vertex and 0, otherwise.
▶ Note that another labeling of the vertices of X gives rise to another matrix B

such that B = P−1AP, for some permutation matrix P (for a permutation
matrix, recall that Pt = P−1). Hence, we talk of the adjacency matrix of a
graph X and we do not worry about the labeling of the vertices of X.

▶ Clearly, the adjacency matrix A is a real symmetric matrix. Hence, A has n
real eigenvalues, A is diagonalizable, and the eigenvectors can be chosen to
form an orthonormal basis of Rn.

▶ The eigenvalues, eigenvectors, the minimal polynomial and the characteristic
polynomial of a graph X are defined to be that of its adjacency matrix.
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▶ Let Q be the set of rational numbers.

▶ What do you know about Q?
▶ What do you know about Q[x]?

Yes. It is a PID, infact Euclidean domain. In PID, one knows, what are all
maximal ideals, prime ideals etc.

▶ Let α ∈ C. Then what you know about Q[α]?
▶ A number α ∈ C is an algebraic element if α is a root of a non-zero polynomial

in Q[x].
▶ Let α ∈ C be an algebraic element. Let ϕα : Q[x] → C be a map defined as

ϕα( f (x)) = f (α). Then it is easy to check that ϕα is onto homomorphism and
its range is Q[α] further Q[x]/⟨mα(x)⟩ ∼= Q[α], where mα(x) is the minimal
polynomial of α.
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Let A ∈ Mn(C). Then C[A] is the set of all polynomials in A.
▶ Is C[A] a subalgebra of Mn(C)?

▶ Let ϕA : C[x] → Mn(C) be a map defined as ϕA( f (x)) = f (A). Then it is easy
to check that ϕA is onto homomorphism and its range is C[A] further
C[x]/⟨mA(x)⟩ ∼= C[A], where mA(x) is the minimal polynomial of A.

▶ The dimension of C[A] as a vector space over C is the degree of the minimal
polynomial of A.

▶ We know that if A is a diagonalizable matrix, then its minimal polynomial has
distinct roots. Hence if A is diagonalizable, then The dimention of C[A] as a
vector space over C is the number of distinct eigenvalues of A.

▶ In particular if A is a symmetric matrix, then

dim C[A] = deg mA(x) = number of distinct eigenvalues of A.

▶ If A(X) is the adjacency matrix of a graph (or digraph) X, then C[A] is called
Adjacency algebra of X. Denoted as A(X).
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Graph Adjacency characteristic minimal A(X)
matrix (A) polynomial polynomial

1 2

3

K3

0 1 1
1 0 1
1 1 0

 (x + 1)2(x − 2) (x + 1)(x − 2) {αI + βA|α, β ∈ C}

A(X) = C[A] ∼= C[x]/⟨mA(x)⟩.

Hence dimA(X) = dim (C[x]/⟨mA(x)⟩) = number of distinct eigenvalues of A.

If A =

0 1 1
1 0 1
1 1 0

 , then A2 =

2 1 1
1 2 1
1 1 2

 , A3 =

2 3 3
3 2 3
3 3 2

 , A4 =

6 5 5
5 6 5
5 5 6

 , . . .

dimA(Kn) = 2. A basis of A(Kn) is {I, A = J − I}.
dimA(Kn,n) = 3. A basis of A(Kn,n) is {I, A, A2}, another useful basis is
{I, A, Ac}, where Ac is the adjacency matrix of complement of Kn,n.



Few questions:
▶ What is dimention of C[In]?

▶ Let A be the adjacency matrix of a complete graph Kn. Then find dim C[A].
▶ Let Jn ∈ Mn(R) be the matrix with all entries are 1. We simply write J if n is

clear from the context. Is dim C[A(Kn)] = dim C[Jn]?
▶ Is C[A(Kn)] = C[Jn]?
▶ Let B[A] = {B ∈ Mn(R)|AB = BA}. Is B[A] a subalgebra of Mn(R)?
▶ Is C[A] a subalgebra of B[A]?
▶ Find B[In] and its dimention.
▶ Find B[Jn] and its dimention.
▶ Is B[Jn] = B[A(Kn)]?
▶ Let A ∈ Mn(R). Then what is dimention of B[A]?
▶ Let A ∈ Mn(R). Let λ1, λ2, . . . , λr be distinct eigenvalues of A with

multiplicities m1, m2, . . . , mr. Then dimB[A] = m2
1 + m2

2 + · · ·+ m2
r .
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▶ Recall C[A], where A ∈ Mn(C). Can you show that dim C[A] ≤ n?

▶ Let W3 =

0 1 0
0 0 1
1 0 0

 . Then W2
3 =

0 0 1
1 0 0
0 1 0

 and W3
3 = I3. It is clear that

W3, W2
3 , W3

3 ∈ C[W3] and are linearly independent. Hence 3 ≤ dim C[W3]. But
we have dim C[W3] ≤ 3.

▶ Is {In, Wn, W2
n , . . . , Wn−1

n } forms group with respect to matrix multiplication?
▶ Is B[Wn] = C[Wn]?
▶ Is Wn a permutation matrix? What are the eigenvalues and eigenvectors of

Wn?
▶ Is Wn a doubly stochastic matrix?
▶ For which graph/directed graph Wn is the adjacency matrix?
▶ Let B ∈ C[Wn]. Can you write B? Can you list few properties of B.
▶ Let Dn = Wn + Wn−1

n What is Dn? Is Dn symmetric? Is Dn a matrix with
entries 0 or 1?

▶ For which graph Dn is the adjacency matrix?
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▶ The matrices in C[Wn] are the circulant matrices. The dimention of set of
circulant matrices is n. They are the Cayley graphs of Zn. All the matrices
have same eigenvectors and eigenvalues are easy to compute. Construct a
polynomial with coefficients as first row of that matrix. Evaluate polynomial
at the nth roots of unity to get eigenvalues.

▶ Adjacency matrices of cycle graph, complete graph are circulant. A graph X is
a circulant graph if its adjacency matrix is a circulant matrix.

A matrix A ∈ Mn(F) is said to be a circulant matrix if aij = a1j−i+1( (mod n)). That
is, for each i ≥ 2, the elements of the i-th row of A are obtained by cyclically
shifting the elements of the (i − 1)-th row of A, one position to the right. So, it is
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Representer polynomial

▶ Let A ∈ Mn(Z) be a circulant matrix. Then, from Lemma 3, there exists a
unique polynomial γA(x) ∈ Z[x] of degree ≤ n − 1, called the representer
polynomial of A such that A = γA(Wn).

▶ Further, one can see that if A ∈ Mn(Z) is a circulant matrix, then
[a0 a1 . . . an−1] is the first row of A if and only if
γA(x) = a0 + a1x + · · ·+ an−1xn−1.

▶ Consequently, there is a one-to-one correspondence between the set of
circulant matrices over C and the set of polynomials over C of degree ≤ n − 1.

▶ In particular, there is a one-to-one correspondence between the set of 0, 1
circulant matrices and the set of 0, 1-polynomials of degree ≤ n − 1.

▶ If X is a circulant graph/digraph, with n vertices, then A(X) ⊆ C[Wn].
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Eigenvalues and Eigenvectors of circulant graphs

Let ζn be the primitive nth root of unity, i.e., ζn
n = 1 but ζk

n ̸= 1, for 1 ≤ k ≤ n − 1.
Then Then the Fourier matrix Fn ∈ Cn×n is defined as:

Fn =


1 1 1 · · · 1
1 ζn ζ2

n · · · ζn−1
n

1 ζ2
n ζ4

n · · · ζ
2(n−1)
n

...
...

...
. . .

...

1 ζn−1
n ζ

2(n−1)
n · · · ζ

(n−1)2

n



Easy to see that columns of Fn are eigenvectors of Wn. Hence for every circulant
matrix order n. Let A be a circulant matrix with representer polynomial γA(x).
Then A is diagonalizaable with γA(ζ

k
n), for 0 ≤ i ≤ n − 1, as its eigenvalues. We

now know eigen(values/vectors) of all circulant graphs/diagraphs. In particular,
Eigenvalues of cycle graph Cn are λk = ζk

n + ζn−k
n = 2 cos 2kπi

n . It is clear that
λk = λn−k.
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Definition
A matrix A ∈ Mn(C) is diagonalizable, if it is similar to a diagonal matrix.

That is A is diagonalizable if there exists a nonsingular matrix P such that
P−1AP = D, where D is a diagonal matrix.

Theorem
An n × n matrix A is diagonalizable if and only if it has n linearly independent
eigenvectors.



Part 1: If A has n linearly independent eigenvectors, then A is diagonalizable.
Assume A has n linearly independent eigenvectors v1, v2, . . . , vn, with
corresponding eigenvalues λ1, λ2, . . . , λn. Note that the eigenvalues are not
necessarily distinct.
Let P be the n × n matrix whose columns are these eigenvectors:

P =
[
v1 v2 · · · vn

]
.

Since the eigenvectors are linearly independent, the matrix P is invertible.
Now, consider the product AP. We can compute this column by column:

AP = A
[
v1 v2 · · · vn

]
=
[
Av1 Av2 · · · Avn

]
.



Because each vi is an eigenvector (Avi = λivi), this becomes:

AP =
[
λ1v1 λ2v2 · · · λnvn

]
.

This result can be factored as the product of P and a diagonal matrix D:

[
λ1v1 λ2v2 · · · λnvn

]
=
[
v1 v2 · · · vn

]


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 = PD,

where D = diag(λ1, λ2, . . . , λn).
We have therefore shown that:

AP = PD.

Since P is invertible, we can multiply both sides on the left by P−1 to obtain:

P−1AP = D.

This is precisely the condition for A to be diagonalizable. Thus, A is
diagonalizable.



Part 2: If A is diagonalizable, then it has n linearly independent eigenvectors.
Assume A is diagonalizable. Then, by definition, there exists an invertible matrix
P and a diagonal matrix D such that:

P−1AP = D or, equivalently, A = PDP−1.

Let the columns of P be v1, v2, . . . , vn, and let the diagonal entries of D be
λ1, λ2, . . . , λn, so that D = diag(λ1, λ2, . . . , λn).
Starting from A = PDP−1, we multiply both sides on the right by P:

AP = PD.

Now, let’s examine this equation column by column.
On the left-hand side:

AP = A
[
v1 v2 · · · vn

]
=
[
Av1 Av2 · · · Avn

]
.



On the right-hand side:

PD =
[
v1 v2 · · · vn

]


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 =
[
λ1v1 λ2v2 · · · λnvn

]
.

Equating the corresponding columns of AP and PD, we find that for each
i = 1, 2, . . . , n:

Avi = λivi.

This means that each column vi of P is an eigenvector of A with corresponding
eigenvalue λi.
Finally, since P is an invertible matrix, its columns v1, v2, . . . , vn are, by definition,
linearly independent.
Therefore, A has n linearly independent eigenvectors.

Conclusion: We have shown that if A has n linearly independent eigenvectors,
then it is diagonalizable, and conversely, if A is diagonalizable, then it has n
linearly independent eigenvectors. This completes the proof.

□



If A is diagonalizable, then the rank of A is equal to the number of nonzero
eigenvalues of A.

Proof.
▶ First note that eigenvalues of a diagonal matrix are diagonal elements of

matrix. Rank of a diagonal matrix is equal to number of nonzero diagonal
elements. Thus rank of a diagonal matrix is equal to number of nonzero
eigenvalues. Extra info: Hence the minimal poynomial of A is the product of
distinct linear factors.

▶ If A is similar to diagonal matrix, then there exists a nonsingular matrix P
such that PAP−1 = D, where D is the diagonal matrix. Rank of A= Rank of
PAP−1 = Rank of D. Also eigenvalues of A is same as eigenvalues of D.
Hence result follows.



Lemma
Let A be a real symmetric matrix. If u and v are eigenvectors of A with different
eigenvalues, then u and v are orthogonal.

Proof.
Suppose Au = λu and Av = τv, where λ ̸= τ. Consider λuTv. Then
λuTv = (λu)Tv = (Au)Tv = uT Av = τuTv. Hence (λ − τ)uTv = 0. Thus
uTv = 0, follows from the fact that λ ̸= τ. Note uTv and (λ − τ) are real
numbers.

Lemma
The eigenvalues of a real symmetric matrix A are real numbers.

Proof.
Let u be an eigenvector of A with eigenvalue λ. Then by taking the complex
conjugate of the equation Au = λu we get Aū = λ̄ū, and so ū is also an
eigenvector of A. Now, by definition an eigenvector is not zero, so uT ū > 0. By the
previous lemma, u and ū cannot have different eigenvalues, so λ = λ̄, and the
claim is proved.



Lemma
Let A be a real symmetric n × n matrix. If U is an A-invariant subspace of Rn, then U⊥

is also A-invariant.

Proof.
For any two vectors u and v, we have

vT(Au) = (Av)Tu.

If u ∈ U, then Au ∈ U; hence if v ∈ U⊥, then vT Au = 0. Consequently, (Av)Tu = 0
whenever u ∈ U and v ∈ U⊥. This implies that Av ∈ U⊥ whenever v ∈ U⊥, and
therefore U⊥ is A-invariant.



Lemma
Let A be an n × n real symmetric matrix. If U is a nonzero A-invariant subspace of Rn,
then U contains a real eigenvector of A.

Proof.
Let R be a matrix whose columns form an orthonormal basis for U. Then, because
U is A-invariant, AR = RB for some square matrix B. Since RTR = I, we have

RT AR = RTRB = B.

Which implies that B is symmetric, as well as real. Since every symmetric matrix
has at least one eigenvalue, we may choose a real eigenvector u of B with
eigenvalue λ. Then ARu = RBu = λRu, and since u ̸= 0 and the columns of R are
linearly independent, Ru ̸= 0. Therefore, Ru is an eigenvector of A contained in
U.



Theorem
Let A be a real symmetric n × n matrix. Then Rn has an orthonormal basis consisting
of eigenvectors of A.

Proof.
Let {u1, . . . , um} be an orthonormal (and hence linearly independent) set of m < n
eigenvectors of A, and let M be the subspace that they span. Since A has at least
one eigenvector, m ≥ 1. The subspace M is A-invariant, and hence M⊥ is
A-invariant, and so M⊥ contains a (normalized) eigenvector um+1 Then
{u1, . . . , um, um+1} is an orthonormal set of m + 1 eigenvectors of A. Therefore, by
induction, a set consisting of one normalized eigenvector can be extended to an
orthonormal basis consisting of eigenvectors of A.

Corollary

If A is an n × n real symmetric matrix, then there are matrices L and D such that
LT L = LLT = I and LALT = D, where D is the diagonal matrix of eigenvalues of A.



Proof.
Let L be the matrix whose rows are an orthonormal basis of eigenvectors of A. So
LT =

[
L1 L2 . . . Ln

]
, where Li is the eigenvector of A corresponding to the

eigenvalue λi for all i = 1, 2, . . . , n. Consider (LT L)ij =< Li, LT
j >=

{
1, i = j
0, i ̸= j.

(since the rows of L form an orthonormal basis). Hence, LT L = I. Similarly, since
L is orthogonal, let M = LT then LLT = MT M = I. To prove the second part of the
theorem, consider,

LALT = LA[L1, L2, · · · , Ln] = L[AL1, AL2, · · · , ALn]

= L[λ1L1, λ2L2, · · · , λnLn = [λ1LL1, λ2LL2, · · · , λnLLn]

= [λ1e1, λ2e2, · · · , λnen] =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 = D.



Lemma (Biggs [2])
Let X be a graph with adjacency matrix A. Then, for every positive integer k, (Ak)ij
equals the number of walks of length k from the vertex vi to the vertex vj.

Proof.
Proof by induction on k.

Base Step: If k = 1, by definition Aij =

{
1, if vi, vj areadjacent
0, otherwise.

Assume the result is true for k = L and let us consider the matrix AL+1. Then,

(AL+1)ij =
n

∑
h=1

(AL)ih.(A)hj.

Therefore, (AL+1)ij equals the number of walks of length L from vi to vh and then
a walk of length one (adjacency) from vh to vj, for all vertices vh ∈ V(X). Thus,
(AL+1)ij equals the number of walks of length L + 1 from vi to vj.
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d + 1 ≤ dim(A(X)) ≤ n.

Lemma (Biggs [2])
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d + 1 ≤ dim(A(X)) ≤ n.

Proof.
Since d is the diameter of X, there exists x, y ∈ V with d(x, y) = d. Suppose
x = w0, w1, . . . , wd = y is a path of length d in X.
Then, from Lemma 8, for each i ∈ {1, 2, . . . , d}, there is at least one path of length i
from w0 to wi, but no shorter walk. Consequently, Ai has a non-zero entry in a
position where the corresponding entries of I, A, A2, . . . , Ai−1 are zero. So
{I, A, A2, . . . , Ai−1, Ai} is a linearly independent set. Thus {I, A, A2, . . . , Ad−1, Ad}
is a linearly independent set and hence d + 1 ≤ dim(A(X)). Further, the upper
bound is achieved by the well known Cayley-Hamilton theorem. Hence, the result
follows.
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d + 1 distinct eigenvalues

The above result has a nice consequence. In particular, it relates the number of
distinct eigenvalues of a simple connected graph with the diameter of the graph.
We state it next.

Corollary
A connected simple graph X with diameter d has at least d + 1 distinct eigenvalues.

Proof.
Since the adjacency matrix is a real symmetric matrix, its minimal polynomial is
the product of distinct linear polynomials. Hence, dim(A(X)) also equals the
number of distinct eigenvalues of A. Thus, if the graph X has diameter d, then it
has at least d + 1 distinct eigenvalues.
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If all eigenvalues of a simple graph are equal, then its diameter is zero. Thus, a
simple graph has only one distinct eigenvalue if and only if it is a null graph.
Note:
The above obsertavtion need not be true for directed graphs.

For example, the
adjacency matrix of following directed path has only 0 as an eigenvalue. Note that
its adjacency matrix is a nilpotent matrix.

Directed path graph its adjacency matrix

1 2 3
0 1 0

0 0 1
0 0 0


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Few applications of Corollary 3

▶ A path graph on n vertices has n distinct eigenvalues.

▶ Let X be a connected graph. Then, it has exactly two distinct eigenvalues if
and only if it is complete graph (as diameter of the complete graph is one).

▶ Let X be a graph with two distinct eigenvalues. Then, X is a regular graph.
(Here we are not assuming X is a connected graph. If X is connected, then it
is n − 1 regular.)

Proof.
Let X be a graph with two distinct eigenvalues, then dimA(X) = 2. Hence, I and
A form a basis of A(X). Consequently A2 = aI + bA, for some a, b ∈ N. Thus,
(A2)ii = a for all i.

Are are able to see? A graph X has two distinct eigenvalues if and only if X is
disjoint union of complete graphs with same number of vertices.
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How to check a given graph is connected or not?

Lemma (Biggs [2])
Let X be a connected graph on n vertices. If A is it’s adjacency matrix, then every entry of
(I + A)n−1 is positive.

Proof.
From Lemma 8, we know that the ij-th entry of I + A + A2 + A3 + . . . + An−1

equals the total number of walks of length less than or equal to n − 1.As X is a
connected graph on n vertices, d(X) ≤ n − 1. Hence, each entry in
I + A + A2 + A3 + . . . + An−1 is positive. Thus, the required result follows as
(I + A)n−1 ≥ I + A + A2 + A3 + · · ·+ An−1.
What about the converse? If every entry of (I + A)n−1 is positive, then X is a
connected graph.
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k-th distance matrix of a graph

Definition
Let X = (V, E) be a connected graph with diameter d. Then, for 0 ≤ k ≤ d, the
k-th distance matrix of X, denoted Ak, is defined as

(Ak)rs =

{
1, if d(vr, vs) = k
0, otherwise.

If X = C4, the cycle graph on four vertices, then

A0 = I4, A1 =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 , A2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .

1. Are able to see A2 is the adjacency matrix of Xc in the above example?
2. If X is connected graph with a diameter d ≥ 2, then A2 + A3 + · · ·+ Ad =??
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From the above definition, it is clear that
▶ A0 is the identity matrix and A1 is the adjacency matrix of X.

▶ Can you check A0 + A1 + · · ·+ Ad = J, where J is the matrix of all 1′s.
▶ Is it true that Ak, for 0 ≤ k ≤ d is a symmetric matrix.
▶ Is the set {A0, A1, . . . , Ad} is a linearly independent set in Mn(R)?

Definition (Paul M. Weichsel [2])
Let X be a connected graph with diameter d and let Ak(X), for 0 ≤ k ≤ d, be the
k-th distance matrix of X. Then, X is said to be a distance polynomial graph if
Ak(X) ∈ A(X), for 0 ≤ k ≤ d.

The complete graph Kn, Cycle graph Cn, Complete bipartite graph Kn,n and
Petersen graph are few examples of distance polynomial graphs.
Natural question is which graphs are distance polynomial graphs? We will prove
few results to see the necessary conditions for a graph to be a distance polynomial
graph.
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graph.



Eigenvalues of regular graphs

Lemma (Biggs [2])
Let X be a k-regular graph. Then,

1. k is an eigenvalue of X.

2. if X is connected, then the multiplicity of k is one.

3. for an eigenvalue λ of X, |λ| ≤ k.

Proof of Part 1

Proof.
Let e = [1, 1, . . . , 1]T. Then Ae = ke. Consequently, k is an eigenvalue with
corresponding eigenvector e.
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Proof of Part 2
Let a = [a1, a2, . . . , an]T be an eigenvector of A corresponding to the eigenvalue k.

Suppose aj is an entry of a having the largest absolute value.Without loss of
generality, we also assume that aj is positive as one can take −a in place of a as an
eigenvector of k. So,

kaj = (Aa)j = ∑
{vi ,vj}∈E

ai ≤ kaj

as is vertex of X is adjacent to exactly k vertices and aj ≥ ai, for all i = 1, . . . , n.
Hence, ai = aj for all vertices that are adjacent to the vertex vj. Further, the
condition that X is connected implies that we can recursively obtain ai = aj for all
i and j. Consequently, a is multiple of e.
Proof of Part 3
Let Ab = λb. As above, let bj be an entry of b having the largest absolute value.
We again assume bj is positive. Then

|λ|bj = |(λb)j| = |(Ab)j| = | ∑
{vi ,vj}∈E

bi| ≤ ∑
{vi ,vj}∈E

|bi| ≤ k|bj|.

Thus, |λ| ≤ k
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J ∈ A(X)

Lemma 11 implies that if X is a connected k-regular graph then the minimal
polynomial of X will have the form (x − k)q(x) for some polynomial q(x) with
integer entries and q(k) ̸= 0, as k is an eigenvalue of multiplicity 1. We use this
idea in the next result.

Lemma (Hoffman [3])
Let X be a connected k-regular graph on n vertices. Then, the matrix J, consisting of all
1’s, equals

n
q(k)

q(A), i.e., J ∈ A(X).

Proof: As X is a k-regular graph, its adjacency matrix A satisfies Ae = ke. Let
(x − k)q(x) ∈ Z[x] be the minimal polynomial of X. Hence,

JA = AJ = kJ and q(A)e = q(k)e. (1)
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Continuation of Proof

Let
{

1√
n

e, x2, . . . , xn

}
be an orthonormal basis of Rn consisting of eigenvectors of

A with corresponding eigenvalues k, λ2, . . . , λn. Thus, xT
i e = 0, for 2 ≤ i ≤ n.

Hence, Jxi = 0.

Now, Equation (1) gives

J
1√
n

e =
n√
n

e =
( n

q(k)
q(k)

) 1√
n

e =
n

q(k)
q(A)

1√
n

e. (2)

As (x − k)q(x) is the minimal polynomial of X, q(λi) = 0. So,

q(A)xi = q(λi)xi = 0, i.e.,
n

q(k)
q(A)xi = 0. Thus, we see that the image of the two

matrices J and
n

q(k)
q(A) on the basis

{
1√
n

e, x2, . . . , xn

}
of Rn are same. Hence,

the two matrices are equal. Therefore, J =
n

q(k)
q(A).
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Lemma
Let X be a graph on n vertices. If J ∈ A(X), then X is a connected, regular graph.

Proof
Let A be the adjacency matrix of A. Then, J ∈ A(X) implies that

J = a0 I + a1A + · · ·+ ar Ar, (3)

for some positive integer r and ai ∈ R, 0 ≤ i ≤ r. As each entry of J is non-zero, for
each pair i, j, there exists the smallest power of A, say t ≤ r, which has a non-zero
entry. Hence, by definition there is a walk of length t from the vertex vi to the
vertex vj. Thus, X is connected. By Equation (3), we see that AJ = JA. So, if di
equals deg(vi), for 1 ≤ i ≤ n, then

d1 d2 · · · dn
d1 d2 · · · dn
...

...
. . .

...
d1 d2 · · · dn

 = JA = AJ =


d1 d1 · · · d1
d2 d2 · · · d2
...

...
. . .

...
dn dn · · · dn

 .

Thus, di = dj, for all i and j and hence X is a regular graph. Hence the proof.
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Observation
▶ If X is a conected regular graph with n vertices, then Kn is a polynomial in X.

▶ Let X be a connected regular graph and let k = λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn be the

eigenvalues of X.

Define, h(x) = n
n
∏
i=2

x−λi
k−λi

. Then, the eigenvalues of h(A) are

{h(k), h(λ2), . . . , h(λn)} = {n, 0}. Consequently, h(A)− J vanish at all
eigenvectors of A or equivalently h(A) = J =

n
q(k)

q(A).
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The eigenvalues of Xc, when X is a regular graph.

Corollary
Let X be a connected k-regular graph on n vertices with eigenvalues
k = λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn. Then, the eigenvalues of Xc are
n − k − 1,−1 − λ2, . . . ,−1 − λn.

Proof.
Let A be the adjacency matrix of X. Then, A(Xc) = J − I − A, the adjacency
matrix of Xc. Now, using Lemma 12, the matrices I, J and A have the same set of
eigenvectors. So, let U be an orthogonal matrix formed using the eigenvectors of
A as columns. Then, UAUT = diag(k, λ2, λ3, . . . , λn) and

UAcUT = U(J − I − A)UT = UJUT − UIUT − UAUT

= diag(n, 0, 0, . . . , 0)− diag(1, 1, . . . , 1)− diag(k, λ2, λ3, . . . , λn)

= diag(n − k − 1,−1 − λ2, . . . ,−1 − λn).



The eigenvalues of Xc, when X is a regular graph.

Corollary
Let X be a connected k-regular graph on n vertices with eigenvalues
k = λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn. Then, the eigenvalues of Xc are
n − k − 1,−1 − λ2, . . . ,−1 − λn.

Proof.
Let A be the adjacency matrix of X. Then, A(Xc) = J − I − A, the adjacency
matrix of Xc. Now, using Lemma 12, the matrices I, J and A have the same set of
eigenvectors.

So, let U be an orthogonal matrix formed using the eigenvectors of
A as columns. Then, UAUT = diag(k, λ2, λ3, . . . , λn) and

UAcUT = U(J − I − A)UT = UJUT − UIUT − UAUT

= diag(n, 0, 0, . . . , 0)− diag(1, 1, . . . , 1)− diag(k, λ2, λ3, . . . , λn)

= diag(n − k − 1,−1 − λ2, . . . ,−1 − λn).



The eigenvalues of Xc, when X is a regular graph.

Corollary
Let X be a connected k-regular graph on n vertices with eigenvalues
k = λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn. Then, the eigenvalues of Xc are
n − k − 1,−1 − λ2, . . . ,−1 − λn.

Proof.
Let A be the adjacency matrix of X. Then, A(Xc) = J − I − A, the adjacency
matrix of Xc. Now, using Lemma 12, the matrices I, J and A have the same set of
eigenvectors. So, let U be an orthogonal matrix formed using the eigenvectors of
A as columns. Then, UAUT = diag(k, λ2, λ3, . . . , λn) and

UAcUT = U(J − I − A)UT = UJUT − UIUT − UAUT

= diag(n, 0, 0, . . . , 0)− diag(1, 1, . . . , 1)− diag(k, λ2, λ3, . . . , λn)

= diag(n − k − 1,−1 − λ2, . . . ,−1 − λn).



Corollary
Let X be a connected regular graph. Then Xc is connected if and only if A(X) = A(Xc).

Proof.
As J ∈ A(X), A(Xc) = J − I − A ∈ A(X) and hence A(Xc) ⊆ A(X).
As Xc is a (n − k − 1)-regular connected graph, J ∈ A(Xc). Hence,
A = J − I − A(Xc) ∈ A(Xc). Thus, A(Xc) ⊆ A(X), Thus, the two sets are equal.
Now, suppose that the two sets are equal. Then, J ∈ A(X) = A(Xc). Thus, by
Lemma 13, the graph Xc is connected and regular. Hence, the required result
follows.

Corollary
Let X be a distance polynomial graph. Then X is a connected regular graph.

Proof.
As X is a distance polynomial graph, by definition, X is already connected. If X
has diameter d, then by definition, Ak(X) ∈ A(X), for 0 ≤ k ≤ d. Consequently,

J =
d
∑

k=0
Ak(X) ∈ A(X) and hence using Lemma 12, the result follows.
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C5 : connected 2 regular graph.

▶ Find number of common neighbors of two
adjacent vertices?

▶ Find number of common neighbors of two
non-adjacent vertices?

▶ Is the distance partition of any node is an
equitable partition? Is it same for all
vertices?
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K3,3 : connected 3-regular graph.

▶ Find number of common neighbors of two
adjacent vertices?

▶ Find number of common neighbors of two
non-adjacent vertices?

▶ Is the distance partition of any node is an
equitable partition? Is it same for all
vertices?
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Strongly regular graph (SRG)

Definition
A k-regular graph X on n vertices is said to be a strongly regular graph, with
parameters (n, k, a, c) if

1. X is neither the complete graph nor the null graph,
2. any two adjacent vertices, say u and v, have exactly a common neighbors, and
3. any two non-adjacent vertices, say s and t, have exactly c common neighbors.

The number of common neighbors of two vertices is k, a, c depending on whether
they are equal, adjacent or nonadjacent.

d(u, v) number of
common neighbours

0 k
1 a
2 c

For C4 or K2,2 : k = 2, a = 0, c = 2.For Kn,n : k = n, a = 0, c = n.
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X0(v) X1(v) X2(v)
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vk+1

vk+2

...
vn

X0(v) = {v}, X1(v) = {v2, . . . , vk+1} is
the set of k neighbours of v,

X2(v) = {vk+2, . . . , vn} is the of n − k − 1
non-neighbours of v.

Here Xi(v) = {w|d(v, w) = i}.

{X0(v), X1(v), X2(v)} forms an equitable
partition of X called distance partition of
X w.r.to v. That is independent of vertex
chosen, i.e., all will have same quotient

graph/matrix.
The quotient matrix is0 k 0

1 a k − a − 1
0 c k − c

 .

1
2

3

a

b
c

K3,3 ,

0 3 0
1 0 2
0 3 0

 .
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Examples of Strongly regular graphs

▶ For example, C5 is a (5, 2, 0, 1) strongly regular graph.

▶ Petersen graph is a strongly regular with parameters (10, 3, 0, 1).
▶ The Paley graph on q = 4t + 1 vertices is a strongly regular with parameters

(4t + 1, 2t, t − 1, t).
▶ Recall that the triangular graphs, denote lg(Kn), were the line graphs of the

complete graphs and it can be easily verified that they are strongly regular
graphs with parameters ( n(n−1)

2 , 2(n − 2), n − 2, 4).
▶ The line graphs of the complete bipartite graphs, lg(Kn,n) are strongly regular

with parameters (n2, 2(n − 1), n − 2, 2). This is also a rook graph on square
chess board. For example if we consider rook graph on n × n chess board,
then the distance partition w.r. to (1, 1) is an equitable partition. Here the cells
are
C0 = {(1, 1)}, C1 = {(1, j) | j ̸= 1} ∪ {(i, 1) | i ̸= 1}, C2 = {(i, j) |i ̸= 1, j ̸= 1}.
|V| = 1 + 2(n − 1) + (n − 1)2 = n2. Distinct eigenvalues are 2n − 2, n − 2,−2.
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Lemma
Let X be a strongly regular graph. Then diam(X) = 2.

Proof.
Let X be a strongly regular graph with parameters (n, k, a, c), and suppose there
are two vertices u, x of X that are distance 3 apart. Let (u, v, w, x) be a path of
length 3.

▶ The pair of vertices u and x are non-adjacent, therefore they must have
exactly c neighbors in common. It is clear in this case that c must equal zero: if
u and x shared some neighbor y, then (u, y, x) would be a path of length 2
from u to x, a contradiction.

▶ The pair of vertices u and w must also be non-adjacent, or else (u, w, x) would
be a path of length 2 from u to x. As u and w are non-adjacent, they have
c = 0 common neighbors. But, v is a common neighbor of u and w, a
contradiction. Thus X must have a diameter of at most 2. But we are not
considering complete graph or a null graph.
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Relationship among the parameters.

▶ There is relationship among the parameters. That is if we know three of them,
then it is possible to find fourth parameter.

Let X be strongly regular graph
with parameters (n, k, a, c).

▶ Let x ∈ V(X). Then x has k neighbors and n − k − 1 non-neighbors. We will
count the total number of edges between neighbors and non-neighbors of x in
two ways.

▶ Let v1, v2, . . . , vk be neighbors of x, then the number of common neighbors of
x and vi is a. Hence number of edges between neighbors of x, non common
neighbors of x are k(k − a − 1).

▶ On the other hand there are n − k − 1 vertices not adjacent to x, each of which
adjacent to c neighbors of x. Hence total number of edges between neighbors
of x, non common neighbors of x are c(n − k − 1).

Thus we have k(k − a − 1) = c(n − k − 1).
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Theorem (Godsil and Royle [3])
Let A be the adjacency matrix of an (n, k, a, c)-strongly regular graph X. Then,

1. A2 = kI + aA + c(J − I − A).
2. the eigenvalues of X are k and roots of equation x2 − (a − c)x − (k − c) = 0.

Proof of first part:
To prove the first part, note that he (i, j)th entry of A2 is the number of walks of
length of 2 from the vertex i to the vertex j. Moreover, this number determined
only by whether the vertices i and j are adjacent, non-adjacent or same.

Thus, by
definition of the graph X, we have

(A2)ij =


k whenever i = j,
a if i ̸= j but i and j are adjacent,
c if i ̸= j but i and j are not adjacent.

Or equivalently, A2 = kI + aA + cAc = kI + aA + c(J − I − A).
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Proof of second part

Proof.
For the second part, note that k is indeed an eigenvalue of X with eigenvector e.
Now, let λ be an eigenvalue of X with corresponding eigenvector x. Then,
eTx = 0. Hence, using the first part

a(λx) = a(Ax) =
(

A2 − kI − c(J − I − A)
)

x

= λ2x − kx − c(0 − 1 − λ)x = (λ2 + cλ − (k − c))x.

As x ̸= 0, we must have λ2 − (a − c)λ − (k − c) = 0. That is, λ satisfies the
required equation.

The eigenvalues are k, (a−c)±
√

∆
2 , where ∆ = (a − c)2 + 4(k − c).



Shrikhande: one of Euler’s Spoiler

The following result characterizes connected regular graphs with three distinct
eigenvalues. The proof is easy and is left as an exercise.

Theorem (Shrikhande and Bhagwandas)
Let X be a connected regular graph which is not a complete graph. Then,

1. X is a strongly regular if and only if A2 is linear combination of the matrices I, J
and A.

2. X is a strongly regular if and only if it has exactly three distinct eigenvalues.
Euler conjectured that no orthogonal Latin squares existed for oddly even
numbers (even numbers not divisible by 4.).
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This conjecture by Euler was in 1782. In 1901, a French mathematician named
Gaston Tarry (1843 − 1913) proved that n = 6 was indeed impossible by
laboriously checking all possible cases. But Euler’s conjecture that orthogonality
was impossible for all oddly even numbers remained to be resolved. Until 1959,
when R.C. Bose, Shrikhande and E.T. Parker disproved the conjecture.
Once Shrikhande said:
“had the rare privilege of seeing our works reported on the front page of the
Sunday Edition of the New York Times of April 26, 1959.”



Theorem (Friendship Theorem)
Let X be a finite graph such that any two distinct vertices have exactly one common
neighbor. Then, there exists a vertex adjacent to all other vertices.

Proof.
Sketch of the Proof: Suppose, for contradiction, that no vertex is adjacent to all
others.

Step 1: Regularity
The graph X is regular of degree k.

Step 2: Strongly Regular Graph
X is strongly regular with parameters srg(n, k, 1, 1).
The eigenvalues of X are k,

√
k − 1,−

√
k − 1. And we know that multiplicity of k

as an eigenvalue is 1. Let r, s be multiplicities of
√

k − 1,−
√

k − 1 respectively,
then k + r

√
k − 1 − s

√
k − 1 = 0 That is k + (r − s)

√
k − 1 = 0. Since k = 0 not

possible, hence r = s also not possible. Then (r − s)2(k − 1) = k2 or (k − 1)|k2, and
this is possible only when k = 2. This is also leads to a contradiction.
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Graph Parameters (v, k, a, c) Degree Vertices
Kn,n (2n, n, 0, n) n 2n
C5 (5, 2, 0, 1) 2 5

Petersen (10, 3, 0, 1) 3 10
Clebsch (16, 5, 0, 2) 5 16

Hoffman–Singleton (50, 7, 0, 1) 7 50
Gewirtz (56, 10, 0, 2) 10 56

M22 (77, 16, 0, 4) 16 77
Higman–Sims (100, 22, 0, 6) 22 100

Table: Strongly regular triangle-free graphs

Here Kn,n is an infinite family of graphs. Rest are unique.
Refer: https://www.math.ru.nl/OpenGraphProblems/Tjapko/30.html



A(X) of SRG
If X is a connected strongly regular graph, then dim(A(X)) = 3 and
{I, A, Ac} = {A0, A1, A2} forms a basis for A(X).

Definition
A connected graph X is said to be a distance regular graph if for any two
vertices u, v of X, the number of vertices at distance i from u and distance j from v
depends only on i, j and d(u, v), the distance between u and v.

Theorem (Damerell [2])
Let X be a distance regular graph of diameter d. Then the set of distance matrices of X,
{A0(X), A1(X), . . . , Ad(X)}, forms a basis of the adjacency algebra A(X).

A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance regular Graphs, Springer-Verlag,(1989).
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Let X be a graph with diameter d and any vertices u, v of X.

shj(u, v) = |{w ∈ V|d(u, w) = h, & d(v, w) = j}|.

That is the number of vertices w whose distance from u is h and whose distance
from v is j. In distance regular graph, this number is independent of u and v but it
depends on distance between the vertices. That is if d(u, v) = i, then
shij = shj(u, v).

Definition
The intersection numbers of a distance regular graph with diameter d are the
3(d + 1) numbers Shij, where h, i and j belong to the set {0, 1, . . . , d}.



Let v ∈ V(X) be vertex fixed. Let u ∈ V(X) such that d(v, u) = i, where
i ∈ {1, 2, . . . , d}. If r ∈ N(u) then d(v, r) ∈ {i − 1, i, i + 1}.

If X is a distance regular
graph, then there exists three numbers depend on i (not on v, u) such that

▶ ai number of neighbours of u at a distance i from v that is ai = |N(u) ∩ Xi(v)|
▶ bi number of neighbours of u at a distance i + 1 from v, bi = |N(u) ∩ Xi+1(v)|.
▶ ci number of neighbours of u at a distance i − 1 from v, ci = |N(u) ∩ Xi−1(v)|.

It is clear that bd, and c0 are undefined. We will take c0 = bd = 0.
d(v, x) = 1 d(v, y) = 3 d(v, u) = i

v
x y

. . . . . . u . . . . . .

The intersection array of X denoted i(X) given as

 ∗ c1 c2 . . . cd−1 cd
a0 a1 a2 . . . ad−1 ad
b0 b1 b2 . . . bd−1 ∗

 .

Further it is clear that ai + bi + ci = b0, b0 = k, if X is a k- regular graph. Hence
i(X) = (k, b1, . . . , bd−1; 1, c2, . . . , cd).
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Let v ∈ V(X) be vertex fixed. Let u ∈ V(X) such that d(v, u) = i, where
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▶ ci number of neighbours of u at a distance i − 1 from v, ci = |N(u) ∩ Xi−1(v)|.
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▶ Distance partition of Petersen graph.
▶ It is an equitable partition.
▶ Intersection array is (3, 2; 1, 1).

▶

a0 b0 0
c1 a1 b1
0 c2 a2

 =

0 3 0
1 0 2
0 1 2


▶ Distance regular graph with diameter 2.
▶ Strongly regular graph.
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▶ The Dodecahedron

▶

∗ 1 1 1 2 3
0 0 1 1 0 0
3 2 1 1 1 ∗


▶ Distance transitive hence

distance regular.
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The k-cube, Qk is the graph defined as follows: the vertices of Qk are the
(ϵ1, ϵ2, . . . , ϵk), where ϵi = 0 or 1 for 1 ≤ i ≤ k and two vertices are adjacent when
their symbols differ in exactly one coordinate. The graph Qk (k ≥ 2) is
distance-transitive, with valency k, diameter k, and intersection array
{k, k − 1, k − 2, . . . , 1; 1, 2, 3, . . . , k}. For Q3
{X0(000), . . . , X3(000)} = {{000}, {100, 010, 001}, {110, 101, 110}, {111}}.

000
001
010
100

011
101
110

111 i(Q3) = {3, 2, 1; 1, 2, 3}
.



The number of vertices can be obtained from the intersection array. In fact, every
vertex has a constant number of vertices ki at given distance i, that is, ki = |Xi(z)|
for all z ∈ V. Indeed, this follows by induction and counting the number of edges
between Xi(z) and Xi+1(z) in two ways. In particular, it follows that k0 = 1 and

ki+1 =
biki

ci+1

for all i = 0, 1, . . . , d − 1. The number of vertices now follows as
v = k0 + k1 + · · ·+ kd. In combinatorial arguments such as the above, it helps to
draw pictures; in particular, of the so-called distance-distribution diagram, as
depicted in Figure.

Figure: Distance-distribution diagram



Proposition
With notation as above, the following conditions hold:

(i) ki+1 = b0b1···bi
c1c2···ci+1

is an integer for i = 0, 1, . . . , d − 1,

(ii) numbers nki, kiai are even for i = 1, 2, . . . , d,
(iii) nka1 is divisible by 6.

Proof.
we already observed the recurrence ki+1 = biki/ci+1 for all i = 0, 1, . . . , d − 1, and
this implies that ki+1 = b0b1···bi

c1c2···ci+1
for i = 0, 1, . . . , d − 1. These numbers are clearly

positive integers. By doubly counting all pairs (z, e), where z is an end vertex of
edge e in Xi, it follows that the number of edges in Xi equals vki/2, which should
be an integer. Similarly, there are kiai/2 edges of X within Xi(z) for a fixed vertex
z, and this should be an integer. Finally, the number of triangles in X equals
vka1/6.



Proposition
With notation as above, the following conditions hold:

(i) 1 = c1 ≤ c2 ≤ · · · ≤ cd, k = b0 ≥ b1 ≥ · · · ≥ bd−1,
(ii) If i + j ≤ d, then ci ≤ bj,

(iii) There is an i such that k0 ≤ k1 ≤ · · · ≤ ki and ki+1 ≥ ki+2 ≥ · · · ≥ kd.

Proof.
Let i = 1, 2, . . . , d. Consider two vertices x and y at distance i, and a vertex z that is
adjacent to x and at distance i − 1 from y. Now the ci−1 neighbors of y that are at
distance i − 2 from z are all at distance i − 1 from x. Therefore ci ≥ ci−1. Similarly,
the bi neighbors of y that are at distance i + 1 from x are at distance i from z, hence
bi−1 ≥ bi. (ii) Consider two vertices x and y at distance i + j, and a vertex z at
distance i from x and j from y. Then the ci neighbors of z that are at distance i − 1
from x are at distance j + 1 from y. Hence ci ≤ bj. (iii) It follows from (i), (ii), and
Proposition 3 that k2

i ≥ ki−1ki+1 for i = 1, 2, . . . , d − 1. This implies that the ki are
unimodal: there is an i such that k0 ≤ k1 ≤ · · · ≤ ki and ki+1 ≥ ki+2 ≥ · · · ≥ kd.



▶ Let A be the adjacency matrix of the cycle graph Cn.
▶ Then, γA(x) = x + xn−1 is its representer polynomial and its eigenvalues are

given by λr = 2 cos( 2πr
n ), for r = 0, 1, . . . , n − 1. It is easy to see that λr = λn−r

for r = 1, . . . , n − 1.
▶ As, the diameter of Cn is ⌊ n

2 ⌋, we see that Cn has ⌊ n
2 ⌋+ 1 distinct eigenvalues

and dim(A(Cn)) = ⌊ n
2 ⌋+ 1. It is easy to see that the cycle graph is a distance

polynomial graph, i.e., its distance matrices belong to its adjacency algebra. In
fact they form a basis of the adjacency algebra.

▶ Cycle graph is an example of distance regular graph, infact it is distance
transitive graph, we will define distance transitive graphs shortly.

For example, the basis for A(C4) is {I, A, A2} another basis is
{I, A = A1, Ac = A2}. Same with C5.
For C6 and C7 the basis are {I, A, A2, A3} or {I, A1, A2, A3}.



The following result shows that every symmetric circulant matrix is a polynomial
in the cycle graph. Hence, the eigenvalues of every circulant graph can be
computed using the eigenvalues of Cn.

Theorem
Let B ∈ Mn(Q). Then B is symmetric circulant matrix if and only if B ∈ A(Cn).

Proof.
By the definition of the adjacency algebra of a graph, every element in A(Cn) is a
symmetric circulant matrix. We now show that if B is a symmetric circulant
matrix, then B ∈ A(Cn).
Let B be a symmetric circulant matrix with the representer polynomial
γB(x) = ∑n−1

i=0 bixi. Then B = ∑n−1
i=0 biW i

n and BT = ∑n−1
i=0 biWn−i

n . Consequently

bi = bn−i, for 1 ≤ i ≤ n − 1. Thus, B = ∑
⌊ n

2 ⌋
i=0 bi Ai and hence, the required result

follows.
A.K.Lal and A.Satyanarayana Reddy, Non-singular circulant graphs and digraphs,
Electronic Journal of Linear Algebra, Volume 26,(2013), 248–257.
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Few examples of distance regular graphs and their intersection array.
Graph Intersection array (k, b1, . . . , bd−1; 1, c2, . . . , cd)
Kn (n − 1; 1)
Cn (2, 1, 1, . . . , 1; 1, 1, . . . , 1) if n is odd.

(2, 1, 1, . . . , 1; 1, 1, . . . , 2) if n is even.
For an integer k ≥ 2, the vertices of the Odd graph Ok are the (k − 1)-subsets of a
set of size 2k − 1, and two vertices are adjacent if the corresponding subsets are
disjoint. The Odd graph Ok is distance-regular with diameter k − 1.
For odd k = 2l − 1, its intersection array is
(k, k − 1, k − 1, . . . , l + 1, l + 1, l; 1, 1, 2, 2, . . . , l − 1, l − 1).
For even k = 2l, the intersection array is
(k, k − 1, k − 1, . . . , l + 1, l + 1; 1, 1, 2, 2, . . . , l − 1, l − 1, l). Consequently, the
numbers ai are zero for all i = 0, 1, . . . , d − 1, but ad = l > 0.



The Johnson graph J(n, k) is a distance-regular graph with diameter
d = min(k, n − k). For 0 ≤ i ≤ d, the intersection numbers are given by:

bi = (k − i)(n − k − i), ai = i(n − 2i) + i2, ci = i2

for i = 0, 1, 2, . . . , d, where d = min(k, n − k).

For J(7, 3), we have n = 7, k = 3, and diameter d = min(3, 4) = 3.
The intersection numbers are:

b0 = (3− 0)(7− 3− 0) = 12, b1 = (3− 1)(7− 3− 1) = 6, b2 = (3− 2)(7− 3− 2) = 2,

c1 = 12, c2 = 22, c3 = 32.

The intersection array is: {12, 6, 2; 1, 4, 9}



Recall that the adjacency algebra A(X) of a distance regular graph X has a basis
{A0, A1, . . . , Ad} and Ah Ai = ∑ shij Aj. This equation can be interpreted as saying
that left multiplication by Ah (regarded as linear mapping of A(X) w.r.to given
basis) is faithfully represented by (d + 1)× (d + 1) matrix Bh with (Bh)ij = shij.

Proposition
The adjacency algebra A(X) of a distance regular graph with diameter d can be faithfully
represented by an algebra of matrices with d + 1 rows and columns. A basis of this
representation is the set {B0, B1, . . . , Bd} where (Bh)ij is the intersection number Shij for
h, i, j ∈ {0, 1, . . . , d}.

B1 =



0 k 0 0 . . . 0
c1 a1 b1 0 . . . 0
0 c2 a2 b2 . . . 0
...

...
. . . . . . . . . 0

. . . . . . . . . cd−1 ad−1 bd−1
0 0 0 . . . cd ad



It is cleat that B1 is quotient matrix (B).
Hence similar to symmetric matrix.

Since c1c2 · · · cd ̸= 0 the rank of B − θ I is
d + 1 for every θ ∈ R. Hence all

eigenvalues of B are distinct.



The members of A(X) can now be regarded as square matrices of size d + 1
(instead of n) a considerable simplification. What is more important is the matrix
B1 it self is sufficient. If you call B1 as B, then

BBi = bi−1Bi−1 + aiBi + ci+1Bi+1.

Consequently each Bi (i ≥ 2) is a polynomial in B with coefficients depend only on
the entries of B.
Since B is the image of adjacency matrix A under faithful representation, the
minimal polynomial of A and B coincide.
AAi = bi−1 Ai−1 + ai Ai + ci+1Ai+1 for i ∈ {0, 1, . . . , d}



Theorem
A connected graph Γ is distance-regular if and only if:

1. For every vertex v ∈ V, the distance partition {V0(v), V1(v), . . . , Vd(v)} is
equitable

2. The intersection numbers pij are independent of the choice of vertex v



Proof.
(⇒) Suppose Γ is distance-regular with intersection numbers {bk} and {ck}.
For any vertex v, consider its distance partition {V0(v), V1(v), . . . , Vd(v)}. For u ∈ Vk(v):

▶ Any neighbor w of u with ∂(v, w) = k − 1 contributes to pk,k−1 , and by distance-regularity, there are exactly ck such neighbors

▶ Any neighbor w of u with ∂(v, w) = k contributes to pk,k , and there are ak = deg(u)− bk − ck such neighbors

▶ Any neighbor w of u with ∂(v, w) = k + 1 contributes to pk,k+1 , and there are exactly bk such neighbors

Thus the partition is equitable with intersection numbers:

pk,k−1 = ck , pk,k = ak , pk,k+1 = bk , and pij = 0 for |i − j| > 1

These numbers are independent of the choice of v by the definition of distance-regularity.
(⇐) Suppose for every vertex v, the distance partition is equitable with intersection numbers independent of v.
Let u, v ∈ V with ∂(u, v) = k. Consider the distance partition from u: {V0(u), V1(u), . . . , Vd(u)} where v ∈ Vk(u).
By the equitable condition:

▶ The number of neighbors of v in Vk−1(u) is pk,k−1

▶ The number of neighbors of v in Vk+1(u) is pk,k+1

Since these intersection numbers are independent of the choice of u, we can define:

ck = pk,k−1 and bk = pk,k+1

for all 0 ≤ k ≤ d (with appropriate boundary conditions c0 = bd = 0).
Therefore, Γ is distance-regular with intersection numbers {bk} and {ck}.



Table: Distance-Regular Graphs of Valency 3

Graph Description Vertices

Complete graph K4 Complete graph on 4 vertices 4
K3,3 Complete bipartite graph 6
3-cube Q3 Cube graph (Hamming graph H(3, 2)) 8
Petersen graph Famous symmetric graph 10
Heawood graph (3,6)-cage 14
Pappus graph Incidence graph of the Pappus configuration 18
Desargues graph Incidence graph of Desargues config. 20
Dodecahedron graph Vertices of a dodecahedron 20
Coxeter graph Symmetric cubic graph 28
Tutte–Coxeter graph Symmetric cubic distance-transitive graph 30
Foster graph Smallest cubic symmetric graph with girth 10 90
Biggs–Smith graph Sporadic example, girth 9 102
Tutte 12-cage (3,12)-cage, also called Tutte’s 12-cage 126



Table: Distance-regular graphs with valency 3

Intersection array n d g Name Cayley

{3; 1} 4 1 3 K4 Yes
{3, 2; 1, 3} 6 2 4 K3,3 Yes
{3, 2, 1; 1, 2, 3} 8 3 4 Cube ∼ K∗

3,3 Yes
{3, 2; 1, 1} 10 2 5 Petersen ∼ O3 No
{3, 2, 2; 1, 1, 3} 14 3 6 Heawood ∼ IG(7, 3, 1) Yes
{3, 2, 2, 1; 1, 1, 2, 3} 18 4 6 Pappus ∼ IG(AG(2, 3) \ pc) Yes
{3, 2, 2, 1, 1; 1, 1, 2, 2, 3} 20 5 6 Desargues ∼ DO3 No
{3, 2, 1, 1, 1; 1, 1, 1, 2, 3} 20 5 5 Dodecahedron No
{3, 2, 2, 1, 1, 1; 1, 1, 1, 1, 2} 28 4 7 Coxeter No
{3, 2, 2, 2, 1, 1, 1; 1, 1, 1, 1, 3} 30 4 8 Tutte’s 8-cage ∼ IG(GQ(2, 2)) No
{3, 2, 2, 2, 2, 1, 1, 1; 1, 1, 1, 1, 2, 2, 2, 3} 90 8 10 Foster No
{3, 2, 2, 2, 1, 1, 1; 1, 1, 1, 1, 1, 1, 3} 102 7 9 Biggs–Smith No
{3, 2, 2, 2, 2, 2; 1, 1, 1, 1, 1, 3} 126 6 12 Tutte’s 12-cage ∼ IG(GH(2, 2)) No



Distance Transitive Graphs

Definition
A graph X is said to be distance transitive if for all vertices u, v, x, y of X with
d(u, v) = d(x, y), there is a g ∈ Aut(X) satisfying g(u) = x and g(v) = y.

The distance transitive graphs are both vertex and edge transitive. Complete
graphs Kn, cycle graphs Cn and complete bipartite graphs Km,n with m = n are a
few examples of distance transitive graphs. There are a few class of graphs which
attain the lower bound in the inequality d + 1 ≤ dim(A(X)) ≤ n. The class of
distance transitive graphs are one among them.

Theorem
Let X be a distance transitive graph with diameter d. Then dim(A(X)) = d + 1.
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▶ Suppose G = Aut(X) acts distance transitively on X and u ∈ V(X). If v and w
are two vertices at distance i from u, there is an element of G that maps (u, v)
to (u, w), i.e., there is an element of Gu that maps v to w, and so G acts
transitively on Xi(u).

▶ Thus, the cells of the distance partition with respect to u are the orbits of Gu.
▶ If X has diameter d, then it follows that G acts distance transitively on X if

and only if it acts transitively and, for any vertex u ∈ V(X), the vertex
stabilizer Gu has exactly d + 1 orbits.

▶ In other words, the group G is transitive with rank d + 1.



Orbital Matrices

In fact, in case of distance transitive graphs something more is true and to state it,
we need the following definition.

Definition
Let G be a group acting on a non-empty set V. Then G also acts on V × V, by
g(x, y) = (g(x), g(y)). For each fixed element (u, v) ∈ V × V, the set
Orb(u, v) = {g(u, v) : g ∈ G} is called the orbit of (u, v), under the action of G.
The distinct orbits of V × V under the action of G are called orbitals.
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In the context of a graph X = (V, E), the orbitals of X are the distinct orbits of
E ⊂ V × V under the action of Aut(X). That is, the orbitals are the orbits of the
arcs/non-arcs of the graph X.

The number of orbitals is called the rank of Aut(X).
Note that, for each fixed (u, v) ∈ V × V, we can associate a 0, 1-matrix, say
M = [mij], where mij equals 1, if (i, j) ∈ Orb(u, v) and 0, otherwise. The matrices
obtained by the above method are called orbital matrices. Also, note that for any
orbital matrix all its non-zero entries either appear on the main diagonal or they
appear on off-diagonal as g(v, v) = (g(v), g(v)), for all v ∈ V and g ∈ Aut(X). The
orbitals containing 1’s on the diagonal will be called diagonal orbitals.
If X is a distance transitive graph then orbital matrices and the distance matrices
defined earlier will coincide. Moreover, they form a basis for adjacency algebra
A(X).
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arcs/non-arcs of the graph X. The number of orbitals is called the rank of Aut(X).
Note that, for each fixed (u, v) ∈ V × V, we can associate a 0, 1-matrix, say
M = [mij], where mij equals 1, if (i, j) ∈ Orb(u, v) and 0, otherwise. The matrices
obtained by the above method are called orbital matrices. Also, note that for any
orbital matrix all its non-zero entries either appear on the main diagonal or they
appear on off-diagonal as g(v, v) = (g(v), g(v)), for all v ∈ V and g ∈ Aut(X). The
orbitals containing 1’s on the diagonal will be called diagonal orbitals.
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▶ The theory which underlies our treatment of the adjacency algebra of a
distance regular graph was developed in two quite different contexts.

▶ First, the association schemes used by Bose in the statistical design of
experiments led to an association algebra (Bose and Mesner 1959), which
corresponds to our adjacency algebra.

▶ Concurrently, the work of Schur (1933) and Wielandt ring, of a permutation
group,(1964) on the commuting algebra, or centralizer culminated in the
paper of Higman (1967) which employs graph-theoretic ideas very closely
related to those of this discussions.

▶ The connection between the theory of the commuting algebra and distance
transitive graphs is also can be found.



Hadamard Product

▶ Let A, B ∈ Mn(C). Then the Hadamard product of A = [aij] and B = [bij],
denoted A ⊙ B, is defined as (A ⊙ B)ij = aijbij, for 1 ≤ i, j ≤ n.

▶ Two matrices A, B ∈ Mn(C) are said to be disjoint if their Hadamard product
is the zero matrix.

▶ Let S be a non-empty subset of Mn(C). Then S is said to be closed under
conjugate transposition if A∗ ∈ S, for all A ∈ Sand is said to be closed under
Hadamard product if A ⊙ B ∈ S, whenever A, B ∈ S. We denote the matrices
with entries either 0 or 1 as 0, 1-matrices.

Theorem (Higman [2], Brouwer, Cohen & Neumaier [4])
Let M be a vector subspace of symmetric n × n matrices. Then M has a basis of
mutually disjoint 0, 1-matrices if and only if M is closed under Hadamard
multiplication.
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Definition
A subalgebra of Mn(C) containing the matrices I (Identity matrix) and J (matrix
with all entries being 1) is called a coherent algebra if it is closed under
conjugate-transposition and Hadamard product.

▶ Mn(C) is the largest coherent algebra.
▶ The minimal polynomial of J is pJ(x) = x(x − n).

▶ Hence dim(C[J]) = 2. Also, the set {I, J − I} is the mutually disjoint 0, 1-matrix
basis for C[J].

▶ Thus, from Theorem 126, C[J] is a coherent algebra.
▶ As any coherent algebra contains both I and J, it is clear that C[J] is the smallest

coherent algebra.

▶ Note that C[J] = C[J − I] which is same as A(Kn).
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Let P( ̸= I) be a permutation matrix. Then it is easy to check that the set of all
matrices which commute with P is a non-trivial example of a coherent algebra.

For example, let

Wn =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0

 .

The minimal polynomial of Wn is xn − 1 = ∏
d|n

Φd(x) and

{In = W0
n , W1

n , W2
n , . . . , Wn−1

n } forms a basis of F[Wn].
We already observed that Wn is the adjacency matrix of a directed cycle.
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Association Schemes

The theory offers a unifying frame work for studying combinatorial objects like
codes, designs, finite geometries and graphs with high regularity.
(Bannai-Ito Perspective).

1900’s: Finite group theory and Character
theory (dating back to Frobenious,
Burnside and Schur).

1940’s: C-Algebras (Y-Kawada)
1952’s: Experimental designs in statistics

(R.C.Bose, T. Shimatoto).
1959’s: Algebras from association schemes

(R.C.Bose and D. Mesner).

1970’s: Coherent configurations (D.G.
Higman).

1973’s: P Delsarte’s Thesis. “ An algebraic
approach to the association
schemes of coding theory”.

1984’s: Bannai-Ito book “Algebraic
Combinatorics Part-1, Association
schemes”.
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Association Scheme: X = (Ω, {Ri}m
i=0) of class m on a set Ω. {Ri}m

i=0 is partition of
Ω × Ω.

1. If (x, y) ∈ Rk, then |{w ∈ Ω : (x, w) ∈ Ri, (w, y) ∈ Rj}| = pk
ij.

k

ji

x y

w

2. {Ri}m
i=0 = {RT

i }m
i=0.

3. R0 = I.

▶ pk
ij : intersection numbers.

▶ p0
ii = ki valency

▶ X is symmetric ⇔ Ri = RT
i .

▶ X is commutative ⇔ pk
ij = pk

ji.



▶ Let G be a finite group acting transitively on a finite set Ω. Then acts on
Ω × Ω as g(x, y) = (g(x), g(y)). Let R0, R1, . . . , Rd be the G orbits of Ω × Ω
with R0 = {(x, x)|x ∈ Ω}.

▶ Let G be a finite group with conjugacy classes C0, C2, . . . , Cd. Define
(x, y) ∈ Ri ⇔ yx−1 ∈ Ci. Then (G, {Ri}) is a commutative association scheme
called group association scheme denoted χ(G).
The Bose Mesner algebra of χ(G) is isomorphic to the center of the group
algebra C[G]. In this sense the theory of finite groups is “contained” in the
theory of association schemes.



Primitive Schemes:Building blocks of all schemes

▶ Ambitious goal: Classify all primitive commutative Schemes
▶ Primitive Schemes serve as “building blocks” just like simple groups in the

finite group theory and prime numbers for the integers.
▶ An association scheme is primitive if all the relation graphs (Ω, Ri) are

connected graphs.
▶ The group-case χ(G is primitive if the 1-point stabilizer of the action is a

maximal subgroup og G.
▶ The group association scheme χ(G) is primitive if G is finite simple group.
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