Linear systems I

Generally a problem of computing solution to a BVP is converted to the problem of solving a system of linear equations.
\rightarrow discretization of domain
\rightarrow collocation
Linear Algebra

$$
\begin{aligned}
& A x=b \\
& A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m \times 1}
\end{aligned}
$$

To find $x \in \mathbb{R}^{n \times 1}$
such that

$$
A_{x}=b
$$

For us today, $m=n$. (A is square)

Given $A x=b$, compute x.
A is invertible $\Rightarrow x$ is unique.

$$
x=A^{-1} b
$$

Question: If A and b are
NOT EXACTLY known, what is the effect on the solution we obtain?!

Plan:

- Introduce the concept of distance on the vectors and matrices.
- Condition number.
- Sensitivity analysis.

Vector norm:
$\|\cdot\| \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R} \quad$ which satisfies
i) $\|x\| \geqslant 0 \quad, \quad\|x\|=0$ iff $x=0$.
ii) $\|\alpha x\|=\|\alpha!\| x \|$; $\| \in \mathbb{R}$
iii) $\|x+y\| \leq\|x\|+\|y\|$

How far x is from $y,\|x-y\|$
Examples
i) $\|x\|_{2}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{1 / n} ; x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$
ii) $\|x\|_{Q}=\max _{i=1,-, n}\left|x_{i}\right| \leftarrow$ as $p \rightarrow \infty$
iii) $\|\left. x\right|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p} \quad p>1$

Matrix - norms:

$$
11 \cdot 11: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}
$$

i) $\|A\|>0$, and $\|A\|=0$ inf $A=0$.
ii) $\|\alpha A\|=\mid \alpha\| \| A \|$ for $\alpha \in \mathbb{R}$

$$
A \in \mathbb{R}^{n \times n}
$$

iii) $\|A+B\| \leq\|A\|+\|B\|$
iv) $\|A B\| \leq\|A\|\|B\|$

Example:

$$
\|A\|_{F}=\left(\sum_{j=1}^{n} \sum_{i=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2}
$$

where $A=\left[a_{i j}\right]_{i=1, j=1}^{n}$
Frobenius-norm of A.

Induced - matrix norms:

$$
\|A\|_{2}=\max _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}
$$

$\left[\begin{array}{c}\text { Matrix as a linear function from } \\ \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\end{array}\right.$
$x \mapsto(A x)$ under the action of $A \in \mathbb{R}^{n \times n}$.

$$
N^{n}
$$

$x \quad A x]$

$$
\|A\|_{2}=\max _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}
$$

$$
\text { Let } \begin{aligned}
\alpha=\|x\|_{2} & =\max _{x \neq 0}\left\|\frac{A x}{\alpha}\right\|_{2} \\
& =\max _{x \neq 0}\left\|A \frac{x}{\left(1 x \cdots_{2}\right.}\right\|_{2}
\end{aligned}
$$

Geometric meaning of indued norm

$$
\frac{\max ^{\|y\|_{2}=1}}{\|A\|_{2}} \|
$$

We want to solve $A x=b$ Note that the matrices $A \& b$ may not be known exactly.
\leftrightarrow Understand the effect of this on the computed solution.

Case (1) Assume A is known exactly. However b is not known exactly.

$$
\begin{aligned}
& y(a)=\ldots \\
& y(b)=\cdots \\
& \frac{y\left(x_{i+1}\right)-2 y\left(x_{i}\right)+y\left(x_{i-1}\right)}{(\underbrace{x_{i+1}-x_{i}}_{h})^{2}}=f\left(x_{i}\right)
\end{aligned}
$$

$$
\begin{equation*}
A x=b \tag{1}
\end{equation*}
$$

b not known exactly.

$$
A \hat{x}=b+\delta b
$$

where \hat{x} is an exact solution. 4 $A \hat{x}=b+\sigma b$
Denote by $\hat{x}=x+\delta x$

$$
A(x+\delta x)=b+\delta b \quad-(2)
$$

subtracting (1) from (2)

$$
\begin{align*}
A \delta x & =\delta b \\
\Rightarrow \quad \delta x & =A^{-1} \delta b \\
\Rightarrow\|\delta x\|_{2} & =\left\|A^{+} \delta b\right\|_{2} \\
& \leqslant\left\|A^{-1}\right\|_{2}\|\delta b\|_{2} \tag{x}
\end{align*}
$$

$\operatorname{From}(1), \quad\|b\|_{2} \leqslant\|A\|_{2}\|x\|_{2}$

$$
\Rightarrow \quad \frac{1}{\|x\|_{2}} \leq\|A\|_{2} \frac{1}{\|b\|_{2}}-(\dot{x})
$$

$$
\text { From }(x) \&\left(x^{\prime}\right) \quad \frac{\|\delta x\|_{2}}{\|x\|_{2}} \leqslant\|A\|_{2}\left\|A^{A}\right\|_{2} \frac{\|S b\|_{2}}{\|b\|_{2}}
$$

Definition: Let $A \in \mathbb{R}^{n \times n}$ be an in invertible matrix. Then condition number of A w.r.t. induced 2 -norm is defined as

$$
k_{2}(A)=\|A\|_{2} \cdot\left\|A^{-1}\right\|_{2}
$$

Exercise:

$$
n I \|_{2}=1
$$

For any invertible matrix A

$$
\begin{aligned}
& I=A A^{-1} \\
& 1=\|I\|_{2}=\left\|A A^{-1}\right\|_{2} \leq\|A\|_{2}\left\|A^{-1}\right\|_{2} \\
&=k_{2}(A) \\
& \Rightarrow \quad k_{2}(A) \geqslant 1
\end{aligned}
$$

Take $A=I$

$$
\begin{aligned}
& 1=\|I\|_{2}=\left\|I I^{-1}\right\|_{2} \leq\|I\|_{2}\|\vec{I}\|_{2} \\
& \Rightarrow k_{2}(I)=1
\end{aligned}
$$

Example: b is not exactly known.

$$
\begin{aligned}
& \frac{\|\delta b\|_{2}}{\|b\|_{2}} \approx 10^{-4} \\
& k_{2}(A) \approx 10^{2} \\
& \frac{\|\delta x\|_{2}}{\|x\|_{2}} \leqslant k_{2}(A) \frac{\|\delta b\|_{2}}{\|b\|_{2}} \\
& 10^{2} \cdot 10^{-4} \\
& \frac{\|\delta x\|_{2}}{H x \|_{2}} \stackrel{L}{\approx} 10^{-2} \\
& \text { Ex: } A=\left[\begin{array}{ll}
1000 & 999 \\
999 & 998
\end{array}\right] \\
& b=\left[\begin{array}{l}
1999 \\
1997
\end{array}\right] \\
& x=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& b+\delta b=\left[\begin{array}{l}
1998.99 \\
1997.01
\end{array}\right] ; \delta b=\left[\begin{array}{c}
-0.01 \\
0.01
\end{array}\right] \\
& A \hat{x}=b+\delta b \\
& \hat{x}=x+\delta x=\left[\begin{array}{c}
20.97 \\
-18.99
\end{array}\right]
\end{aligned}
$$

Check:

$$
\begin{gathered}
A^{-1}=\left[\begin{array}{cc}
-998 & 999 \\
999 & -1000
\end{array}\right] \\
\frac{k_{2}(A)}{}=3.992 \times 10 \\
\frac{11 \delta x \|_{2}}{\|x\|_{2}}
\end{gathered}
$$

magnification:
maximum magnification of A :

$$
\operatorname{mag} \max (A)=\max _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}=\|A\|_{2}
$$

minimum magnification of A :

Exercise: For an invertible matrix $A \in \mathbb{R}^{n \times n}$, prove that

$$
\begin{aligned}
& \max \operatorname{mag}(A)=\frac{1}{\operatorname{minmag}\left(A^{-1}\right)} \\
& \operatorname{maxmag}\left(A^{-1}\right)=\frac{1}{\operatorname{minmag}(A)}
\end{aligned}
$$

Consequence of the exercise:

$$
\begin{aligned}
k_{2}(A) & =\|A\|_{2}\left\|A^{-1}\right\|_{2} \\
& =\max \operatorname{mag}(A) \cdot \max \operatorname{mag}\left(A^{-1}\right) \\
k_{2}(A) & =\frac{\max \cdot \operatorname{mag}(A)}{\min \operatorname{mag}(A)}
\end{aligned}
$$

Exercise:
Let $A=\left(\begin{array}{cc}1 / \varepsilon & 0 \\ 0 & \varepsilon\end{array}\right)$
where ε is such that $|\varepsilon|$ is very clox to zero. but $\varepsilon \neq 0$.

Fundamentals of matrix computations - David watkins

Numerical linear algebra and applications - Biswa Nath Datta

Matrix Computations

- Golub, Van Loan

Sensitivity result. books.

Let $A x=b$ and $(A+\delta A)(x+\delta x)=(b+\delta b)$. A is non-singular and $\frac{\|\delta A\|_{2}}{\|A\|_{2}}<\frac{1}{k(A)}$ then

$$
\frac{\|\delta x\|_{2}}{\|x\|_{2}} \leqslant \frac{k_{2}(A)\left[\frac{\|\delta A\|_{2}}{\|A\|_{2}}+\frac{\|\delta b\|_{2}}{\|b\|_{2}}\right]}{1-k_{2}(A)\left(\frac{\|\delta A\|_{2}}{\|A\|_{2}}\right)}
$$

Understanding ill-conditoned matrices. $A \in \mathbb{R}^{n \times n}$ with a very high condition number.

$$
\begin{gathered}
A=\left(\begin{array}{ll}
1 & 0 \\
0 & \varepsilon
\end{array}\right), \quad b=\binom{1}{\varepsilon} \\
A x=b \quad \Rightarrow \quad x=\binom{1}{1}
\end{gathered}
$$

$$
\begin{aligned}
& 1 \leqslant k_{2}(A)=\frac{\max \operatorname{mag}(A)}{\min \operatorname{mag}(A)}=\frac{1}{\operatorname{minmag}(A)} \\
& \Rightarrow \quad k_{2}(A) \gg 1 \\
& \Rightarrow \quad \min _{\operatorname{mag}(A) \ll 1}^{3 \quad \text { ansicacta }} \subset \in \mathbb{R}^{n} \text { such that } \\
& \qquad\|A C\| \ll 1 \\
& \min _{\|C\|=1}\|A C\|=\min \operatorname{mag}(A)
\end{aligned}
$$

$$
A C=\sum_{i=1}^{n} a_{i} c_{i}
$$

$$
A=\left[\begin{array}{ccc}
\alpha_{1} & d_{1} & d_{n} \\
1 & 1 & a_{n}
\end{array}\right]
$$

\Rightarrow Columns of A are "almost" linearly dependent.
Similar l, 1 can pron, rows of A are "almost" linearly dependent.

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
1000 & 999 \\
999 & 998
\end{array}\right] \quad ; k_{2}(A) \approx 10^{6} \\
& A x=b+\delta b \\
& 1000 x_{1}+999 x_{2}=1999 \\
& 999 x_{1}+998 x_{2}=1997 \\
& \delta b_{F}=\left[\begin{array}{c}
-0.01 \\
0.01
\end{array}\right]
\end{aligned}
$$

Hebert matrix

$$
A=\left[\begin{array}{llll}
1 & 1 / 2 & 1 / 3 & 1 / 4 \\
1 / 2 & 1 / 3 & 1 / 4 & 115 \\
H i l b(n)
\end{array}\right.
$$

Singular Value Decomposition (1930) Let $A \in \mathbb{R}^{m \times n}$. Then there exist orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ and numbers $\sigma_{1}^{2} \geqslant \sigma_{2}^{2} \geqslant \ldots$ $\geqslant \sigma_{r}^{2}>0$ where $r \leq \min \{m, n\}$ such that

$$
A=U \Sigma V^{T}
$$

where $\Sigma=\left[\begin{array}{lll}\sigma_{1}^{2} & & 0 \\ & \ddots & \sigma_{\gamma}^{2} \\ 0 & & 0\end{array}\right]_{m \times n}$

$$
\begin{aligned}
& r=\operatorname{rank}(A) \\
& V=\left[\begin{array}{ccc}
u_{1} & \ldots & u_{m}^{\prime} \\
1 & \vdots
\end{array}\right] \\
& V=\left[\begin{array}{lll}
1 & \vdots \\
v_{1} & \cdots, & v_{m}
\end{array}\right] \\
& 1 \\
& A=\sigma_{1}^{2} u_{1} v_{1}^{\top}+\sigma_{2}^{2} u_{2} v_{2}^{\top}+\cdots+\sigma_{r}^{2} u_{r} v_{r}^{\top}
\end{aligned}
$$

$\operatorname{maxmag}(A)$
$\operatorname{minmag}(A)$

$$
\begin{aligned}
{[U, S, V] } & =\operatorname{svd}(A) \\
A & =U S V^{\top}
\end{aligned}
$$

