
Module 1

Existence and Uniqueness of
Solutions

Lecture 1

1.1 Preliminaries

There are many instances where a physical problem is represented by differential equations
may be with initial or boundary conditions. The existence of solutions for mathematical
models is vital as otherwise it may not be relevant to the physical problem. This tells us
that existence of solutions is a fundamental problem. The Module 1 describes a few method
for establishing the existence, naturally under certain premises. We first look into a few
preliminaries for the ensuing discussions. In this lecture, we consider a class of functions
satisfying Lipschitz condition, which plays an important role in the qualitative theory of
differential equations. Its applications in showing the existence of a unique solution and
continuous dependence on initial conditions are dealt with in this module.

Definition 1.1.1. A real valued function f : D → R defined in a region D ⊂ R2 is said to
satisfy Lipschitz condition in the variable x with a Lipschitz constant K, if the inequality

|f(t, x1)− f(t, x2)| ≤ K|x1 − x2|, (1.1)

holds whenever (t, x1), (t, x2) are in D. In such a case, we say that f is a member of the
class Lip(D,K).

As a consequence of Definition 1.1.1, a function f satisfies Lipschitz condition if and only
if there exists a constant K > 0 such that

|f(t, x1)− f(t, x2)|
|x1 − x2|

≤ K, x1 6= x2,

whenever (t, x1), (t, x2) belong to D. Now we wish to find a general criteria which would
ensure the Lipschitz condition on f . The following is a result in this direction. For simplicity,
we assume the region D to be a closed rectangle.

Theorem 1.1.2. Define a rectangle R by

R = {(t, x) : |t− t0| ≤ p, |x− x0| ≤ q},
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where p, q are some positive real numbers. Let f : R → R be a real valued continuous
function. Let ∂f

∂x be defined and continuous on R. Then, f satisfies the Lipschitz condition
on R.

Proof. Since ∂f
∂x is continuous on R, we have a positive constant A such that

∣∣∣∂f
∂x

(t, x)
∣∣∣ ≤ A, (1.2)

for all (t, x) ∈ R. Let (t, x1), (t, x2) be any two points in R. By the mean value theorem of
differential calculus, there exists a number s which lies between x1 and x2 such that

f(t, x1)− f(t, x2) =
∂f

∂x
(t, s)(x1 − x2).

Since the point (t, x) ∈ R and by the inequality (1.2), we have∣∣∣∂f
∂x

(t, s))
∣∣∣ ≤ A,

or else, we have

|f(t, x1)− f(t, x2)| ≤ A|x1 − x2|,

whenever (t, x1), (t, x2) are in R. The proof is complete.

The following example illustrates that the existence of partial derivative of f is not
necessary for f to be a Lipschitz function.

Example 1.1.3. Let R = {(t, x) : |t| ≤ 1, |x| ≤ 1} and let f(t, x) = |x| for (t, x) ∈ R. Then,
the partial derivative of f at (t, 0) fails to exist but f satisfies Lipschitz condition in x on R
with Lipschitz constant K = 1.

The example below shows that there exists functions which do not satisfy the Lipschitz
condition.

Example 1.1.4. Let f(t, x) = x1/2 be defined on the rectangle R = {(t, x) : |t| ≤ 2, |x| ≤ 2}.
Then, f does not satisfy the inequality (1.1) in R. This is because

f(t, x)− f(t, 0)

x− 0
= x−1/2, x 6= 0,

is unbounded in R.

If we alter the domain in Example 1.1.4, f may satisfy the Lipschitz condition, e.g., if
R = {(t, x) : |t| ≤ 2, 2 ≤ |x| ≤ 4}.

Gronwall Inequality

The integral inequality, due to Gronwall, plays a useful part in the study of several properties
of ordinary differential equations. In particular, we propose to employ it to establish the
uniqueness of solutions.
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Theorem 1.1.5. (Gronwall inequality) Assume that f, g : [t0,∞] → R+ are non-negative
continuous functions. Let k > 0 be a constant. Then, the inequality

f(t) ≤ k +

∫ t

t0

g(s)f(s)ds, t ≥ t0,

implies the inequality

f(t) ≤ k exp
(∫ t

t0

g(s)ds
)
, t ≥ t0.

Proof. By hypotheses, we have

f(t)g(t)

k +
∫ t
t0
g(s)f(s)ds

≤ g(t), t ≥ t0. (1.3)

Since,

f(t)g(t) =
d

dt

(
k +

∫ t

t0

g(s)f(s)ds
)
,

by integrating (1.3) between the limits t0 and t, we have

ln
(
k +

∫ t

t0

g(s)f(s)ds
)
− ln k ≤

∫ t

t0

g(s)ds.

In other words,

k +

∫ t

t0

g(s)f(s)ds ≤ k exp
(∫ t

t0

g(s)ds
)
. (1.4)

The inequality (1.4) together with the hypotheses leads to the desired conclusion.

An interesting and useful consequence is :

Corollary 1.1.6. Let f and k be as in Theorem 1.1.5 If the inequality

f(t) ≤ k
∫ t

t0

f(s)ds, t ≥ t0,

holds then,
f(t) ≡ 0, for t ≥ t0.

Proof. For any ε > 0, we have

f(t) < ε+ k

∫ t

t0

f(s)ds, t ≥ t0.

By Theorem 1.1.5, we have

f(t) < ε exp k(t− t0), t ≥ t0.

Since ε is arbitrary, we have f(t) ≡ 0 for t ≥ t0.

EXERCISES

1. Prove that f(t, x) = x1/2 as defined in Example 1.1.4 does not admit partial derivative
with respect to x at (0, 0).
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2. Show that f(t, x) = e−x

1+t2
defined for 0 < x < p, 0 < t < N (where N is a positive

integer) satisfies Lipschitz condition with Lipschitz constant K = p.

3. Show that the following functions satisfy the Lipschitz condition in the rectangle indi-
cated and find the Lipschitz constant.

(i) f(t, x) = et sinx, |x| ≤ 2π , |t| ≤ 1 ;

(ii) f(t, x) = (x+ x2) cos t
t2

, |x| ≤ 1 , |t− 1| ≤ 1
2 ;

(iii) f(t, x) = sin(xt), |x| ≤ 1 , |t| ≤ 1.

4. Show that the following functions do not satisfy the Lipschitz condition in the region
indicated.

(i) f(t, x) = exp( 1
t2

)x, f(0, x) = 0, |x| ≤ 1, |t| ≤ 1.

(ii) f(t, x) = sinx
t , f(0, x) = 0, |x| <∞, |t| ≤ 1.

(iii) f(t, x) = et

x2
, f(t, 0) = 0, |x| ≤ 1

2 , |t| ≤ 2.

5. Show that the IVP

x′ + d(t)x = h(t), x(t0) = x0; t, t0 ∈ I,

has a unique solution. Assume the continuity of d and h on I.

6. Let I ⊂ R and let f, g, h : I → R+ be non-negative continuous functions. Then, prove
that the inequality

f(t) ≤ h(t) +

∫ t

t0

g(s)f(s)ds, t ≥ t0, t ∈ I,

implies the inequality

f(t) ≤ h(t) +

∫ t

t0

g(s)h(s) exp
(∫ s

t0

g(u)du
)
ds, t ≥ t0.

{
Hint: Let z(t) =

∫ t
t0
g(s)f(s)ds. Then,

z′(t) = g(t)f(t) ≤ g(t)[h(t) + z(t)].

Hence,

z′(t)− g(t)z(t) ≤ g(t)h(t).

Multiply by exp(−
∫ t
t0
g(s)ds) on either side of this inequality and integrate over [t0, t]

}
.

Lecture 2

1.2 Picard’s Successive Approximations

We begin with an initial value problem

x′ = f(t, x), x(t0) = x0, (1.5)
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where D ⊂ R2 is an open connected set and f : D → R is continuous in (t, x) on D. Also let
(t0, x0) be in D. Geometrically speaking, solving (1.5) is to find a function x whose graph
passes through (t0, x0) and the slope of x coincides with f(t, x) whenever (t, x) belongs to
some neighborhood of (t0, x0). Such a class of problems is called a local existence problem
for an initial value problem. Unfortunately, the usual elementary procedures for determining
solutions may not materialize for (1.5). The need perhaps is a sequential approach to con-
struct a solution x of (1.5). This is where the method of successive approximations finds its
utility. The iterative procedure for solving (1.5) is important and needs a bit of knowledge
of real analysis. The key to the general theory is an equivalent representation of (1.5) by
the ‘integral equation’

x(t) = x0 +

∫ t

t0

f(s, x(s))ds. (1.6)

Equation (1.6) is called an integral equation since the unknown function x occurs under the
integral sign. The ensuing result establishes the equivalence of (1.5) and (1.6).

Lemma 1.2.1. Let I ⊂ R be an interval. A function x : I → R is a solution of (1.5) on I
if and only if x is a solution of (1.6) on I.

Proof. If x is a solution of (1.5) then, it is easy to show that x satisfies (1.6). Let x be a
solution of (1.6). Obviously x(t0) = x0. Differentiating both sides of (1.6), and noting that
f is continuous in (t, x), we have

x′(t) = f(t, x(t)), t ∈ I,

which completes the proof.

We do recall that f is a continuous function on D. Now we are set to define an approxi-
mations to a solution of (1.5). First of all we start with an approximation to a solution and
improve it by iteration. It is expected that these iterations converge to a solution of (1.5) in
the limit. The importance of equation (1.6) now springs up. In this connection, we exploit
the fact that the estimates can be easily handled with integrals rather than with derivatives.

A rough approximation to a solution of (1.5) is just the constant function x0(t) ≡ x0.
We may get a better approximation by substituting x0(t) on the right hand side of (1.6),
thus obtaining a new approximation x1(t) given by

x1(t) = x0 +

∫ t

t0

f(s, x0(s))ds,

as long as (s, x0(s)) ∈ D. To get a still better approximation, we repeat the process thereby
defining

x2(t) = x0 +

∫ t

t0

f(s, x1(s))ds,

as long as (s, x1(s)) ∈ D. In general, we define xn inductively by

xn(t) = x0 +

∫ t

t0

f(s, xn−1(s))ds, n = 1, 2, . . . , (1.7)

as long as (s, xn−1(s)) ∈ D, xn is known as the n-th successive approximation. In the
literature this procedure is known as “Picard’s method of successive approximations”. In
the next section we show that the sequence {xn} does converge to a unique solution of (1.5)
provided f satisfies the Lipschitz condition. We conclude this section with a few examples.
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Example 1.2.2. For the illustration of the method of successive approximations consider

x′ = −x, x(0) = 1, t ≥ 0.

It is equivalent to the integral equation

x(t) = 1−
∫ t

0
x(s)ds.

The zero-th approximation is given by x0(t) ≡ 1. The first approximation is

x1(t) = 1−
∫ t

0
x0(s)ds = 1− t.

By the definition of the successive approximations, it follows that

x2(t) = 1−
[ ∫ t

0
(1− s)ds

]
= 1−

[
t− t2

2

]
.

In general, the n-th approximation is

xn(t) = 1− t+
t2

2
+ · · ·+ (−1)n

tn

n!
.

Obviously, xn(t) is the n-th partial sum of the power series for e−t. It is easy to directly
verify that e−t is the solution of the IVP.

Example 1.2.3. Consider the IVP

x′ =
2x

t
, t > 0, x′(0) = 0, x(0) = 0.

The zero-th approximation x0 is identically zero because x(0) = 0. The next approximation
is x1 ≡ 0. Similarly it can be shown that xn ≡ 0 for all n. Thus, the sequence of functions
{xn} converges to the identically zero function. Clearly x ≡ 0 is a solution of the IVP. On
the other hand, it is not hard to check that x(t) = t2 is also a solution of the IVP which
shows that if at all the successive approximations converges, they converge to one of the
solutions of the IVP.

EXERCISES

1. Calculate the successive approximations for the IVP

x′ = g(t), x(0) = 0.

What is the conclusion that can be drawn from the successive approximations ?

2. Solve the IVP
x′ = x, x(0) = 1,

by computing the method of successive approximations.

3. Compute the first three for the solutions of the following equations

(i) x′ = x2, x(0) = 1;

(ii) x′ = ex, x(0) = 0;

(iii) x′ = x
1+x2

, x(0) = 1.
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Lecture 3

1.3 Picard’s Theorem

With all the remarks and examples, the reader may have a number of doubts about the
effectiveness and utility of Picard’s method in practice. It may be speculated whether the
successive integrations are defined at all or whether they lead to complicated computations.
However, we mention that Picard’s method has made a landmark in the theory of differential
equations. It gives not only a method to determine an approximate solution subject to a
given error but also establishes the existence of a unique solution of initial value problems
under general conditions.

In all of what follows we assume that the function f : R → R is bounded by L and
satisfies the Lipschitz condition with the Lipschitz constant K on the closed rectangle

R = {(t, x) ∈ R2 : |t− t0| ≤ a, |x− x0| ≤ b, a > 0, b > 0}.

Before proceeding further, we need to show that the successive approximations defined by
(1.7) are well defined on an interval I. That is, to define xj+1 on I, it is necessary to show
that (s, xj(s)) lies in R, for each s in I and j ≥ 1.

Lemma 1.3.1. Let h = min
(
a,
b

L

)
. Then, the successive approximations given by (1.7) are

defined on I = |t− t0| ≤ h. Further,

|xj(t)− x0| ≤ L |t− t0| ≤ b, j = 1, 2, . . . , t ∈ I. (1.8)

Proof. The method of induction is used to prove the lemma. Since (t0, x0) ∈ R, obviously
x0(t) ≡ x0 satisfies (1.8). By the induction hypothesis, let us assume that, for any 0 < j ≤ n,
xn is defined on I and satisfies (1.8). Consequently (s, xn(s)) ∈ R, for all s in I. So, xn+1 is
defined on I. By definition, we have

xn+1(t) = x0 +

∫ t

t0

f(s, xn(s))ds, t ∈ I.

Using the induction hypothesis, it now follows that

|xn+1(t)− x0| =
∣∣ ∫ t

t0

f(s, xn(s))ds
∣∣ ≤ ∫ t

t0

|f(s, xn(s))|ds ≤ L |t− t0| ≤ Lh ≤ b.

Thus, xn+1 satisfies (1.8). This completes the proof.

We now state and prove the Picard’s theorem, a fundamental result dealing with the
problem of existence of a unique solution for a class of nonlinear initial value problems.
Recall that the closed rectangle is defined in Lemma 1.3.1.

Theorem 1.3.2. (Picard’s Theorem) Let f : R → R be continuous and be bounded by L
and satisfy Lipschitz condition with Lipschitz constant K on the closed rectangle R. Then,
the successive approximations n = 1, 2, . . . , given by (1.7) converge uniformly on an interval

I : |t− t0| ≤ h, h = min
(
a,
b

L

)
,

to a solution x of the IVP (1.5). In addition, this solution is unique.
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Proof. We know that the IVP (1.5) is equivalent to the integral equation (1.6) and it is
sufficient to show that the successive approximations xn converge to a unique solution of
(1.6) and hence, to the unique solution of the IVP (1.5). First, note that

xn(t) = x0(t) +

n∑
i=1

[
xi(t)− xi−1(t)

]
is the n-th partial sum of the series

x0(t) +
∞∑
i=1

[
xi(t)− xi−1(t)

]
(1.9)

The convergence of the sequence {xn} is equivalent to the convergence of the series (1.9).
We complete the proof by showing that:

(a) the series (1.9) converges uniformly to a continuous function x(t);

(b) x satisfies the integral equation (1.6);

(c) x is the unique solution of (1.5).

To start with we fix a positive number h = min(a, bL). By Lemma 1.2.1 the successive
approximations xn, n = 1, 2, . . . , in (1.7) are well defined on I : |t− t0| ≤ h. Henceforth, we
stick to the interval I+ = [t0, t0 + h]. The proof on the interval I− = [t0 − h, t0] is similar
except for minor modifications.

We estimate xj+1(t)− xj(t) on the interval [t0, t0 + h]. Let us denote

mj(t) = |xj+1(t)− xj(t)|; j = 0, 1, 2, . . . .

Since f satisfies Lipschitz condition and by definition, we have

mj(t) =
∣∣∣ ∫ t

t0

[
f(s, xj(s))− f(s, xj−1(s))

]
ds
∣∣∣

≤ K
∫ t

t0

∣∣xj(s)− xj−1(s)∣∣ds,
or, in other words,

mj(t) ≤ K
∫ t

t0

mj−1(s)ds. (1.10)

By direct computation,

m0(t) = |x1(t)− x0(t)| =
∣∣ ∫ t

t0

f(s, x0(s))ds
∣∣

≤
∫ t

t0

|f(s, x0(s))|ds

≤ L(t− t0). (1.11)

We claim that

mj(t) ≤ LKj (t− t0)j+1

(j + 1)!
, (1.12)
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for j = 0, 1, 2, . . . , and t0 ≤ t ≤ t0 + h. The proof of the claim is by induction. For
j = 0, (1.12) is, in fact, (1.11). Assume that for an integer 1 ≤ p ≤ j the assertion (1.12)
holds. That is,

mp+1(t) ≤ K
∫ t

t0

mp(s)ds ≤ K
∫ t

t0

LKp (s− t0)p+1

(p+ 1)!
ds

≤ L Kp+1 (t− t0)p+2

(p+ 2)!
, t0 ≤ t ≤ t0 + h,

which shows that (1.12) holds for j = p + 1 or equivalently, (1.12) holds for all j ≥ 0. So,

the series
∞∑
j=0

mj(t) is dominated by the series

L

K

∞∑
j=0

Kj+1hj+1

(j + 1)!
,

which converges to L
K (eKh − 1) or else, the series (1.9) converges uniformly and absolutely

on the I+ = [t0, t0 + h]. Let

x(t) = x0(t) +

∞∑
n=1

[
xn(t)− xn−1(t)

]
; t0 ≤ t ≤ t0 + h. (1.13)

Since the convergence is uniform, the limit function x is continuous on I+ = [t0, t0 + h].
Also, the points (t, x(t)) ∈ R for all t ∈ I and thereby completing the proof of (a).

We now show that x satisfies the integral equation

x(t) = x0 +

∫ t

t0

f(s, x(s))ds, t ∈ I. (1.14)

By the definition of successive approximations

xn(t) = x0 +

∫ t

t0

f(s, xn−1(s))ds, (1.15)

from which, we have

∣∣x(t)− x0 −
∫ t

t0

f(s, x(s))ds
∣∣ =

∣∣x(t)− xn(t) +

∫ t

t0

f(s, xn−1(s))ds−
∫ t

t0

f(s, x(s))ds
∣∣

≤ |x(t)− xn(t)|+
∫ t

t0

∣∣f(s, xn−1(s))− f(s, x(s))
∣∣ds. (1.16)

Since xn → x uniformly on I, and |xn(t)| ≤ b for all n and for t ∈ I+, it follows that
|x(t)| ≤ b for all t ∈ I+. Now the Lipschitz condition on f implies

|x(t)− x(0)−
∫ t

t0

f(s, x(s))ds| ≤ |x(t)− xn(t)|+K

∫ t

t0

|x(s)− xn−1(s)|ds

≤ |x(t)− xn(t)|+Kh max
t0≤s≤t0+h

|x(s)− xn−1(s)|. (1.17)
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The uniform convergence of xn to x on I+ now implies that the right hand side of (1.17)
tends to zero as n → ∞. But the left side of (1.17) is independent of n. Thus, x satisfies
the integral equation (1.6) on I+ which proves (b).

Uniqueness : Let us now prove that, if x̄(t) and x(t) are any two solutions of the IVP
(1.5), then they coincide on [t0, t0 + h]. Let x̄(t) and x(t) satisfy (1.6) which yields

|x̄(t)− x(t)| ≤
∫ t

t0

|f(s, x̄(s))− f(s, x(s))|ds. (1.18)

Both x̄(s)) and x(s) lie in R for all s in [t0, t0 + h] and hence, it follows that

|x̄(t)− x(t)| ≤ K
∫ t

t0

|x̄(s))− x(s)|ds.

By an application of the Gronwall inequality, we arrive at

|x̄(t)− x(t)| ≡ 0 on [t0, t0 + h],

which means x̄(t) ≡ x(t). This proves (c), completing the proof of the theorem.

Another important feature of Picard’s theorem is that a bound for the error in the case
of truncated computation at the n-th iteration can also be obtained. Indeed, we have a
result dealing with such a bound on the error.

Corollary 1.3.3. The error x(t)− xn(t) satisfies the estimate

|x(t)− xn(t)| ≤ L

K

(Kh)n+1

(n+ 1)!
eKh; t ∈ [t0, t0 + h]. (1.19)

Proof. We know

x(t) = x0(t) +
∞∑
j=0

[
xj+1(t)− xj(t)

]
and

x(t)− xn(t) =

∞∑
j=n

[
xj+1(t)− xj(t)

]
.

Consequently, by (1.12) we have

|x(t)− xn(t)| ≤
∞∑
j=n

∣∣xj+1(t)− xj(t)
∣∣ ≤ ∞∑

j=n

mj(t) ≤
∞∑
j=n

L

K

(Kh)j+1

(j + 1)!

=
L

K

(Kh)n+1

(n+ 1)!

[
1 +

∞∑
j=1

(Kh)j

(n+ 2)...(n+ j + 1)

]
≤ L

K

(Kh)n+1

(n+ 1)!
eKh.

.
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Example 1.3.4. Consider the IVP in Example 1.2.2. Note that all the conditions of the
Picard’s theorem are satisfied. To find a bound on the error x(t) − xn(t), we determine K
and L. It is quite clear that K = 1. Let R be the closed rectangle around (0, 1) i.e.,

R = {(t, x) : |t| ≤ 1, |x− 1| ≤ 1}.

Then, L = 1. Suppose the error is not to exceed ε. The question is to find a number n such
that |x− xn| ≤ ε. To achieve this, a sufficient condition is

L

K

(Kh)n+1

(n+ 1)!
eKh < ε.

We have to find an n such that 1
(n+1)! < εe−1 or, in other words, (n+ 1)! > ε−1e which holds

since ε−1e is finite and (n+ 1)!→∞. For instance, when ε = 1, we may choose any n ≥ 2,
so that the error is less than 1.

A doubt may arise whether the Lipschitz condition can be dropped from the hypotheses
in Picard’s theorem. The answer is the negative and the following example makes it clear.

Example 1.3.5. Consider the IVP

x′ = 4x3/4, x(0) = 0.

Obviously x0(t) ≡ 0. But this fact implies that x1(t) ≡ 0, a result which follows by the
definition of successive approximations. In fact, in this case xn(t) ≡ 0 for all n ≥ 0. So,
x(t) ≡ 0 is a solution to the IVP. But x(t) = t4 is yet another solution of the IVP which
contradicts the conclusion of Picard’s theorem which shows that the Picard’s theorem may
not hold in case the Lipschitz condition on f(t, x) is altogether dropped. Also f(t, x) = 4x3/4

does not satisfy the Lipschitz condition in any closed rectangle R containing the point (0, 0).

EXERCISES

1. Show that the error due to the truncation at the n-th approximation tends to zero as
n→∞.

2. Consider an IVP x′ = f(x), x(0) = 0, where f(x) satisfies all the conditions of
Picard’s theorem. Guess the unique local solution if it is given that f(0) = 0. Does
the conclusion so reached still holds in case f(x) is replaced by g(t, x) and g(t, .) ≡ 0
along with the Lipschitz property of g(t, x) in x?

3. Determine the constant L,K and h for the IVP.

(i) x′ = x2, x(0) = 1, R = {(t, x) : |t| ≤ 2, |x− 1| ≤ 2},
(ii) x′ = sinx, x(π2 ) = 1, R = {(t, x) : |t− π

2 | ≤
π
2 , |x− 1| ≤ 1},

(iii) x′ = ex, x(0) = 0, R = {(t, x) : |t| ≤ 3, |x| ≤ 4}.

Is Picard’s theorem applicable in the above three problems? If so find the least n such that
the error left over does not exceed 2, 1 and 0.5 respectively for the three problems.

11



Lecture 4

1.4 Continuation And Dependence On Initial Conditions

As usual we assume that the function f(t, x) in (1.5) is defined and continuous on an open
connected set D and let (t0, x0) ∈ D. By Picard’s theorem, we have an interval

I : t0 − h ≤ t ≤ t0 + h,

where h > 0 such that the closed rectangle R ⊂ D. Since the point (t0+h, x(t0+h)) lies in D
there is a rectangle around (t0 +h, x(t0 +h)) and lying entirely in D. By applying Theorem
1.3.2, we have the existence of a unique solution x̂ passing through the point (t0+h, x(t0+h))
and whose graph lies in D ( for t ∈ [t0 + h, t0 + h + ĥ], ĥ > 0). If the solution x̂ coincides
with x on I, then x̂ satisfies the IVP (1.5) on the interval [t0 +h, t0 +h+ ĥ] ⊃ I. In that case
the process may be repeated till the graph of the extended solution reaches the boundary of
D. Naturally such a procedure is known as the continuation of solutions of the IVP (1.5).
The continuation method just described can also be extended to the left of t0.

Now we formalize the above discussion. Let us suppose that a unique solution x of (1.5)
exists, on the interval I∗ say h1 < t < h2 with (t, x(t)) ∈ D for t ∈ I∗ and let

|f(t, x)| ≤ L on D, (t, x(t)) ∈ D and h1 < t0 < h2.

Consider the sequence {
x
(
h2 −

1

n

)}
, n = 1, 2, 3, . . . .

By (1.6), for sufficiently large n, we have

|x(h2 −
1

m
)− x(h2 −

1

n
)| ≤

∫ h2−(1/m)

h2−(1/n)
|f(s, x(s))|ds, (m > n)

≤ L
∣∣ 1

m
− 1

n

∣∣.
So, the sequence

{
x(h2 − 1

n)
}

is Cauchy and

lim
n→∞

x
(
h2 −

1

n

)
= lim

t→h2−0
x(t) = x(h2 − 0),

exists. Suppose
(
h2, x(h2 − 0)

)
is in D. Define x̂ as follows

x̂(t) = x(t), h1 < t < h2

x̂(h2) = x(h2 − 0).

By noting

x̂(t) = x0 +

∫ t

t0

f(s, x̂(s))ds, h1 < t ≤ h2,

it is easy to show that x̂ is a solution of (1.5) existing on h1 < t ≤ h2.

Exercise : Prove that x̂ is a solution of (1.5) existing on h1 < t ≤ h2.

12



Now consider a rectangle around P : (h2, x(h2 − 0)) lying inside D. Consider a solution
of (1.5) through P . As before, by Picard’s theorem there exists a solution y through the
point P on an interval

h2 − α ≤ t ≤ h2 + α, α > 0 and with h2 − α ≥ h1.

Now define z by

z(t) = x̂(t), h1 < t ≤ h2
z(t) = y(t), h2 ≤ t ≤ h2 + α.

Claim: z is a solution of (1.5) on h1 < t ≤ h2 + α. Since y is a unique solution of (1.5) on
h2 − α ≤ t ≤ h2 + α, we have

x̂(t) = y(t), h2 − α ≤ t ≤ h2.

We note that z is a solution of (1.5) on h2 ≤ t ≤ h2 +α and so it only remains to verify that
z′ is continuous at the point t = h2. Clearly,

z(t) = x̂(h2) +

∫ t

h2

f(s, z(s))ds, h2 ≤ t ≤ h2 + α. (1.20)

Further,

x̂(h2) = x0 +

∫ h2

t0

f(s, z(s))ds. (1.21)

Thus, the relation (1.20) and (1.21) together yield

z(t) = x0 +

∫ h2

t0

f(s, z(s))ds+

∫ t

h2

f(s, z(s))ds

= x0 +

∫ t

t0

f(s, z(s))ds, h1 ≤ t ≤ h2 + α.

Obviously, the derivatives at the end points h1 and h2 + α are one-sided.
We summarize :

Theorem 1.4.1. Let

(i) D ⊂ Rn+1 be an open connected set and let f : D → R be continuous and satisfy the
Lipschitz condition in x on D;

(ii) f be bounded on D and

(iii) x be a unique solution of the IVP (1.5) existing on h1 < t < h2.

Then,

lim
t→h2−0

x(t)

exists. If (h2, x(h2 − 0)) ∈ D, then x can be continued to the right of h2.

13



We now study the continuous dependence of solutions on initial conditions. Consider

x′ = f(t, x), x(t0) = x0. (1.22)

Let x(t; t0, x0) be a solution of (1.22). Then, x(t; t0, x0) is a function of time t, the initial
time t0 and the initial state x0. The dependence on initial conditions is to know about the
behavior of x(t; t0, x0) as a function of t0 and x0. Under certain conditions, indeed x(t; t0, x0)
is a continuous function of t0 and x0. This amounts to saying that the solution x(t; t0, x0)
of (1.22) stays in a neighborhood of solutions x∗(t; t∗0, x

∗
0) of

x′ = f(t, x), x(t∗0) = x∗0. (1.23)

provided |t0 − t∗0| and |x0 − x∗0| are sufficiently small.

Theorem 1.4.2. Let I = [a, b] and let x(t) = x(t; t0, x0) and x∗(t) = x(t; t∗0, x
∗
0) be solutions

of the IVPs (1.22) and (1.23) respectively on I. Suppose that (t, x(t)), (t, x∗(t)) ∈ D for
t ∈ I. Further, let f ∈ Lip(D,K) be bounded by L in D. Then, for any ε > 0, there exists
a δ = δ(ε) > 0 such that

|x(t)− x∗(t)| < ε, t ∈ I, (1.24)

whenever |t0 − t∗0| < δ and |x0 − x∗0| < δ.

Proof. It is first of all clear that the solutions x(t) and x∗(t) with x(t0) = x0 and x∗(t∗0) = x∗0
exists uniquely. Without loss of generality let t∗0 ≥ t0. From Lemma 1.2.1, we have

x(t) = x0 +

∫ t

t0

f(s, x(s))ds, (1.25)

x∗(t) = x∗0 +

∫ t

t∗0

f(s, x∗(s))ds. (1.26)

From (1.25) and (1.26) we obtain

x(t)− x∗(t) = x0 − x∗0 +

∫ t

t∗0

[
f(s, x(s))− f(s, x∗(s))

]
ds+

∫ t∗0

t0

f(s, x(s))ds. (1.27)

With absolute values on both sides of (1.27) and by the hypotheses, we have

|x(t)− x∗(t)| ≤ |x0 − x∗0|+
∫ t

t∗0

|f(s, x(s))− f(s, x∗(s))|ds+

∫ t∗0

t0

|f(s, x(s))|ds

≤ |x0 − x∗0|+
∫ t

t∗0

K|x(s))− x∗(s)|ds+ L|t0 − t∗0|.

Now by the Gronwall inequality, it follows that

|x(t)− x∗(t)| ≤
[
|x0 − x∗0|+ L|t0 − t∗0|

]
exp[K(b− a)] (1.28)

for all t ∈ I. Given any ε > 0, choose

δ(ε) =
ε

2 exp[K(b− a)]
min

[
1,

1

L

]
.

From (1.28), we obtain

|x(t)− x∗(t)| ≤
[ ε

2 exp{K(b− a)}
+

Lε

2L exp{K(b− a)}

]
expK[(b− a)] = ε.

if |t0 − t∗0| < δ(ε) and |x0 − x∗0| < δ(ε), which completes the proof.
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Remark on Theorems 1.4.1 and 1.4.2 :
These theorems clearly exhibit the crucial role played by the Gronwall inequality. Indeed
the Gronwall inequality has many more applications in the qualitative theory of differential
equations which we shall see later.

EXERCISES

1. Consider a linear equation x′ = a(t)x with initial conditions x(t0) = x0, where a(t) is
a continuous function on an interval I containing t0. Solve the IVP and show that the
solution x(t; t0, x0) is a continuous function of (t0, x0) for each fixed t ∈ I.

2. Consider the IVPs

(i) x′ = f(t, x), x(t0) = x∗0,

(ii) y′ = g(t, y), y(t0) = y∗0,

where f(t, x) and g(t, x) are continuous functions in (t, x) defined on the rectangle

R = {(t, x) : |t− t0| ≤ a, |x− x0| ≤ b},

where (t0, x
∗
0) and (t0, y

∗
0) are in R. In addition, let

f ∈ Lip(R,K) and |f(t, x)− g(t, x)| ≤ ε for all (t, x) ∈ R,

for some positive number ε. Let x(t; t0, x
∗
0) and y(t; t0, y

∗
0) be two solutions of (i) and

(ii) respectively on I : |t− t0| ≤ a. If |x∗0 − y∗0| ≤ δ, then show that

|x(t)− y(t)| ≤ δ exp
(
K|t− t0|

)
+ (ε/K)

(
exp(K|t− t0|)− 1

)
, t ∈ I.

3. Let the conditions (i) to (iii) of Theorem 1.4.1 hold. Show that limx(t) as t→ h1 + 0
exists. Further, if the point (h1, x(h1 + 0)) is in D, then show that x can be continued
to the left of h1.

Lecture 5

1.5 Existence of Solutions in the Large

We have seen earlier that the Theorem 1.3.2 is about the existence of solutions in a local
sense. In this section, we consider the problem of existence of solutions not in the local sense.
Existence of solutions in the large is also known as non-local existence. Before embarking
on technical results let us have look at an example.
Example : By Picard’s theorem the IVP

x′ = x2, x(0) = 1, − 1 ≤ t, x ≤ 1,

has a solution existing on

−1

2
≤ t ≤ 1

2
,

where as its solution is

x(t) =
1

1− t
, −∞ < t < 1.

15



Actually, by direct computation, we have an interval of existence larger than the one which
we obtain by an application of Picard’s theorem. In other words, we need to strengthen the
Picard’s theorem in order to recover the larger interval of existence.

Now we take up the problem of existence in the large. Under certain restrictions on f ,
we prove the existence of solutions of IVP

x′ = f(t, x), x(t0) = x0, (1.29)

on the whole (of a given finite) interval |t− t0| ≤ T , and secondly on −∞ < t <∞. We say
that x exists “non-locally” on I if x a solution of (1.29) exists on I. The importance of such
problems needs little emphasis due to its necessity in the study of oscillations, stability and
boundedness of solutions of IVPs. The non-local existence of solutions of IVP(1.29) is dealt
in the ensuing result.

Theorem 1.5.1. We define a strip S by

S = {(t, x) : |t− t0| ≤ T and |x| <∞},

where T is some finite positive real number. Assume that f : S → R is continuous and
f ∈ Lip(S,K). Then, the successive approximations defined by (1.7) for the IVP(1.29) exist
on |t− t0| ≤ T and converge to a solution x of (1.29).

Proof. Recall that the definition of successive approximations (1.7) is

x0(t) ≡ x0,

xn(t) = x0 +

∫ t

t0

f(s, xn−1(s))ds, |t− t0| ≤ T.

 (1.30)

We prove the theorem for the interval [t0, t0+T ]. The proof for the interval [t0−T, t0] is sim-
ilar with suitable modifications. First note that (1.30) defines the successive approximations
on t0 ≤ t ≤ t0 + T . Also,

|x1(t)− x0(t)| =
∣∣ ∫ t

t0

f(s, x0(s))ds
∣∣. (1.31)

Since f is continuous, f(t, x0) is continuous on [t0, t0 + T ] which implies that there exists a
real constant L > 0 such that

|f(t, x0)| ≤ L, for all t ∈ [t0, t0 + T ].

With this bound on f(t, x0) in (1.31), we get

|x1(t)− x0(t)| ≤ L(t− t0) ≤ LT, t ∈ [t0, t0 + T ]. (1.32)

The estimate (1.32) implies (by using induction)

|xn(t)− xn−1(t)| ≤
LKn−1Tn

n!
, t ∈ [t0, t0 + T ]. (1.33)

Now (1.33), as in the proof of Theorem 1.3.2, yields the uniform convergence of the series

x0(t) +

∞∑
n=0

[
xn+1(t)− xn(t)

]
,
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and hence, the uniform convergence of the sequence {xn} on [t0, t0 + T ] easily follows. Let
x denote the limit function, namely,

x(t) = x0(t) +
∞∑
n=0

[
xn+1(t)− xn(t)

]
, t ∈ [t0, t0 + T ]. (1.34)

In fact, (1.33) shows that

|xn(t)− x0(t)| =
∣∣∣ n∑
p=1

[
xp(t)− xp−1(t)

]∣∣∣
≤

n∑
p=1

∣∣xp(t)− xp−1(t)∣∣
≤ L

K

n∑
p=1

KpT p

n!

≤ L

K

∞∑
p=1

KpT p

n!
=
L

K
(eKT − 1).

Since xn converges to x on t0 ≤ t ≤ t0 + T , we have

|x(t)− x0| ≤
L

K
(eKT − 1).

Since the function f is continuous on the rectangle

R =
{

(t, x) : |t− t0| ≤ T, |x− x0| ≤
L

K
(eKT − 1)

}
,

there exists a real number L1 > 0 such that

|f(t, x)| ≤ L1, (t, x) ∈ R.

Moreover, the convergence of the sequence {xn} is uniform implies that the limit x is con-
tinuous. From the corollary (1.14), it follows that

|x(t)− xn(t)| ≤ L1

K

(KT )n+1

(n+ 1)!
eKT .

Finally, we show that x is a solution of the integral equation

x(t) = x0 +

∫ t

t0

f(s, x(s))ds, t0 ≤ t ≤ t0 + T. (1.35)

Also

|x(t)− x0 −
∫ t

t0

f(s, x(s))ds| =
∣∣x(t)− xn(t) +

∫ t

t0

[
f(s, xn(s))− f(s, x(s))

]
ds
∣∣

≤ |x(t)− xn(t)|+
∫ t

t0

∣∣f(s, x(t))− f(s, xn(s))ds
∣∣ (1.36)
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Since xn → x uniformly on [t0, t0 + T ], the right side of (1.36) tends to zero as n→∞. By
letting n→∞, from (1.36) we indeed have

∣∣x(t)− x0 −
∫ t

t0

f(s, x(s))ds
∣∣ ≤ 0, t ∈ [t0, t0 + T ].

or else

x(t) = x0 +

∫ t

t0

f(s, x(s))ds, t ∈ [t0, t0 + T ].

The uniqueness of x follows similarly as shown in the proof of Theorem 1.3.2.

Remark : The example cited at the beginning of this section does not contradict the
Theorem 1.5.1 as f(t, x) = x2 does not satisfy the strip condtion f ∈ Lip(S,K).

A consequence of the Theorem 1.5.1 is :

Theorem 1.5.2. Assume that f(t, x) is a continuous function on |t| <∞, |x| <∞. Further,
let f satisfies Lipschitz condition on the the strip Sa for all a > 0, where

Sa = {(t, x) : |t| ≤ a, |x| <∞}.

Then, the initial value problem

x′ = f(t, x), x(t0) = x0, (1.37)

has a unique solution existing for all t.

Proof. The proof is very much based on the fact that for any real number t there exists T
such that |t− t0| ≤ T . Notice here that all the hypotheses of Theorem 1.5.1 are satisfied, for
this choice of T , on the strip |t− t0| ≤ T, |x| <∞. Thus, by Theorem 1.5.1, the successive
approximations {xn} converge to a function x which is a unique solution of (1.37).

EXERCISES

1. Supply a proof of the Theorem 1.5.1 on the interval [t0 − T, t0].

2. Let a be a continuous function defined on I : |t−t0| ≤ α. Prove the uniform convergence
of the series for x defined by (1.34).

3. let I ⊂ R be an interval. By solving the linear equation

x′ = a(t)x, x(t0) = x0,

show that it has a unique solution x on the whole of I. Use the Theorem 1.5.1 to arrive
the same conclusion.

4. By solving the IVP
x′ = −x2, x(0) = −1, 0 ≤ t ≤ T,

show that the solution does not exist for t ≥ 1. Does this example contradict Theorem
1.5.1, when T ≥ 1 ?
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Lecture 6

1.6 Existence and Uniqueness of Solutions of Systems

The methodology developed till now concerns existence and uniqueness of a single equation
or a scalar equations which is a natural extension for the study of a system of equations or
to higher order equations. In the sequel, we glance of these extensions. Let I ⊆ R be an
interval, E ⊆ Rn. Consider a system of nonlinear equations

x′1 = f1(t, x1, x2, ...., xn),
x′2 = f2(t, x1, x2, ...., xn),
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·

x′n = fn(t, x1, x2, ...., xn),

(1.38)

where f1, f2, ..., fn : I × E → R are given continuous functions. Denoting (column) vector
x with components x1, x2, ..., xn and vector f with components f1, f2, ..., fn, the system of
equations (1.38) assumes the form

x′ = f(t, x). (1.39)

A general n-th order equation is representable in the form (1.38) which means the study
of n-th order nonlinear equation is naturally embedded in the study of (1.39). It speaks
of the importance of the study of systems of nonlinear equations, leaving apart numerous
difficulties that one has to face. Consider an IVP

x′ = f(t, x), x(t0) = x0. (1.40)

The proofs of local and non-local existence theorems for systems of equations stated below
have a remarkable resemblance to those of scalar equations. The detailed proofs are to be
supplied by readers with suitable modifications to handle the presence of vectors and their
norms. Below the symbol |.| is used to denote both the norms of a vector and the absolute
value. There is no possibility of confusion since the context clarifies the situation.

In all of what follows we are concerned with the region D, a rectangle in Rn+1 space,
defined by

D = {(t, x) : |t− t0| ≤ a, |x− x0| ≤ b},

where x, x0 ∈ Rn and t, t0 ∈ R.

Definition 1.6.1. A function f : D → Rn is said to satisfy the Lipschitz condition in the
variable x, with Lipschitz constant K on D if

|f(t, x1)− f(t, x2)| ≤ K|x1 − x2| (1.41)

uniformly in t for all (t, x1), (t, x2) in D.

The continuity of f(t, x) in x for each fixed t is a consequence, when f(t, x) is Lipschitzian
in x. If f(t, x) is Lipschitzian on D then, there exists a non-negative, real-valued function
L(t) such that

|f(t, x)| ≤ L(t), for all (t, x) ∈ D.

In addition, there exists a constant L > 0 such that L(t) ≤ L, when L is continuous on
|t− t0| ≤ a.
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Lemma 1.6.2. Let f : D → Rn be a continuous function. x(t; t0, x0) (denoted by x(t)) is a
solution of (1.40) on some interval I contained in |t − t0| ≤ a(t0 ∈ I) if and only if x is a
solution of the integral equation

x(t) = x0 +

∫ t

t0

f(s, x(s))ds, t ∈ I. (1.42)

Proof. First of all, we prove that the components xi of x satisfy

xi(t) = x0i +

∫ t

t0

fi(s, x(s))ds, t ∈ I, i = 1, 2, . . . , n,

if and only if
x′i(t) = fi(t, x(t)), x0i = xi(t0), i = 1, 2, . . . , n,

holds. The proof is exactly the same as that of Lemma 1.2.1.

As expected, the integral equation (1.42) is now exploited to define (inductively) the
successive approximations by{

x0(t) = x0

xn(t) = x0 +
∫ t
t0
f(s, xn−1(s))ds, t ∈ I

(1.43)

for n = 1, 2, . . . , . The ensuing lemma establishes that, under the stated conditions, the
successive approximations are indeed well defined.

Lemma 1.6.3. Let f : D → Rn be a continuous function and be bounded by L > 0 on D.

Define h = min
(
a,
b

L

)
. Then, the successive approximations are well defined by (1.43) on

the interval I = |t− t0| ≤ h. Further,

|xj(t)− x0| ≤ L |t− t0| < b, j = 1, 2, ...

The proof is very similar to the proof of Lemma 1.3.1.

Theorem 1.6.4. (Picard’s theorem for system of equations). Let all the conditions of
Lemma 1.6.3 hold and let f satisfy the Lipschitz condition with Lipschitz constant K on D.
Then, the successive approximations defined by (1.43) converge uniformly on I = |t− t0| ≤ h
to a unique solution of the IVP (1.40).

Corollary 1.6.5. A bound error left due to the truncation at the n-th approximation for x
is

|x(t)− xn(t)| ≤ L

K

(Kh)n+1

(n+ 1)!
eKh, t ∈ [t0, t0 + h]. (1.44)

Corollary 1.6.6. Let Mn(R) denote the set of all n × n real matrices. Let I ⊂ R be an
interval. Let A : I → R be continuous on I. Then, the IVP

x′ = A(t)x,

x(a) = x0, a ∈ I,

has a unique solution x existing on I. As a consequence the set of all solutions of

x′ = Ax,

is a linear vector space of dimension n.
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The proofs of Theorem 1.6.4 and Corollary 1.6.6 are exercises.
As noted earlier the Lipschitz property of f in Theorem 1.6.4 cannot be altogether

dropped as shown by the following example.

Example 1.6.7. The nonlinear IVP

x′1 = 2x
1/3
2 , x1(0) = 0,

x′2 = 3x1, x2(0) = 0,

in the vector form is

x′ = f(t, x), x(0) = 0,

where x = (x1, x2), f(t, x) = (2x
1/3
2 , 3x1) and 0 is the zero vector. Obviously, x(t) ≡ 0 is

a solution. It is easy to verify that x(t) = (t2, t3) is yet another solution of the IVP which
violates the uniqueness of the solutions of IVP .

Lecture 7

1.7 Cauchy-Peano Theorem

Let us recall that the IVP stated in Example 1.6.7 admits solutions. It is not difficult to
verify, in this case, that f is continuous in (t, x) in the neighborhood of (0, 0). In fact, the
continuity of f is sufficient to prove the existence of a solution. The proofs in this section
is based on Ascoli-Arzela theorem which in turn needs the concept of equicontinuity of a
family of functions. We need the following ground work before embarking on the proof of
such results. Let I = [a, b] ⊂ R be an interval. Let F (I,R) denote the set of all real valued
functions defined on I.

Definition 1.7.1. A set E ⊂ F (I,R) is called equicontinuous on I if for any ε > 0, there is
a δ > 0 such that for all f ∈ E,

|f(x)− f(y)| < ε, whenever |x− y| < δ.

Definition 1.7.2. A set E ⊂ F (I,R) is called uniformly bounded on I if there is a M > 0,
such that

|f(x)| < M for all f ∈ E and for all x ∈ I.

Theorem 1.7.3. (Ascoli-Arzela Theorem) Let B ⊂ F (I,R) be any uniformly bounded and
equicontinuous set on I. Then, every sequence of functions {fn} in B contains a subsequence
{fnk
}, k = 1, 2 . . . , which converges uniformly on every compact sub-interval of I.

Theorem 1.7.4. (Peano’s existence theorem) Let a > 0, t0 ∈ R. Let S ⊂ R2 be a strip
defined by

S = {(t, x) : |t− t0| ≤ a, |x| ≤ ∞}.

Let I : [t0, t0 + a]. Let f : S → R be a bounded continuous function. Then, the IVP

x′ = f(t, x), x(t0) = x0, (1.45)

has at least one solution existing on [x0 − a, x0 + a].
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Proof. The proof of the theorem is first dealt on [t0, t0 + a] and the proof on [t0 − a, t0] is
similar with suitable modifications. Let the sequence of functions {xn} be defined by, for
n = 1, 2 · · ·

xn(t) = x0, x0 ≤ t ≤ x0 +
a

n
, t ∈ I,

xn(t) = x0 +

∫ t0− a
n

t0

f(s, xn(s))ds if t0 +
ka

n
≤ t ≤ t0 +

(k + 1)a

n
, k = 1, 2, . . . , n (1.46)

We note that xn is defined on [t0, t0 + a
n ] to start with and thereafter defined on[

t0 +
ka

n
, t0 +

(k + 1)a

n

]
, k = 1, 2, . . . , n.

By hypotheses ∃ M > 0, such that |f(t, x)| ≤ M , whenever (t, x) ∈ S. Let t1, t2 be two
points in [t0, t0 + a]. Then,

|x(t1)− x(t2)| = 0 if t1, t2 ∈
[
t0, t0 +

a

n

]
.

For any t1 ∈ [t0, t0 + a
n ], t2 ∈

[
t0 + ka

n , t0 + (k+1)a
n

]
|xn(t1)− xn(t2)| =

∣∣∣ ∫ t2−(a/n)

t1−(a/n)
f(s, xn(s))ds

∣∣∣
≤M |t2 − t1|,

or else

|xn(t1)− xn(t2)| ≤M |t2 − t1|, ∀ t1, t2 ∈ I. (1.47)

Let ε be given with the choice of δ = ε/M. From equation (1.47), we have

|xn(t1)− xn(t2)| ≤ ε if |t1 − t2| < δ,

which is same as saying that {xn} is uniformly continuous on I. Again by (1.47), for all
t ∈ I

|xn(t)| ≤ |t0|+M |x− a

n
− t0| ≤ |t0|+Ma,

or else {xn} is uniformly bounded on I. By Ascoli-Arzela theorem (see Theorem 1.7.3) {xn}
has a uniformly convergent subsequence {xnk

} on I. The limit of {xnk
} is continuous on I

since the convergence on I is uniform. By letting k →∞ in

xnk
= x0 +

∫ t

t0

f(s, xnk
(s))ds−

∫ t

t−a/nk

f(s, xnk
(s))ds,

we have

x(t) = x0 +

∫ t

t0

f(s, x(s))ds, t ∈ I.

Since ∣∣∣ ∫ t

t−a/nk

f(s, xnk
(s))ds

∣∣∣→ 0 as k →∞, (1.48)

and consequently x is a solution of (1.45), finishing the proof.
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Remark Although f is continuous on S, f may not be bounded since S is not so. The
same proof has a modification when S is replaced a rectangle R (of finite area) except that
we have to ensure that (t, xn(t)) ∈ R. In this case (t, xn(t)) ∈ S for all t ∈ I is obvious.
With these comments, we have

Theorem 1.7.5. Let R̄ be a rectangle

R̄ = {(t, x) : |t− t0| ≤ a, |x− x0| ≤ b}, a ≥ 0, b ≥ 0, t, x0, t0 ∈ R

and f : R̄→ R be a continuous function. Let |f(t, x)| ≤M for all (t, x) ∈ R̄ , h = min(a, b
M )

and let Ih = |t− t0| ≤ h, then the IVP (1.45) has a solution x defined on Ih.

Proof. The proof is exactly similar to that of Theorem 1.7.4. We note that, for all n,
(t, xn(t)) ∈ R̄ if t ∈ Ih. The details of the proof is left as an exercise.

Theorem 1.7.4 has an alternative proof, details are given beow.

Proof of Theorem 1.7.4. Define a sequence {xn} on Ih by, for n ≥ 1,

xn(t) =

{
x0, if t ≤ t0;
x0 +

∫ t
t0
f(s, xn(s− a

n))ds, if t0 ≤ s ≤ t0 + h.

Since the sequence is well defined on [t0, t0 + a
n ], it is well defined on [t0, t0 +h]. It is not very

difficult to show that {xn} is uniformly continuous and uniformly bounded on Ih. By an
application of Ascoli-Arzela theorem, {xn} has a subsequence {xnk

} converging uniformly
(to say x) on Ih. Uniform convergence implies that x is continuous on Ih. By definition

xnk
(t) = x0 +

∫ t

t0

f
(
s, xnk

(
s− a

nk

))
ds, t ∈ Ih (1.49)

Since xnk
→ x uniformly on Ih, by letting k →∞ in (1.49), we get

x(t) = x0 +

∫ t

t0

f(s, x(s))ds, t ∈ Ih

that is, x is a solution of the IVP (1.45).

EXERCISES

1. Represent the linear n-th order IVP

x(n) + a1(t)x
(n−1) + · · ·+ an(t)x = b(t),

x(t0) = x0, x
′(t0) = x1, . . . , x

(n−1)(t0) = xn−1,

as a system. Prove that it has a unique solution.

2. Sketch the proof of Theorem 1.7.5.

3. Give a proof of Theorem 1.7.5.

4. Sketch the proof of Theorem 1.28 on [t0 − h, t0].

23



24



Module 2

Linear Differential Equations of
Higher Order

Lecture 9

2.1 Introduction

In this chapter, we introduce a study of a particular class of differential equations, namely
the linear differential equations. They occur in many branches of sciences and engineering
and so a systematic study of them is indeed desirable. Linear equations with constant
coefficients have more significance as far as their practical utility is concerned since closed
form solutions are known by just solving algebraic equations. On the other hand linear
differential equations with variable coefficients pose a formidable task while obtaining closed
form solutions. In any case first we need to ascertain whether these equations do admit
solutions at all. In this chapter, we show that a general nth order linear equation admits
precisely n linearly independent solutions. Before embarking into the details, the uniqueness
of solutions of initial value problems for linear equations has been established in Module 1
.We recall the following

Theorem 2.1.1. Assume that a0, a1, · · · , an and b are real valued continuous functions
defined on an interval I ⊆ R and that a0(t) 6= 0, for all t ∈ I. Then the IVP

a0(t)x
(n) + a1(t)x

(n−1) + · · ·+ an(t)x = b(t), t ∈ I
x(t0) = α1, x

′(t0) = α2, · · · , x(n−1)(t0) = αn, t0 ∈ I

}
(2.1)

has a unique solution existing on I.

2.2 Linear Dependence and Wronskian

The concept of linear dependence and independence has a special role to play in the study
of linear differential equations. It naturally leads us to the concept of the general solution
of a linear differential equation. To begin with, the concept of Wronskian and its relation to
linear dependence and independence of functions is established.

Consider real or complex valued functions defined on an interval I contained in R. The
interval I could be possibly the whole R. We recall the following definition.
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Definition 2.2.1. (Linear dependence and independence) Two functions x1 and x2 defined
on an interval I are said to be linearly dependent on I, if and only if there exist two constants
c1 and c2, at least one of them is non-zero, such that c1x1 + c2x2 = 0 on I. Functions x1
and x2 are said to be independent on I if they are not linearly dependent on I.

Remark : Definition 2.2.1 implies that in case two functions x1(t) and x2(t) are linearly
independent and, in addition,

c1x1(t) + c2x2(t) ≡ 0, ∀ t ∈ I,

then c1 and c2 are necessarily both zero. Thus, if two functions are linearly dependent on an
interval I then one of them is a constant multiple of the other. The scalars c1 and c2 may
be real numbers.

Example 2.2.2. Consider the functions

x1(t) = eαt and x2(t) = eα(t+1), t ∈ R,

where α is a constant. Since x1 is a multiple of x2, the two functions are linearly dependent
on R.

Example 2.2.3. sin t and cos t are linearly independent on the interval I = [0, 2π].

The above discussion of linear dependence of two functions defined on I is readily ex-
tended for a set of n functions where n ≥ 2. These extensions are needed in the study of
linear differential equations of order n ≥ 2. In the ensuing definition, we allow the functions
which are complex valued.

Definition 2.2.4. A set of n real(complex) valued functions x1, x2, · · · , xn, (n ≥ 2) de-
fined on I are said to be linearly dependent on I, if there exist n real (complex) constants
c1, c2, · · · , cn , not all of them are simultaneously zero, such that

c1x1 + c2x2 + · · ·+ cnxn = 0, t ∈ R.

The functions x1, x2, · · · , xn is said to be linearly independent on I if they are not linearly
dependent on I.

Example 2.2.5. Let α is a constant.The functions

x1(t) = eiαt, x2(t) = sinαt, x3(t) = cosαt, t ∈ R,

where α is a constant. It is easy to note that x1 can be expressed in terms of x2 and x3
which shows that the given functions are linearly dependent on R.

It is a good question to enquire about the sufficient conditions for the linear independence
of a given set of functions. We need the concept of Wronskian to ascertain the linear
independence of two or more differentiable functions.

Definition 2.2.6. (Wronskian) The Wronskian of two differentiable functions x1 and x2
defined on I is a function W defined by the determinant

W [x1(t), x2(t)] =

∣∣∣∣ x1(t) x2(t)
x′1(t) x′2(t)

∣∣∣∣, t ∈ I.
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Theorem 2.2.7. If the Wronskian of two functions x1 and x2 on I is non-zero for at least
one point of the interval I, then the functions x1 and x2 are linearly independent on I.

Proof. The proof is by method of contradiction. Let us assume on the contrary that the
functions x1 and x2 are linearly dependent on I. Then there exist constants (at least one of
them is non-zero) c1 and c2 such that

c1x1(t) + c2x2(t) = 0 ∀ t ∈ I. (2.2)

By differentiating, (2.2) we have

c1x
′
1(t) + c2x

′
2(t) = 0 ∀ t ∈ I. (2.3)

By assumption there exists a point, say t0 ∈ I, such that∣∣∣∣ x1(t0) x2(t0)
x′1(t0) x′2(t0)

∣∣∣∣ = x1(t0)x
′
2(t0)− x2(t0)x′1(t0) 6= 0. (2.4)

From (2.2) and , we obtain

c1x1(t0) + c2x2(t0) = 0
c1x
′
1(t0) + c2x

′
2(t0) = 0.

(2.5)

Looking upon (2.5) as a system of linear equations with c1 and c2 as unknown quantities,
from the theory of algebraic equations we know that if (2.4) holds, then the system (2.5)
admits only zero solution i.e., c1 = 0 and c2 = 0. This is a contradiction to the assumption
and hence the theorem is proved.

As an immediate consequence, we have :

Theorem 2.2.8. Let I ⊆ R be an interval. If two differentiable functions x1 and x2 (
defined on I) are linearly dependent on I then their Wronskian

W [x1(t), x2(t)] ≡ 0 on I.

The proof is left as an exercise. It is easy to extend Definition 2.2.4 for a set of n
functions and derive results of Theorems 2.8 and 2.9 for these sets of n functions. The
proofs of the corresponding theorems are omitted as the proof is essentially the same as
given in Theorem 2.8.

Definition 2.2.9. The Wronskian of n (n > 2) functions x1, x2, · · · , xn defined and (n− 1)
times differentiable on I is defined by the nth order determinant

W [x1(t, x2(t), · · · , xn(t)] =

∣∣∣∣∣∣∣∣∣
x1(t) x2(t) · · · xn(t)
x′1(t) x′2(t) · · · x′n(t)
...

...
. . .

...

x
(n−1)
1 (t) x

(n−1)
2 (t) · · · x

(n−1)
n (t)

∣∣∣∣∣∣∣∣∣ , t ∈ I.

Theorem 2.2.10. If the Wronskian of n functions x1, x2, · · · , xn defined on I is non-zero
for at least one point of I, then the set of n functions x1, x2, · · · , xn is linearly independent
on I.
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Theorem 2.2.11. If a set of n functions x1, x2, · · · , xn whose derivatives exist up to and
including that of order (n−1) are linearly dependent on an interval I, then their Wronskian
W [x1(t), x2(t), · · · , xn(t)] ≡ 0 on I.

Remark : The converse of Theorems ?? and 2.11 may not be true in general. Two or
more functions can be linearly independent on an interval and yet their Wronskian may be
identically zero. For example, let x1(t) = t2 and x2(t) = t|t|,−∞ < t <∞. In fact x1 and x2
are linearly independent but W [x1(t), x2(t)] ≡ 0.

The situation is very different when the given functions are solutions of certain linear
homogeneous differential equation. Let us discuss such a case later.

Example 2.2.12. Consider the functions

x1(t) = eαt cosβt, x2(t) = eαt sinβt, t ∈ I,

where α and β are constants and β 6= 0. We note

W [x1(t), x2(t)] = e2αt
∣∣∣∣ cosβt sinβt

cosβt− β sinβt sinβt+ β cosβt

∣∣∣∣, t ∈ I,

= βe2αt 6= 0, t ∈ I.

Further x1 and x2 are linearly independent on I and satisfies the differential equation

x′′ − 2αx′ + (α2 + β2)x = 0.

EXERCISES

1. Show that sinx, sin 2x, sin 3x are linearly independent on I = [0, 2π].

2. Verify that 1, x, x2, · · · , xm are linearly independent on any interval I ⊆ R.

3. Define the functions f and g on [−1, 1] by

f(x) = 0
g(x) = 1

}
if x ∈ [−1, 0]

f(x) = sinx
g(x) = 1− x

}
if x ∈ [0, 1].

Then, prove that f and g are linearly independent on [−1, 1]. Further verify that f
and g are linearly dependent on [−1, 0].

4. Prove that the n functions

erit, terit, · · · , tki−1erit,

i = 1, 2, · · · , s, where k1 + k2 + · · · + ks = n and r1, r2, · · · , rs are distinct numbers,
and linearly independent on every interval I.

5. let I1, I2 and I be intervals in R such that I1 ⊂ I2 ⊂ I. If two functions defined on I
are linearly independent on I1 then, show that they are linearly independent on I2.
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Lecture 10

2.3 Basic Theory for Linear Equations

In this section the meaning that is attached to a general solution of the differential equation
and some of its properties are studied. We stick our attention to second order equations to
start with and extend the study for an n-th order linear equations. The extension is not
hard at all. As usual let I ⊆ R be an interval. Consider

a0(t)x
′′(t) + a1(t)x

′(t) + a2(t)x(t) = 0, a0(t) 6= 0, t ∈ I. (2.6)

Later we study structure of solutions of a non-homogeneous equation of second order. Let us
define an operator L on the space twice differentiable functions defined on I by the following
relation

L(y)(t) = a0(t)y
′′(t) + a1(t)y

′(t) + a2(t)y(t) and a0(t) 6= 0, t ∈ I. (2.7)

With L in hand, (2.6) is
L(x) = 0 on I.

The linearity of the differential operator tell us that :

Lemma 2.3.1. The operator L is linear on the space of twice differential functions on I.

Proof. Let y1 and y2 be any two twice differentiable functions on I. Let c1 and c2 be any
constants. For the linearity of L We need to show

L(c1y1 + c2y2) = c1L(y1) + c2L(y2) on I

which is a simple consequence of the linearity of the differential operator.

As an immediate consequence of the Lemma (2.14), we have the superposition principle:

Theorem 2.3.2. (Super Position Principle) Suppose x1 and x2 satisfy the equation (2.6)
for t ∈ I. Then,

c1x1 + c2x2,

also satisfies (2.6), where c1 and c2 are any constants.

The proof is easy and hence, omitted. The first of the following examples illustrates
Theorem 2.3.2 while the second one shows that the linearity cannot be dropped.

Example 2.3.3. (i) Consider the differential equation for the linear harmonic oscillator,
namely

x′′ + λ2x = 0, λ ∈ R.

Both sinλx and cosλx are two solutions of this equation and

c1 sinλx+ c2 cosλx,

is also a solution, where c1 and c2 are constants.

(ii) The differential equation
x′′ = −x′2,
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admits two solutions

x1(t) = log(t+ a1) + a2 and x2(t) = log(t+ a1),

where a1 and a2 are constants. With the values of c1 = 3 and c2 = −1,

x(t) = c1x1(t) + c2x2(t),

does not satisfy the given equation. We note that the given equation is nonlinear.

Lemma (2.14) and Theorem 2.3.2 which prove the principle of superposition for the linear
equations of second order have a natural extension to linear equations of order n(n > 2).
Let

L(y) = a0(t)y
(n) + a1(t)y

(n−1) + · · ·+ an(t)y, t ∈ I (2.8)

where a0(t) 6= 0 on I. The general n-th order linear differential equation may be written as

L(x) = 0, (2.9)

where L is the operator defined by the relation (2.8). As a consequence of the definition, we
have :

Lemma 2.3.4. The operator L defined by (2.8), is a linear operator on the space of all n
times differentiable functions defined on I.

Theorem 2.3.5. Suppose x1, x2, · · · , xn satisfy the equation (2.9). Then,

c1x1 + c2x2 + · · ·+ cnxn,

also satisfies (2.9), where c1, c2, · · · , cn are arbitrary constants.

The proofs of the Lemma 2.3.4 and Theorem 2.3.5 are easy and hence omitted.

Theorem 2.3.5 allows us to define a general solution of (2.9) given an additional hy-
pothesis that the set set of solutions x1, x2, · · · , xn is linearly independent. Under these
assumptions later we actually show that any solution x of (2.9) is indeed a linear combina-
tion of x1, x2, · · · , xn.

Definition 2.3.6. Let x1, x2, · · · , xn be n linearly independent solutions of (2.9). Then,

c1x1 + c2x2 + · · ·+ cnxn,

is called the general solution of (2.9), where c1, c2 · · · , cn are arbitrary constants.

Example 2.3.7. Consider the equation

x′′ − 2

t2
x = 0, 0 < t <∞.

We note that x1(t) = t2 and x2(t) =
1

t
are 2 linearly independent solutions on 0 < t < ∞.

A general solution x is

x(t) = c1t
2 +

c2
t
, 0 < t <∞.
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Example 2.3.8. x1(t) = t, x2(t) = t2, x3(t) = t3, t > 0 are three linearly independent
solutions of the equation

t3x′′′ − 3t2x′′ + 6tx′ − 6x = 0, t > 0.

The general solution x is

x(t) = c1t+ c2t
2 + c3t

3, t > 0.

We again recall that Theorems 2.3.2 and 2.3.5 state that the linear combinations of
solutions of a linear equation is yet another solution. The question now is whether this
property can be used to generate the general solution for a given linear equation. The answer
indeed is in affirmative. Here we make use of the interplay between linear independence
of solutions and the Wronskian. The following preparatory result is needed for further
discussion. We recall the equation (2.7) for the definition of L.

Lemma 2.3.9. If x1 and x2 are linearly independent solutions of the equation L(x) = 0 on
I, then the Wronskian of x1 and x2, namely, W [x1(t), x2(t)] is never zero on I.

Proof. Suppose on the contrary, there exist t0 ∈ I at which W [x1(t0), x2(t0)] = 0. Then, the
system of linear algebraic equation for c1 and c2

c1x1(t0) + c2(t)x2(t0) = 0
c1x
′
1(t0) + c2(t)x

′
2(t0) = 0

}
, (2.10)

has a non-trivial solution. For such a nontrivial solution (c1, c2) of (2.10), we define

x(t) = c1x1(t) + c2x2(t), t ∈ I.

By Theorem 2.3.2, x is a solution of the equation (2.6) and

x(t0) = 0 and x′(t0) = 0.

Since an initial value problem for L(x) = 0 admits only one solution, we therefore have
x(t) ≡ 0, t ∈ I, which means that

c1x1(t) + c2x2(t) ≡ 0, t ∈ I,

with at least one of c1 and c2 is non-zero or else, x1, x2 are linearly dependent on I, which is a
contradiction. So the Wronskian W [x1, x2] cannot vanish at any point of the interval I.

As a consequence of the above lemma an interesting corollary is :

Corollary 2.3.10. The Wronskian of two solutions of L(x) = 0 is either identically zero if
the solutions are linearly dependent on I or never zero if the solutions are linearly indepen-
dent on I.

Lemma 2.3.9 has an immediate generalization of to the equations of order n(n > 2). The
following lemma is stated without proof.

Lemma 2.3.11. If x1(t), x2(t), · · · , xn(t) are linearly independent solutions of the equation
(2.9) which exist on I, then the Wronskian

W [x1(t), x2(t), · · · , xn(t)],

is never zero on I. The converse also holds.
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Example 2.3.12. Consider Examples 2.3.7 and 2.20. The linearly independent solutions
of the differential equation in Example 2.3.7 are x1(t) = t2, x2(t) = 1/t. The Wronskian of
these solutions is

W [x1(t), x2(t)] = −3 6= 0 for t ∈ (−∞,∞).

The Wronskian of the solutions in Example 2.3.8 is given by

W [x1(t), x2(t), x3(t)] = 2t3 6= 0

when t > 0.

The conclusion of the Lemma 2.3.11 holds if the equation (2.9) has n linearly independent
solutions . A doubt may occur whether such a set of solutions exist or not. In fact, Example
2.3.13 removes such a doubt.

Example 2.3.13. Let

L(x) = a0(t)x
′′′ + a1(t)x

′′ + a1(t)x
′ + a3(t)x = 0.

Now, let x1(t), t ∈ I be the unique solution of the IVP

L(x) = 1, x(a) = 0, x′(a) = 0, x′′(a) = 0;

x1(t), t ∈ I be the unique solution of the IVP

L(x) = 0, x(a) = 0, x′(a) = 1, x′′(a) = 0;

and x3(t), t ∈ I be the unique solution of the IVP

L(x) = 0, x(a) = 0, x′(a) = 0, x′′(a) = 1

where a ∈ I.. Obviously x1(t), x2(t), x3(t) are linearly independent, since the value of the
Wronskian at the point a ∈ I is non-zero. For

W [x1(a), x2(a), x3(a)] =

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ = 1 6= 0.

An application of the Lemma 2.3.11 justifies the assertion. Thus, a set of three linearly
independent solution exists for a homogeneous linear equation of the third order.

Now we establish a major result for a homogeneous linear differential equation of order
n ≥ 2 below.

Theorem 2.3.14. Let x1, x2, · · · , xn be linearly independent solutions of (2.9) existing on
an interval I ⊆ R. Then any solution x of (2.9) existing on I is of the form

x(t) = c1x1(t) + c2x2(t) + · · ·+ cnxn(t), t ∈ I

where c1, c2, · · · , cn are some constants.

Proof. Let x be any solution of L(x) = 0 on I, and a ∈ I . Let

x(a) = a1, x
′(a) = a2, · · · , x(n−1) = an.
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Consider the following system of equation:

c1x1(a) + c2x2(a) + · · ·+ cnxn(a) = a1
c1x
′
1(a) + c2x

′
2(a) + · · ·+ cnx

′
n(a) = a2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
c1x

(n−1)
1 (a) + c2x

(n−1)
2 (a) + · · ·+ cnx

(n−1)
n (a) = an

 . (2.11)

We can solve system of equations (2.11) for c1, c2, · · · , cn. Since the determinant of the
coefficients of c1, c2, · · · , cn in the above system is not zero and since the Wronskian of
x1, x2, · · · , xn at the point a, it is different from zero by Lemma 2.3.11. Define

y(t) = c1x1(t) + c2x2(t) + · · ·+ cnxn(t), t ∈ I,

where c1, c2, · · · , cn are the solutions of the system given by (2.11). Then y is a solution of
L(x) = 0 and in addition

y(a) = a1, y
′(a) = a2, · · · , y(n−1)(a) = an.

From the uniqueness theorem, there is one and only one solution with these initial conditions.
Hence y(t) = x(t) for t ∈ I. This completes the proof.

Lecture 11

By this time we note that a general of (2.9) represents a n parameter family of curves.
The parameters are the arbitrary constants appearing in the general solution. Such a notion
motivates us define a general solution of a non-homogeneous linear equation

L(x(t)) = a0(t)x
′′(t) + a1(t)x

′(t) + a2(t)x(t) = d(t), t ∈ I (2.12)

where d is continuous on I. Formally a n parameter solution x of (2.12) is called a solution
of (2.12). Loosely speaking a general solution of (2.12) ”contains” n arbitrary constants.
With such a definition we have:

Theorem 2.3.15. Suppose xp is any particular solution of (2.12) existing on I and that xh
is the general solution of the homogeneous equation L(x) = 0 on I. Then x = xp + xh is a
general solution of (2.12) on I.

Proof. xp + xh is a solution of the equation (2.12), since

L(x) = L(xp + xh) = L(xp) + L(xh) = d(t) + 0 = d(t), t ∈ I

Or else x is a solution of (2.12), which is a n parameter family of function (since xh is one
such) and so x is a general solution of (2.12).

Thus, if a particular solution of (2.12) is known, then the general solution of (2.12) is
easily obtained by using the general solution of the corresponding homogeneous equation.
The Theorem 2.3.15 has a natural extension to a n-th order non-homogeneous differential
equation of the form

L(x(t)) = a0(t)x
n(t) + a1(t)x

n−1(t) + · · ·+ an(t)x(t) = d(t), t ∈ I.

Let xp be a particular solution existing on I. Then, the general solution of L(x) = d is of
the form
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x(t) = xp(t) + c1x1(t) + c2x2(t) + · · ·+ cnxn(t), t ∈ I

where {x1, x2, · · · , xn} is a linearly independent set of n solutions of (2.9) existing on I and
c1, c2, · · · , cn are any constants.

Example 2.3.16. Consider the equation

t2x′′ − 2x = 0, 0 < t <∞.

The two solutions x1(t) = t2 and x2(t) = 1/t are linearly independent. A particular solution
xp of

t2x′′ − 2x = 2t− 1, 0 < t <∞.

is xp(t) = 1
2 − t and so the general solution x is

x(t) = (12 − t) + c1t
2 + c2

1
t , 0 < t <∞,

where c1 and c2 are arbitrary constants.

EXERCISES

1. Suppose that z1 is a solution of L(y) = d1 and that z2 is a solution of L(y) = d2. Then
show that z1 + z2 is a solution of the equation

L(y(t)) = d1(t) + d2(t).

2. If a complex valued function z is a solution of the equation L(x) = 0 then, show that
the real and imaginary parts of z are also solutions of L(x) = 0.

3. (Reduction of the order) Consider an equation

L(x) = a0(t)x
′′ + a1(t)x

′ + a2(t)x = 0, a0(t) 6= 0, t ∈ I.

where a0, a1 and a2 are continuous functions defined on I. Let x1 6= 0 be a solution of
this equation. Show that x2 defined by

x2(t) = x1(t)

∫ t

t0

1

x21(s)
exp

(∫ s

t0

a1(u)

a0(u)
du
)
ds, t0 ∈ I,

is also a solution. In addition, show that x1 and x2 are linearly independent on I.

2.4 Method of Variation of Parameters

Recall from Theorem 2.3.15 that a general solution of the equation

L(x) = d(t), (2.13)

(where L(x) is given by (2.7) or (2.9)) is fully determined the moment we know xh and xp.
It is therefore natutral to know both a particular solution xp of (2.13) as well as the general
solution xh of the homogeneous equation L(x) = 0. If L(x) = 0 is an equation with constant
coefficients, the determinatin of the general solution is not difficult. Variation of parameter
is a general method gives us a particular solution. The method of variation of parameters
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is also effective in dealing with equations with variable coefficients . To make the matter
simple let us consider a second order equation

L(x(t)) = a0(t)x
′′(t) + a1(t)x

′(t) + a2(t)x(t) = d(t), a0(t) 6= 0, t ∈ I, (2.14)

where the functions a0, a1, a2, d : I → R are continuous. Let x1 and x2 be two linearly
independent solutions of the homogeneous equation

a0(t)x
′′(t) + a1(t)x

′(t) + a2(t)x(t) = 0, a0(t) 6= 0, t ∈ I. (2.15)

Then, c1x1 + c2x2 is the general solution of (2.15), where c1 and c2 are arbitrary constants.
The general solution of (2.14) is determined the moment we know a particular solution xp
of (2.14). We let the constants c1, c2 as parameters depending on t and determine xp . In
other words, we would like to find u1 and u2 on I such that

xp(t) = u1(t)x1(t) + u2(t)x2(t), t ∈ I (2.16)

satisfies (2.14).

In order to substitute xp in (2.14), we need to calculate x′p and x′′p. Now

x′p = x′1u1 + x′2u2 + (x1u
′
1 + x2u

′
2).

We do not wish to end up with second order equations for u1, u2 and naturally we choose
u1 and u2 to satisfy

x1(t)u
′
1(t) + x2(t)u

′
2(t) = 0 (2.17)

Added to it, we already known how to solve first order equations. With (2.17) in hand we
now have

x′p(t) = x′1(t)u1(t) + x′2(t)u2(t). (2.18)

Differentiation of (2.18) leads to

x′′p = u′1x
′
1 + u1x

′′
1 + u′2x

′
2 + u2x

′′
2. (2.19)

Now we substitute (2.16), (2.18) and (2.19) in (2.14) to get

[a0(t)x
′′
1(t) + a1(t)x

′
1(t) + a2(t)x1(t)]u1 + [a0(t)x

′′
2(t) + a1(t)x

′
2(t) + a2(t)x2(t)]u2 +

u′1a0(t)x
′
1 + u′2a0(t)x

′
2 = d(t),

and since x1 and x2 are solutions of (2.15), hence

x′1u
′
1(t) + x′2u

′
2(t) =

d(t)

a0(t)
. (2.20)

We solve for u′1 and u′2 from (2.17) and (2.20), to determine xp. It is easy see

u′1(t) = −x2(t)d(t)
a0(t)W [x1(t),x2(t)]

u′2(t) = x1(t)d(t)
a0(t)W [x1(t),x2(t)]
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where W [x1(t), x2(t)] is the Wronskian of the solutions x1 and x2. Thus, u1 and u2 are given
by

u1(t) = −
∫ x2(t)d(t)
a0(t)W [x1(t),x2(t)]

dt

u2(t) =
∫ x1(t)d(t)
a0(t)W [x1(t),x2(t)]

dt

 (2.21)

Now substituting the values of u1 and u2 in (2.16) we get a desired particular solution of
the equation (2.14). Indeed

xp(t) = u1(t)x1(t) = u2(t)x2(t), t ∈ I

is completely known. To conclude, we have :

Theorem 2.4.1. Let the functions a0, a1, a2 and d in (2.14) be continuous functions on I.
Further assume that x1 and x2 are two linearly independent solutions of (2.15). Then, a
particular solution xp(t) of the equation (2.14) is given by (2.16).

Theorem 2.4.2. The general solution x(t) of the equation (2.14) on I is

x(t) = xp(t) + xh(t),

where xp(t) is a particular solution given by (2.16) and xh is the general solution of L(x) = 0.

Also, we note that we have an explicit expression for xp which was not so while proving
Theorem 2.3.15. The following example is for illustration.

Lecture 12

Example 2.4.3. Consider the equation

x′′ − 2
tx
′ + 2

t2
x = t sin t, t ∈ [1,∞).

Note that x1 = t and x2 = t2 are two linearly independent solutions of the homogeneous
equation on [1,∞). Now

W [x1(t), x2(t)] = t2.

Substituting the values of x1, x2, W [x1(t), x2(t)], d(t) = t sin t and a0(t) ≡ 1 in (2.21), we
have

u1(t) = t cos t− sin t
u2(t) = cos t

and the particular solution is xp(t) = −t sin t. Thus, the general solution is

x(t) = −t sin t+ c1t+ c2t
2,

where c1 and c2 are arbitrary constants.

The method of variation of parameters can be extended to the equation of order n(n > 2)
which we state in the form of a theorem, the proof of which has been deleted. Let us consider
an equation of the n-th order

L(x(t)) = a0(t)x
n(t) + a1(t)x

n−1(t) + · · ·+ an(t)x(t) = d(t), t ∈ I. (2.22)
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Theorem 2.4.4. Let a0, a1, · · · , an, d : I → R be continuous functions. Let

c1x1 + c2x2 + · · ·+ cnxn

be the general solution of L(x) = 0. Then, a particular solution xp of (2.22) is given by

xp(t) = u1(t)x1(t) + u2(t)x2(t) + · · ·+ un(t)xn(t),

where u1, u, · · · , un satisfy the equations

u′1(t)x1(t) + u′2(t)x2(t) + · · ·+ u′n(t)xn(t) = 0

u′1(t)x
′
1(t) + u′2(t)x

′
2(t) + · · ·+ u′n(t)x′n(t) = 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

u′1(t)x
(n−2)
1 (t) + u′2(t)x

(n−2)
2 (t) + · · ·+ u′n(t)x

(n−2)
n (t) = 0

a0(t)
[
u′1(t)x

(n−1)
1 (t) + u′2(t)x

(n−1)
2 (t) + · · ·+ u′n(t)x

(n−1)
n (t)

]
= d(t).

The proof of the Theorem 2.4.4 is similar to the previous one with obvious modifications.

EXERCISES

1. Find the general solution of x′′′+x′′+x′+x = 1 given that cos t, sin t and e−t are three
linearly independent solutions of the corresponding homogeneous equation. Also find
the solution when x(0) = 0, x′(0) = 1, x′′(0) = 0.

2. Use the method of variation of parameter to find the general solution of x′′′−x′ = d(t)
where
(i) d(t) = t, (ii) d(t) = et, (iii) d(t) = cos t, and (iv) d(t) = e−t.
In all the above four problems assume that the general solution of x′′′ − x′ = 0 is
c1 + c2e

−t + c3e
t.

3. Assuming that cosRt and sinRt
R form a linearly independent set of solutions of the

homogeneous part of the differential equation x′′ + R2x = f(t), R 6= 0, t ∈ [0,∞),
where f(t) is continuous for 0 ≤ t < ∞ show that a solution of the equation under
consideration is of the form

x(t) = A cosRt+
B

R
sinRt+

1

R

∫ t

0
sin[R(t− s)]f(s)ds,

where A and B are some constants. Show that particular solution of (2.14) is not
unique. (Hint : If xp is a particular solution of (2.14) and x is any solution of (2.15) then
show that xp + c x is also a particular solution of (2.14) for any arbitrary constant c.)

Two Useful Formulae
Two formulae proved below are interesting in themselves. They are also useful while

studying boundary value problems of second order equations. Consider an equation

L(y) = a0(t)y
′′ + a1(t)y

′ + a2(t)y = 0, t ∈ I,

where a0, a1, a2 : I → R are continuous functions in addition a0(t) 6= 0 for t ∈ I. Let u and
v be any two twice differentiable functions on I. Consider

uL(v)− vL(u) = a0(uv
′′ − vu′′) + a1(uv

′ − vu′). (2.23)

The Wronskian of u and v is given by W (u, v) = uv′ − vu′ which shows that
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d

dt
W (u, v) = uv′′ − vu′′.

Note that the coefficients of a0 and a1 in the relation (2.23) are W ′(u, v) and W (u, v)
respectively. Now we have

Theorem 2.4.5. If u and v are twice differential functions on I, then

uL(v)− vL(u) = a0(t)
d

dt
W [u, v] + a1(t)W [u, v], (2.24)

where L(x) is given by (2.7). In particular, if L(u) = L(v) = 0 then W satisfies

a0
dW

dt
[u, v] + a1W [u, v] = 0. (2.25)

Theorem 2.4.6. ( Able’s Formula) If u and v are solutions of L(x) = 0 given by (2.7), then
the Wronskian of u and v is given by

W [u, v] = k exp
[
−
∫
a1(t)

a0(t)
dt
]
,

where k is a constant.

Proof. Since u and v are solutions of L(y) = 0, the Wronskian satisfies the first order
equation (2.25) and Solving we get

W [u, v] = k exp
[
−
∫
a1(t)

a0(t)
dt
]

(2.26)

where k is a constant.

The above two results are employed to obtain a particular solution of a non-homogeneous
second order equation.

Example 2.4.7. Consider the general non-homogeneous initial value problem given by

L(y(t)) = d(t), y(t0) = y′(t0) = 0, t, t0 ∈ I, (2.27)

where L(y) is as given in (2.14). Assume that x1 and x2 are two linearly independent solution
of L(y) = 0. Let x denote a solution of L(y) = d. Replace u and v in (2.24) by x1 and x to
get

d

dt
W [x1, x] +

a1(t)

a0(t)
W [x1, x] = x1

d(t)

a0(t)
(2.28)

which is a first order equation for W [x1, x]. Hence

W [x1, x] = exp
[
−
∫ t

t0

a1(s)

a0(s)
ds
] ∫ t

t0

exp
[ ∫ s

t0

a1(u)
a0(u)

du
]
x1(s)ds

a0(s)
ds (2.29)

While deriving (2.29) we have used the initial conditions x(t0) = x′(t0) = 0 in view of which
W [x1(t0), x(t0)] = 0. Now using the Able’s formula, we get

x1x
′ − xx′1 = W [x1, x2]

∫ t

t0

x1(s)d(s)

a0(s)W [x1(s), x2(s)]
ds. (2.30)
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The equation (2.30) as well could have been derived with x2 in place of x1 in order to get

x2x
′ − xx′2 = W [x1, x2]

∫ t

t0

x2(s)d(s)

a0(s)W [x1(s), x2(s)]
ds. (2.31)

From (2.30) and (2.31) one easily obtains

x(t) =

∫ t

t0

[
x2(t)x1(s)− x2(s)x1(t)

]
d(s)

a0(s)W [x1(s), x2(s)]
ds. (2.32)

It is time for us to recall that a particular solution in the form of (2.32) has already been
derived while discussing the method of variation of parameters.

Lecture 13

2.5 Homogeneous Linear Equations with Constant Coefficients

Homogeneous linear equations with constant coefficients is an important subclass of linear
equations, the reason being that solvability of these equations reduces to he solvability
algebraic equations. Now we attempt to obtain a general solution of a linear equation with
constant coefficients. Let us start as usual with a simple second order equation, namely

L(y) = a0y
′′ + a1y

′ + a2y = 0, a0 6= 0. (2.33)

Later we move onto a more generally equation of order n(n > 2)

L(y) = a0y
(n) + a1y

(n−1) + · · ·+ any = 0 (2.34)

where a0, a1, · · · , an are real constants and a0 6= 0.
Intuitively a look at the equation (2.33) or (2.34) tells us that if the derivatives of a

function which are similar in form to the function itself then such a functions might probably
be a candidate to solve (2.33) or (2.34). Elementary calculus tell us that one such function
is the exponential, namely ept, where p is a constant. If ept is a solution then,

L(ept) = a0(e
pt)′′ + a1(e

pt)′ + a2(e
pt) = (a0p

2 + a1p+ a2)e
pt.

ept is a solution of (2.34) iff

L(ept) = (a0p
2 + a1p+ a2)e

pt = 0.

which means that ept is a solution of (2.34) iff p satisfies

a0p
2 + a1p+ a2 = 0. (2.35)

Actually we have proved the following result:

Theorem 2.5.1. λ is a root of the quadratic equation (2.35) iff eλt is a solution of (2.33).

If we note

L(ept) = (a0p
n + a1p

n−1 + · · ·+ an)ept

then the following result is immediate.
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Theorem 2.5.2. λ is a root of the equation

a0p
n + a1p

n−1 + · · ·+ an = 0, a0 6= 0 (2.36)

iff eλt is a solution of the equation (2.34).

Definition 2.5.3. The equations (2.35) or (2.36) are called the characteristic equations for
the linear differential equations (2.33) or (2.34) respectively. The corresponding polynomials
are called characteristic polynomials.

In general, the characteristic equation (2.35) has two roots, say λ1 and λ2. By Theorem
2.5.1, eλ1t and eλ2t are two linearly independent solutions of (2.33) provided λ1 6= λ2. Let
us study the characteristic equation and its relationship with the general solution of (2.33).

Case 1 : Let λ1 and λ2 be real distinct roots of (2.35). In this case x1(t) = eλ1t and
x2(t) = eλ2t are two linearly independent solutions of (2.33) and the general solution x of
(2.33) is given by c1e

λ1t + c2e
λ2t.

Case 2 : When λ1 and λ2 are complex roots, from the theory of equations, it is well
known that they are complex conjugates of each other i.e., they are of the form λ1 = a+ ib
and λ2 = a− ib. The two solutions are

eλ1t = e(a+ib)t = eat[cos bt+ i sin bt],
eλ2t = e(a−ib)t = eat[cos bt− i sin bt].

Now, if h is a complex valued solution of the equation (2.33), then

L[h(t)] = L[Reh(t)] + iL[Imh(t)], t ∈ I,

since L is a linear operator. This means that the real part and the imaginary part of a
solution are also solutions of the equation (2.33). Thus

eat cos bt, eat sin bt

are two linearly independent solutions of (2.33), where a and b are the real and imaginary
parts of the complex root respectively. The general solution is given by

eat[c1 cos bt+ c2 sin bt], t ∈ I.

Case 3 : When the roots of the characteristic equation (2.35) are equal, then the root is
λ1 = −a1/2a0. From Theorem 2.5.1, we do have a solution of (2.33) namely eλ1t. To find a
second solution two methods are described below, one of which is based on the method of
variation of parameters.
Method 1 : x1(t) = eλ1t is a solution and so is ceλ1t where c is a constant. Now let us assume
that

x2(t) = u(t)eλ1t,

is yet another solution of (2.33) and then determine u. Let us recall here that actually the
parameter c is being varied in this method and hence method is called Variation parameters.
Differentiating x2 twice and substitution in (2.33) leads to

a0u
′′ + (2a0λ1 + a1)u

′ + (a0λ
2
1 + a1λ1 + a2)u = 0.
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Since λ1 = −a1/2a0 the coefficients of u′ and u are zero. So u satisfies the equation u′′ = 0,
whose general solution is

u(t) = c1 + c2(t), t ∈ I,

where c1 and c2 are some constants or equivalently (c1+c2t)e
λ1t is another solution of (2.33).

It is easy to verify that

x2(t) = teλ1t

is a solution of (2.33) and x1, x2 are linearly independent.

Method 2 : Recall

L(eλt) = (a0λ
2 + a1λ+ a2)e

λt = p(λ)eλt, (2.37)

where p(λ) denotes the characteristic polynomial of (2.33). From the theory of equations we
know that if λ1 is a repeated root of p(λ) = 0 then

p(λ1) = 0 and
∣∣∣ ∂
∂λ
p(λ)

∣∣∣
λ=λ1

= 0. (2.38)

Differentiating (2.37) partially with respect to λ, we end up with

∂

∂λ
L(eλt) =

∂

∂λ
p(λ)eλt =

[ ∂
∂λ
p(λ) + tp(λ)

]
eλt.

But,
∂

∂λ
L(eλt) = L

( ∂
∂λ
eλt
)

= L(teλt).

Therefore,

L(teλt) =
[ ∂
∂λ
p(λ) + tp(λ)

]
eλt.

Substituting λ = λ1 and using the relation in (2.38) we have L(teλ1t) = 0 which clearly shows
that x2(t) = teλ1t is yet another solution of (2.34). Since x1, x2 are linearly independent,
the general solution of (2.33) is given by

c1e
λ1t + c2te

λ1t,

where λ1 is the repeated root of characteristic equation (2.35).

Example 2.5.4. The characteristic equation of

x′′ + x′ − 6x = 0, t ∈ I,

is

p2 + p− 6 = 0,

whose roots are p = −3 and p = 2. by case 1, e−3t, e2t are two linearly independent solutions
and the general solution x is given by

x(t) = c1e
−3t + c2e

2t, t ∈ I.
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Example 2.5.5. For
x′′ − 6x′ + 9x = 0, t ∈ I,

the characteristic equation is
p2 − 6p+ 9 = 0,

which has a repeated root p = 3. So ( by case 2) e3t and te3t are two linearly independent
solutions and the general solution x is

x(t) = c1e
3t + c2te

3t, t ∈ I.

The results which have been discussed above for a second order have an immediate
generalization to a n-th order equation (2.34). The characteristic equation of (2.34) is given
by

L(p) = a0p
n + a1p

n−1 + · · ·+ an = 0. (2.39)

If p1 is a real root of (2.39) then, ep1t is a solution of (2.34). If p1 happens to be a complex
root, the complex conjugate of p1 i.e., p̄1 is also a root of (2.39). In this case

eat cos bt and eat sin bt

are two linearly independent solutions of (2.34), where a and b are the real and imaginary
parts of p1, respectively.

We now consider when roots of (2.39) have multiplicity(real or complex). There are two
cases:

(i) when a real root has a multiplicity m1,

(ii) when a complex root has a multiplicity m1.

Case 1 : Let q be the real root of (2.39) with the multiplicity m1. By induction we have m1

linearly independent solutions of (2.34), namely

eqt, teqt, t2eqt, · · · , tm1−1eqt.

Case 2 : Let s be a complex root of (2.39) with the multiplicity m1. Let s = s1 + is2.
Then, as in Case 1, we note that

est, test, · · · , tm1−1est, (2.40)

are m1 linearly independent complex valued solutions of (2.34). For (2.34), the real and
imaginary parts of each solution given in (2.40) is also a solutions of (2.34). So in this case
2m1 linearly independent solutions of (2.34) are given by

es1t cos s2t, es1t sin s2t
tes1t cos s2t, tes1t sin s2t
t2es1t cos s2t, t2es1t sin s2t
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

tm1−1es1t cos s2t, t
m1−1es1t sin s2t

 (2.41)

Thus, if all the roots of the characteristic equation (2.39) are known, no matter whether
they are simple or multiple roots, there are n linearly independent solutions and the general
solution of (2.34) is
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c1x1 + c2x2 + · · ·+ cnxn

where x1, x2, · · · , xn are n linearly independent solutions and c1, c2, · · · , cn are any constants.
To summarize :

Theorem 2.5.6. Let r1, r2, · · · , rs, where s ≤ n be the distinct roots of the characteristic
equation (2.39) and suppose the root ri has multiplicity mi, i = 1, 2, · · · , s, with

m1 +m2 + · · ·+ms = n.

Then, the n functions
er1t, ter1t, · · · , tm1−1er1t

er2t, ter2t, · · · , tm2−1er2t

· · · · · · · · · · · · · · · · · · · · · · · ·
erst, terst, · · · , tms−1erst

 (2.42)

are the solutions of L(x) = 0 for t ∈ I.

EXERCISES

1. Find the general solution of

(i) x(4) − 16 = 0,

(ii) x′′′ + 3x′′ + 3x′ + x = 0,

(iii) x′′ + ax′ + bx = 0, for some real constants a and b,

(iv) x′′′ + 9x′′ + 27x′ + 27x = 0.

2. Find the general solution of

(i) x′′′ + 3x′′ + 3x′ + x = e−t,

(ii) x′′ − 9x′ + 20x = t+ e−t,

(iii) x′′ + 4x = A sin t+B cos t, where A and B are constants.

3. (Method of undetermined coefficients) To find the general solution of a non-homogeneous
equation it is necessary to know many times a particular solution of the given equation.
The method of undetermined coefficients furnishes one such solution, when the non-
homogeneous term happens to be an exponential function, a trigonometric function or
a polynomial. Consider an equation with constant coefficients

a0x
′′ + a1x

′ + a2x = d(t), a0 6= 0, (2.43)

where d(t) = Aeat, A and a are given real numbers.

Let xp(t) = Beat, be a particular solution, where B is undetermined. Then, show that

B =
A

P (a)
, P (a) 6= 0

where P (a) is the characteristic polynomial. In case P (a) = 0, assume that the par-
ticular solution is of the form Bteat. Deduce that

B = A/(2a0a+ a1) = A/P ′(a), P ′(a) 6= 0.
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It is also possible that P (a) = P ′(a) = 0. Now assume the particular solution in the
form xp(t) = Bt2eat. Show that B = A/2a0 = A/P ′′(a).

4. Using the method described in Example 2.5.5, find the general solution of

(i) x′′ − 2x′ + x = 3e2t,

(ii) 4x′′ − 8x′ + 5x = et.

5. When d(t) = A sinBt or A cosBt or their linear combination in equation (2.43), assume
a particular solution xp(t) in the form x(t) = C sinBt + D cosBt. Determine the
constants C and D which yield the required particular solution. Find the general
solution of

(i) x′′ − 3x′ + 2x = sin 2t,

(ii) x′′ − x′ − 2x = 3 cos t.

6. Solve

(i)2x′′ + x = 2t2 + 3t+ 1, x(0) = x′(0) = 0,

(ii)x′′ + 2x′ + 3x = t4 + 3, x(0) = 0, x′(0) = 1,

(iii) x′′ + 3x′ = 2t3 + 5,

(iv) 4x′′ − x′ = 3t2 + 2t.

7. Consider an equation with constant coefficients of the form

x′′ + αx′ + βx = 0.

(i) Prove that every solution of the above equation approaches zero if and only if the
roots of the characteristic equation have strictly negative real parts.

(ii) Prove that every solution of the above equation is bounded if and only if the roots
of the characteristic polynomial has non-positive real parts and roots with zero
real part have multiplicity one.
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Module 3

System of Linear Differential
equations

Lecture 22

3.1 Introduction

The systems of linear differential equations occurs at many branches of engineering and
science. Its importance needs very little emphasis. In this module, we try a modest attempt
to present the various facets of linear systems. Linear Algebra is a prerequisite. To get a
better insight on the calculation of the exponential of a matrix, one needs a knowledge of the
Jordan canonical decomposition. We try our best to keep the description as self contained
as possible. We do not venture into these proofs of results from Linear Algebra.

3.2 Systems of First Order Equations

In general non-linear differential equation of order one of the form

x′ = f(t, x), t ∈ I, (3.1)

where I is an interval and where x : I → R and f : I × R → R . The first order linear
non-homogeneous equation

x′ + a(t)x = b(t), t ∈ I, (3.2)

is a spacial case of (3.1). In fact, we can think of a more general set-up, where (3.1) and
(3.2) are spacial cases.

Let n be a positive integer. Let

f1, f2, · · · , fn : I ×D → R,

be n real valued functions defined on an open connected set D ⊂ Rn. Consider a system of
equations

x′i = fi(t, x1, x2, · · · , xn), i = 1, 2, · · · , n, (3.3)

where x1, x2, · · · , xn are real valued functions to be determined. The existence problem
associated with the system (3.3) is to find an interval I and n functions φ1, φ2, · · · , φn
defined on I such that
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(i) φ′1(t), φ
′
2(t), · · · , φ′n(t) exists for each t ∈ I,

(ii) (t, φ1(t), φ2(t), · · · , φn(t)) ∈ I ×D for each t in I, and

(iii) φ′i(t) = fi(t, φ1(t), φ2(t), · · · , φn(t)), t ∈ I, i = 1, 2, · · · , n

(φ1, φ2, · · · , φn) is called a solution of system (3.3).

Definition 3.2.1. Suppose (t0, α1, α2, · · · , αn) is a point in I ×D. Then, the IVP for the
system (3.3) is to find a solution (φ1, φ2, · · · , φn) of (3.3) such that

φi(t0) = αi, i = 1, 2, · · · , n.

The system of n equations has a concise form if we use vector notation. Let x denote a
point in an n-dimensional real Euclidean space with co-ordinates (x1, x2, · · · , xn). Define

fi(t, x) = fi(t, x1, x2, · · · , xn), i = 1, 2, · · · , n.

The equation (3.3) can be written as

x′i = fi(t, x), i = 1, 2, · · · , n. (3.4)

Now define a vector f by

f(t, x) = (f1(t, x), f2(t, x), · · · , fn(t, x)).

With this notation, system (3.4) assumes the form

x′ = f(t, x). (3.5)

We note that the equation (3.1) and (3.5) looks alike except for notations. The system (3.5)
is (3.1), when n = 1.

Example 3.2.2. The system of two equations

x′1 = x21, x
′
2 = x1 + x2,

has the vector form

x′ = f(t, x),

where x = (x1, x2) and f =
(
f1(x1, x2), f2(x1, x2)

)
= (x21, x1 + x2). Let ϕ = (φ1, φ2) be the

solution of the system with initial conditions

ϕ(t0) = (φ1(t0), φ2(t0)) = (α, β), α > 0.

The solution ϕ in this case is

ϕ(t) =
[
φ1(t), φ2(t)

]
=
[ α

1− α(t− t0)
, β exp(t− t0) +

∫ t

t0

et−sds

1− α(s− t0)

]
existing on the interval t0 ≤ t < t0 + 1

α .
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In the above example we have seen a concise way of writing a system of two equations
in a vector form. Normally it is useful to use column vectors rather than row vectors (as
done in Example 3.2). The column vector representation of x or f is compatible, when
linear systems of equations are under focus. Depending on the context we should be able to
decipher whether x or f is a row or a column vector. In short, the context clarifies whether
x or f is a row or a column vector. Now we concentrate on a linear system of n equations
in this chapter. Let I ⊆ R be an interval. Let the functions aij , bj : I → R, i, j = 1, 2, · · · , n
be given. Consider a system of equations

x′1 = a11(t)x1 + a12(t)x2 + · · ·+ a1n(t)xn + b1(t)
x′2 = a21(t)x1 + a22(t)x2 + · · ·+ a2n(t)xn + b2(t)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (t ∈ I).
x′n = an1(t)x1 + an2(t)x2 + · · ·+ ann(t)xn + bn(t)

(3.6)

Equation (3.6) is called a (general) non-homogeneous system of n equations. By defining

fi(t, x1, x2, · · · , xn) = ai1(t)x1 + ai2(t)x2 + · · ·+ ain(t)xn + bi(t)

for i = 1, 2, · · · , n, we see that the system (3.6) is a special case of the system (3.3). Define
a matrix A(t) by the relation

A(t) =


a11(t) a12(t) · · · a1n(t)
a21(t) a22(t) · · · a2n(t)

...
...

. . .
...

an1(t) an2(t) · · · ann(t)


and the vectors b(t) and x(t) by

b(t) =


b1(t)
b2(t)

...
bn(t)

 and x(t) =


x1(t)
x2(t)

...
xn(t)

 ,
respectively. With these notations (3.6) is

x′ = A(t)x+ b(t), t ∈ I. (3.7)

It is easy to observe that the right side of system (3.6) is linear in x1, x2, · · · , xn when
b(t) ≡ 0. Equation (3.7) is a vector matrix representation of a linear non-homogeneous
system (3.6). If b(t) ≡ 0 on I, then the system (3.7) reduces to a system

x′ = A(t)x, t ∈ I, (3.8)

which is called Linear homogeneous systems of equations.

Example 3.2.3. Consider a system of equations

x′1 = 5x1 − 2x2
x′2 = 2x1 + x2
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which has the form [
x1
x2

]′
=

[
5 −2
2 1

]
×
[
x1
x2

]
It is easy to verify that a solution is given by

x1(t) = (c1 + c2t)e
3t, x2(t) = (c1 − 1

2c2 + c2t)e
3t.

The n-th Order Equation
let us recall that a general n-th order IVP is

x(n) = g(t, x, x′, · · · , x(n−1)), t ∈ I (3.9)

x(t0) = α0, x
′(t0) = α1, · · · , x(n−1)(t0) = αn−1, t0 ∈ I, (3.10)

where α0, α1, · · · , αn−1 are given real constants. The n-th order equation can be represented
a system of n equations as follows. Define x1, x2, · · · , xn by

x1 = x, x′ = x2, · · · , x(n−1) = xn.

Then
x1 = x, x′1 = x2, · · · , x′n−1 = xn, x

′
n(t) = g(t, x1, x2, · · · , xn) (3.11)

Let ϕ = (φ1, φ2, · · · , φn) be a solution of (3.11). Then

φ2 = φ′1, φ3 = φ′2 = φ′′1, · · · , φn = φ
(n−1)
1 ,

g(t, φ1(t), φ2(t), · · · , φn(t)) = g(t, φ1(t), φ
′
1(t), · · · , φ

(n−1)
1 (t))

= φ
(n)
1 (t).

Clearly the first component φ1 is a solution of (3.9). Conversely, let φ1 be a solution of (3.9)
on I then, the vector ϕ = (φ1, φ2, · · · , φn) is a solution of (3.11). Thus, the system (3.11) is
equivalent to (3.9). Further, if

φ1(t0) = α0, φ
′
1(t0) = α1, · · · , φ(n−1)1 (t0) = αn−1

then the vector ϕ(t) also satisfies ϕ(t0) = α where α = (α0, α1, · · · , αn−1). It is time to
observe that (3.11) is a special case of

x′ = f(t, x).

In particular, an equation of n-th order of the form

a0(t)x
(n) + a1(t)x

(n−1) + · · ·+ an(t)x = b(t), t ∈ I

is called a linear non-homogeneous n-th order equation. In case a0(t) 6= 0 for any t ∈ I
then,the above equation is equivalent to

x(n) +
a1(t)

a0(t)
x(n−1) + · · ·+ an(t)

a0(t)
x =

b(t)

a0(t)
. (3.12)

Now (3.12) is represented in the form of a system by defining

x1 = x, x′1 = x2, · · · , x′n−1 = xn
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x′n(t) = −an(t)

a0(t)
x1 −

an−1(t)

a0(t)
x2 − · · · −

a1(t)

a0(t)
xn +

b(t)

a0(t)
.

With the notations

x =


x1
x2
...
xn

 , b(t) =


0
0
...
b(t)
a0(t)



A(t) =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−an
a0

−an−1

a0

−an−2

a0
· · · −a1

a0
.


The system (3.12) is

x′ = A(t)x+ b(t), t ∈ I. (3.13)

Thus, the two systems (3.12) and (3.13) are equivalent. The representations (3.7) and (3.13)
gives us a considerable simplicity in handling the systems of n equations.

Lecture 15
Example 3.2.4. For illustration we consider a linear equation

x′′′ − 6x′′ + 11x′ − 6x = 0.

Denote

x1 = x, x′1 = x2 = x′, x′2 = x′′ = x3.

Then, the given equation is equivalent to the system x′ = A(t)x, where

x =

x1x2
x3

 and A(t) =

0 1 0
0 0 1
6 −11 6

 .
Notice that the first component x1 of the system is a required solution of the given equation.
It is easy to check, in the present case, that x1(t) = c1e

t + c2e
2t + c3e

3t, where c1, c2 and c3
are arbitrary constants.

EXERCISES

1. Find a differential system for which the vector y(t) is a solution, where

y(t) =

[
t2 + 2t+ 5

sin2 t

]
, t ∈ I.

2. Consider the IVP x′1 = x22 + 3, x′2 = x21, x1(0) = 0, x2(0) = 0. Represent the problem
in the vector form

x′ = f(t, x), x(0) = x0.

Show that the vector function f is continuous. Find a value of M such that

|f(t, x)| ≤M on R = {(t, x) : |t| ≤ 1, |x| ≤ 1}.
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3. The system of three equations is given by

(x1, x2, x3)
′ = (4x1 − x2, 3x1 + x2 − x3, x1 + x3).

Then,

(i) show that the above system is linear in x1, x2 and x3;

(ii) find the solution of the system.

4. Let f be a vector valued function defined on the rectangle

R = {(t, x) : |t| ≤ a, |x| ≤ b, a > 0, b > 0, x ∈ R2},

as follows:
f(t, x) = (x21 + 3, t+ x22).

Find an upper bound for f(t, x) on the rectangle.

5. Represent the linear system of equations

x′1 = e−tx1 + sin tx2 + tx3 + 1
t2+1

,

x′2 = − cos tx3 + e−2t,
x′3 = cos tx1 + e−t sin tx2 + t.

in the vector form.

6. Write the equation

(1 + t2)w′′′ + sin tw′′ + (1 + t)w′ + cos tw = e−2t cos t,

in the form of a system.

7. Write the system

u′′ + 3v′ + 4u+ 5v = 6t,
v′′ − u′ + 4u+ v = cos t,

in the vector matrix form.

8. Consider the system of equations

x′1 + ax1 + bx2, x′2 = cx1 + dx2,

where a, b, c, and d are constants.

(i) Prove that x1 satisfies the second order equation

x′′1 − (a+ d)x′1 + (ad− bc)x1 = 0.

(ii) Show that the above equation has a solution of the form

φ(t) = αert(α = constant)

where r is a root of the equation r2 − r(a+ d) + ad− bc = 0.
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9. Solve

(i) x′ = 2x1 + x2, x′2 = 3x1 + 4x2;

(ii) x′1 + x1 + 5x2 = 0, x′2 − x1 − x2 = 0.

10. Show that for any two of differentiable matrices X and Y

(i)
d

dt
(XY ) =

( d
dt
X
)
Y +X

( d
dt
Y
)
;

(ii)
d

dt

(
X−1

)
= −X−1

( d
dt
X
)
X−1.

3.3 Fundamental Matrix

Many times it is convenient to construct a matrix with solutions of

x′ = A(t)x, t ∈ I, (3.14)

as columns. In other words consider a set of n solutions of the system (3.14) and define a
matrix Φ whose columns are these n solutions. This matrix is called a “solution matrix”
since it satisfies the matrix differential equation

Φ′ = A(t)Φ, t ∈ I. (3.15)

If the columns are linearly independent the matrix Φ thus obtained is called a fundamental
matrix for the system (3.14). We associate with system (3.14) a matrix differential equation

X ′ = A(t)X, t ∈ I. (3.16)

Obviously Φ is a solution of (3.16). Once the notion of a fundamental matrix is gained the
next question is whether a characterization exists for a solution matrix to be fundamental.
The answer is indeed in the affirmative. Before going into the details the following is needed.

Theorem 3.3.1. Let A(t) be n × n matrix which is continuous on I. Suppose a matrix Φ
satisfies (3.16). Then det Φ satisfies the first order equation

(det Φ)′ = (trA)(det Φ), (3.17)

or in other words, for τ ∈ I,

det Φ(t) = det Φ(τ) exp

∫ t

τ
trA(s)ds. (3.18)

Proof. By definition the n columns of Φ are n solutions ϕ1, ϕ2, · · · , ϕn of (3.14). Denote

ϕi = {φi1, φi2, · · · , φin}, i = 1, 2, · · · , n.

Let aij(t) be the (i, j)-th element of A(t). Then,

φ′ij(t) =

n∑
k=1

aik(t)φkj(t); i, j = 1, 2, · · · , n (3.19)
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Now

Φ =


φ11 φ12 · · · φ1n
φ21 φ22 · · · φ2n

...
...

. . .
...

φn1 φn2 · · · φnn


and so it is seen that

(det Φ)′ =

∣∣∣∣∣∣∣∣∣
φ′11 φ′12 · · · φ′1n
φ21 φ22 · · · φ2n

...
...

. . .
...

φn1 φn2 · · · φnn

∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
φ11 φ12 · · · φ1n
φ′21 φ′22 · · · φ′2n

...
...

. . .
...

φn1 φn2 · · · φnn

∣∣∣∣∣∣∣∣∣+ · · ·+

∣∣∣∣∣∣∣∣∣
φ11 φ12 · · · φ1n
φ21 φ22 · · · φ2n

...
...

. . .
...

φ′n1 φ′n2 · · · φ′nn

∣∣∣∣∣∣∣∣∣
Substituting the values of φ′11, φ

′
12, · · ·φ′1n from (3.19), the first term on the right side of the

above equation reduces to∣∣∣∣∣∣∣∣∣∣∣∣

n∑
k=1

a1kφk1

n∑
k=1

a1kφk2 · · ·
n∑
k=1

a1kφkn

φ21 φ22 · · · φ2n
...

...
. . .

...
φn1 φn2 · · · φnn

∣∣∣∣∣∣∣∣∣∣∣∣
which is a11detΦ. Carrying this out for the remaining terms it is seen that

(det Φ)′ = (a11 + a22 + · · ·+ ann)detΦ = (trA)detΦ.

The equation thus obtained is a linear differential equation. The proof of the theorem is
complete since it is known that the solution of this equation is given by (3.18).

Theorem 3.3.2. A solution matrix Φ of (3.16) on I is a fundamental matrix of (3.14) on
I if and only if det Φ 6= 0 for t ∈ I.

Proof. Let Φ(t) be a solution matrix such that det Φ(t) 6= 0, t ∈ I. Then, the columns of Φ
are linearly independent on I. Hence, Φ is a fundamental matrix.

Conversely, let Φ(t) be a fundamental matrix and let ϕj , j = 1, 2, · · · , n be the columns
of Φ. Let ϕ be any nonzero solution of (3.14). Then there exist constants c1, c2, · · · , cn not
all zero, such that

ϕ =

n∑
i=1

ciϕi = Φ


c1
c2
...
cn

 = Φc, where c =


c1
c2
...
cn

 .
This is a system of linear equations for the unknowns c1, c2, · · · , cn. For a fixed τ ∈ I the
above system has a solution and hence detΦ(τ) 6= 0. Now from Theorem 3.3.1 it is clear
that det Φ(t) 6= 0, t ∈ I, which completes the proof.

Some of the useful properties of the fundamental matrix are established in the following
results.

52



Theorem 3.3.3. Let Φ be a fundamental matrix for the system (3.14) and let C be a constant
non-singular matrix. Then, ΦC is also a fundamental matrix for (3.14). In addition, every
fundamental matrix of (3.14) is of this type for some non-singular matrix C.

Proof. The first part of the theorem is a single consequence of Theorem 3.3.2 and the fact
that the product of non-singular matrices is non-singular.

Let Φ1 and Φ2 be two fundamental matrices for (3.14) and let Φ2 = Φ1Ψ. Then Φ′2 =
Φ1Ψ

′ + Φ′1Ψ. Equation (3.16) now implies that AΦ2 = Φ1Ψ
′ + AΦ1Ψ = Φ1Ψ

′ + AΦ2. Thus
it is seen that Φ1Ψ

′ = 0 which shows that Ψ′ = 0. Hence Ψ = C, where C is a constant
matrix. Since Φ1 and Φ2 are non-singular so is C.

Lecture 16

We consider now a special case of the linear homogeneous system (3.14). Suppose the
matrix A(t) is a constant matrix. A consequence of this assumption is that the fundamental
matrix satisfies the law of exponentials.

Theorem 3.3.4. Let Φ(t), t ∈ I, denote a fundamental matrix of the system

x′ = Ax, (3.20)

such that Φ(0) = E, where A is a constant matrix. Here E denotes the identity matrix.
Then, Φ satisfies

Φ(t+ s) = Φ(t)Φ(s), (3.21)

for all values of t and s ∈ I.

Proof. By the uniqueness theorem there exists a unique fundamental matrix Φ(t) for the
given system such that Φ(0) = E. It is to be noted here that Φ(t) satisfies the matrix
equation

X ′ = AX (3.22)

Define for any real number s,

Y (t) = Φ(t+ s)

Then,

Y ′(t) = Φ′(t+ s) = AΦ(t+ s) = AY (t).

Hence Y (t) is a solution of the matrix equation (3.22) such that Y (0) = Φ(s). Now suppose
Z(t) = Φ(t)Φ(s), for all t and s. Observe that Z(t) is solution of (3.22). Clearly Z(0) =
Φ(0)Φ(s) = EΦ(s) = Φ(s). So there are two solutions Y (t) and Z(t) of (3.22) such that
Y (0) = Z(0) = Φ(s). By uniqueness property therefore it must be seen that Y (t) ≡ Z(t),
whence the relation (3.21). The proof of the theorem is complete.

Example 3.3.5. Consider the linear system (3.14) where

x =

x1x2
x3

 and A(t) =

−3 2 0
0 −3 1
0 0 −3


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It is easy to verify that the matrix

Φ(t) =

e−3t te−3t e−3t(t2/2!)
0 e−3t te−3t

0 0 e−3t


is a fundamental matrix.

EXERCISES

1. If Φ is a fundamental matrix for (3.14) and C is any constant non-singular matrix then
show that CΦ is not, in general, a fundamental matrix.

2. Let Φ(t) be a fundamental matrix for the system (3.14), where A(t) is a real matrix.
Then, show that the matrix (Φ−1(t))T satisfies the equation

d

dt
(Φ−1)T = −AT (Φ−1)T ,

and hence, show that (Φ−1)T is a fundamental matrix for the system

x′ = −AT (t)x, t ∈ I. (3.23)

System (3.23) is called the “adjoint” system to (3.14) and vice versa.

3. Let Φ be a fundamental matrix for Eq.(3.14), with A(t) being a real matrix. Then,
show that Ψ is a fundamental matrix for its adjoint (3.23) if and only if ΨTΦ = C,
where C is a constant non-singular matrix.

4. Consider a matrix P defined by

P (t) =

[
f1(t) f2(t)

0 0

]
, t ∈ I,

where f1(t) and f2(t) are any two linearly independent functions on I. Then, show that
det[P (t)] ≡ 0 on I, but the columns of P (t) are linearly independent. Can it be then
concluded that the columns of matrices of the type P (t) cannot be solutions of linear
homogeneous systems of equations of the form (3.14) in the light of Theorem 4.4?

5. Find the determinant of fundamental matrix Φ(t) which satisfies Φ(0) = E for the
system (3.20) where

(a)

A =

−1 3 4
0 2 0
1 5 −1

 ;

(b)

A =

 1 3 8
−2 2 1
−3 0 5


6. Can the following matrices Φ(t) be candidates for fundamental matrices for some linear

system of the form
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x′ = A(t)x, t ∈ I,

where A(t) is a matrix continuous in t ∈ I ? If not, why ?

(i)

Φ(t) =

et 1 0
1 e−t 0
0 0 1


(ii)

Φ(t) =

1 t t2

0 e2t 1
0 1 e−2t

 .
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Lecture

3.4 Non-homogeneous linear Systems

Assume in this section that A(t) is an n× n matrix that is continuous on I. The system

x′ = A(t)x+ b(t), t ∈ I, (3.24)

is called a non-homogeneous linear system of order n. Here b is a continuous function defined
on I and taking values in Rn. An inspection shows that if b(t) ≡ 0, then (3.24) reduces to
(3.14). The term b(t) in (3.24) often goes by the name “forcing term” or “perturbation”
for the system (3.14). The system (3.24) is a perturbed state of (3.14). The nature of the
solution of (3.24) is quite closely connected with the solution of (3.14) and to some extent
it is brought out in this section. Before proceeding further, it may be remarked here that
the continuity of A and b ensures the existence and uniqueness of a solution for IVP on I
for the system (3.24). The proof is postponed for the present and is dealt with in Module 4.

To express the solution (3.24) in term of (3.14) it becomes necessary to resort to the
method of variation of parameters. Let Φ(t) be a fundamental matrix for the system (3.14)
on I. Let Ψ(t) be a solution of (3.24) such that for some t0 ∈ I, ψ(t0) = 0. Now let it be
assumed that ψ(t) is given by

ψ(t) = Φ(t)u(t), t ∈ I, (3.25)

where u(t) is an unknown vector function mapping I into Rn such that u(t) is differentiable
and u(t0) = 0. The solution ψ is determined by finding u(t) in terms of known quantities
Φ(t) and b(t). Substituting (3.25) in (3.24) notice that for t ∈ I,

ψ′(t) = Φ′(t)u(t) + Φ(t)u′(t) = A(t)Φ(t)u(t) + Φ(t)u′(t).

It is also seen that

ψ′(t) = A(t)ψ(t) + b(t) = A(t)Φ(t)u(t) + b(t).

Equating the two expressions for ψ′(t) it is concluded that Φ(t)u′(t) = b(t). Note that Φ(t),
being a fundamental matrix, is non-singular on I and so

u′(t) = Φ−1(t).b(t)

or u(t) = 0 +

∫ t

t0

Φ−1(s)b(s)ds, t, t0 ∈ I (3.26)

Substituting the value of u(t) in (3.25), we get,

ψ(t) = Φ(t)

∫ t

t0

Φ−1(s)b(s)ds, t ∈ I (3.27)

It can easily be verified that (3.27) is indeed a solution of (3.24). This discussion so far is
now summed up in Theorem 3.4.1.

Theorem 3.4.1. Let Φ(t) be a fundamental matrix for the system (3.14) for t ∈ I. Then
ψ, defined by (3.27), is a solution of the IVP

x′ = A(t)x+ b(t), x(t0) = 0. (3.28)
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Now let us assume that xh(t) is the solution of the IVP

x′ = A(t)x, x(t0) = c, t, t0 ∈ I. (3.29)

Then, a consequence of Theorem 3.4.1 is that

ψ(t) = xh(t) + Φ(t)

∫ t

t0

Φ−1(s)b(s)ds, t ∈ I (3.30)

is a solution of
x′ = A(t)x+ b(t); x(t0) = c.

Thus with a prior knowledge of the solution of (3.29), the solution of (3.28) is computable
from (3.30).

EXERCISES

1. Prove that the equation (3.27) can also be written as

(i) Ψ(t) = Φ(t)
∫ t
t0

ΨT (s)b(s)ds, t ∈ I provided ΨT (t)Φ(t) = E;

(ii) Ψ(t) = (Ψ−1)T
∫ t
t0

ΨT (s)b(s)ds, t ∈ I, where Ψ is a fundamental matrix for the

adjoint system x′ = −AT (t)x. Assume that A(t) is a real matrix.

2. Consider the system x′ = Ax+ b(t), where

A =

[
3 2
0 3

]
and b(t) =

[
et

e−t

]
.

Show that

Φ(t) =

[
e3t 2te3t

0 e3t

]
is a fundamental matrix of x′ = Ax. Compute the solution y(t) of the non-homogeneous

system for which y(0) =

[
1
1

]
.

3. Consider the system x′ = Ax given that x =

[
x1
x2

]
and A(t) =

[
1 0
0 2

]
.Show that

a fundamental matrix is Φ(t) =

[
et 0
0 e2t

]
. Let b(t) =

[
sin at
cos bt

]
. Find the solution

Ψ(t) of the non-homogeneous equation x′ = Ax+ b(t) for which Ψ(0) =

[
0
1

]
.
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Lecture 17

3.5 Linear Systems with Constant Coefficients

In previous sections, the existence and uniqueness of solutions of linear systems of the type

x′ = A(t)x, x(t0) = x0, t, t0 ∈ I, (3.31)

has been proved. However, when trying to find the solution of such systems in an explicit
form several difficulties are encountered. In fact, there are very few situation when the
solution can be found explicitly. The aim of this article is to develop a method to find the
solution of (3.31) with the assumption that A(t) is a constant matrix. The method involves
first finding the characteristic values of the matrix A. If the characteristic values of the
matrix A are known then, in general, a solution can be obtained in an explicit form. Note
that when the matrix A(t) is variable, it is usually difficult to find solutions.

Before proceeding further, recall the definition of the exponential of a given-matrix A.
It is defined as follows:

expA = E +
∞∑
p=1

Ap

p!

Also, if A and B are two matrices which commute then,

exp(A+B) =expA.expB

For the present assume the proofs of the convergence of the sum through which expA is
defined and the result stated above. So by definition

exp(tA) = E +
∞∑
p=1

tpAp

p!
, t ∈ I

Here it is noted that the infinite series for exp(tA) converges uniformly on every compact
interval of I.

Now consider a linear homogeneous system with a constant matrix, namely,

x′ = Ax, t ∈ I, (3.32)

where I is an interval in R. From Module 1 recall that the solution of (3.32), when A and x
are scalars, is x(t) = cetA for an arbitrary constant c. A similar situation prevails when we
deal with (3.32). This leads to Theorem 3.5.1.

Theorem 3.5.1. The general solution of the system (3.32) is x(t) = etAc, where c is an
arbitrary constant column matrix. Further, the solution of (3.32) with the initial condition
x(t0) = x0, t0 ∈ I, is

x(t) = e(t−t0)Ax0, t ∈ I (3.33)

Proof. Let x(t) be any solution of (3.32). Define a vector u(t) by, u(t) = e−tAx(t), t ∈ I.
Then, it follows that

u′(t) = e−tA(−Ax(t) + x′(t)), t ∈ I.
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Since x is a solution of (3.32) it is easy to observe that u′(t) ≡ 0, which means that u(t) =
c, t ∈ I, where c is some constant vector. Substituting the value c for u(t), it is seen that
x(t) = etAc. Clearly c = e−t0Ax0, and so we have x(t) = etAe−t0Ax0, t ∈ I. Since A
commutes with itself, it is seen that etAe−t0A = e(t−t0)A, and thus, (3.33) follows. This
completes the proof.

In particular, let us choose t0 = 0 and n linearly independent vectors ej , j = 1, 2, · · · , n,
the vector ej being the vector with 1 at the jth component and zero elsewhere. In this case,
we get n linearly independent solutions corresponding to the set of n vectors (e1, e2, · · · , en).
Thus a fundamental matrix for (3.32) is

Φ(t) = etAE = etA, t ∈ I, (3.34)

since the matrix with columns represented by e1, e2, · · · , en is the identity matrix E. Thus
etA solves the matrix differential equation

X ′ = AX, x(0) = E; t ∈ I. (3.35)

Example 3.5.2. Find a fundamental matrix for the system x′ = Ax, where

A =

α1 0 0
0 α2 0
0 0 α3


where α1,α2 and α3 are scalars.

The fundamental matrix is etA. It is very easy to verify that

Ak =

αk1 0 0
0 αk2 0
0 0 αk3


Hence,

etA =

expα1t 0 0
0 expα2t 0
0 0 expα3t

 .
Example 3.5.3. Consider a similar example to determine a fundamental matrix for x′ = Ax,

where A =

[
3 −2
−2 3

]
. Notice that

A =

[
3 0
0 3

]
+

[
0 −2
−2 0

]
.

By the remark which followed Theorem 3.5.1, it is known that the fundamental matrix in
this case is given by

exp(tA) =

[
3 0
0 3

]
t. exp

[
0 −2
−2 0

]
t,

since

[
3 0
0 3

]
and

[
0 −2
−2 0

]
commute. But

exp

[
3 0
0 3

]
t = exp

[
3t 0
0 3t

]
=

[
e3t 0
0 e3t

]
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It is left as an exercise to the readers to verify that

exp

[
0 −2
−2 0

]
t = 1

2

[
e2t + e−2t e−2t − e2t
e−2t − e2t e2t + e−2t

]
.

Thus etA = 1
2

[
e5t + et et − e5t
et − e5t e5t + et

]
.

From Theorem 3.5.1 we know that the general solution of the system (3.32) is etAc but
we have still not computed etA. Once etA determined, the solution of (3.32) is completely
determined.

In order to be able to do this the procedure given below is followed. Choose a solution
of (3.32) in the form

x(t) = eλtc, (3.36)

where c is a constant vector and λ is a scalar. x is determined if λ and c are known.
Substituting (3.36) in (3.32), we get

(λE −A)c = 0. (3.37)

which is a system of algebraic homogeneous linear equations for the unknown c. The system
(3.37) has a non-trivial solution c if and only if λ satisfies det(λE −A) = 0. Let

P (λ) = det(λE −A).

Actually P (λ) is a polynomial of degree n normally called the “characteristic polynomial”
of the matrix A and the equation

P (λ) = 0 (3.38)

is called the “characteristic equation” for A. Since (3.38) is an algebraic equation, it admits
n roots which may be distinct, repeated or complex. The roots of (3.38) are called the
“eigenvalues” or the “characteristic values” of A. Let λ1 be an eigenvalue of A and corre-
sponding to this eigen value, let c1 be the non-trivial solution of (3.37). The vector c1 is
called an “eigenvector” of A corresponding to the eigenvalue λ1. Note that any nonzero con-
stant multiple of c1 is also an eigenvector corresponding to λ1. Thus, if c1 is an eigenvector
corresponding to an eigenvalue λ1 of the matrix A then,

x1(t) = eλ1tc1

is a solution of the system (3.32). Let the eigenvalues of A be λ1, λ2, · · · , λn(not neces-
sarily distinct) and let c1, c2, · · · , cn be linearly independent eigenvectors corresponding to
λ1, λ2, · · · , λn, respectively. Then, it is clear that

xk(t) = eλktck(k = 1, 2, · · · , n),

are n linearly independent solutions of the system (3.32). Here we stress that the eigenvectors
corresponding to the eigenvalues are linearly independent. Thus, {xk}, k = 1, 2, · · · , n is a
set of n linearly independent solutions of (3.32). So by the principle of superposition the
general solution of the linear system is

x(t) =

n∑
k=1

eλktck. (3.39)
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Now let Φ be a matrix whose columns are the vectors

eλ1tc1, e
λ2tc2, · · · , eλntcn

So by construction Φ has n linearly independent columns which are solutions of (3.32) and
hence, Φ is a fundamental matrix. Since etA is also a fundamental matrix, from Theorem
3.4, we therefore have

etA = Φ(t)D,

where D is some non-singular constant matrix. A word of caution is warranted namely that
the above discussion is based on the assumption that the eigenvectors corresponding to the
eigenvalues λ1, λ2, · · · , λn are linearly independent.

Example 3.5.4. Let

x′ =

0 1 0
0 0 1
6 −11 6

x.
The characteristic equation is given by

λ3 − 6λ2 + 11λ− 6 = 0.

whose roots are
λ1 = 1, λ2 = 2, λ3 = 3.

Also the corresponding eigenvectors are

 1
1
1

 ,
 2

4
8

 and

 1
3
9

,

respectively. Thus, the general solution of the system is

x(t) = α1

 1
1
1

 et + α2

 2
4
8

 e2t + α3

 1
3
9

 e3t
where α1, α2 and α3 are arbitrary constants. Also a fundamental matrix isα1e

t 2α2e
2t α3e

3t

α1e
t 4α2e

2t 3α3e
3t

α1e
t 8α2e

2t 9α3e
3t

 .
Lecture 18

When the eigenvalues of A are not distinct, the problem of finding a fundamental matrix
is not that easy. The next step is to find the nature of the fundamental matrix in the case
of repeated eigenvalues of A. Let λ1, λ2, · · · , λn(m < n) be the distinct eigenvalues of A
with multiplicities n1, n2, · · · , nm, respectively, where n1 + n2 + · · ·+ nm = n. Consider the
system of equations, for an eigenvalue λi with multiplicity ni,

(λiE −A)nix = 0, i = 1, 2, · · · ,m. (3.40)
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Let Xi be the subspace of Rn generated by the solutions of the system (3.40) for each
λi, i = 1, 2, · · · ,m. From linear algebra it is known that for any x ∈ Rn, there exist unique
vectors y1, y2, · · · , ym, where yi ∈ Xi, (i = 1, 2, · · · ,m), such that

x = y1 + y2 + · · ·+ ym. (3.41)

It is common in linear algebra to speak of Rn as a “direct sum” of the subspacesX1, X2, · · · , Xm.
Consider the problem of determining etA discussed earlier. Let x be a solution of (3.32)

with x(0) = α. By the result which was quoted, unique vectors α1, α2, · · · , αm are obtained,
such that

α = α1 + α2 + · · ·+ αm.

It is also known from Theorem 3.5.1 that the solution x(t) of (3.32) with x(0) = α is

x(t) = etAα =

m∑
i=1

etAαi

But,
etAαi = exp(λit) exp[t(A− λiE)]αi

By the definition of the exponential function, we get

etAαi = exp(λit)[E + t(A− λiE) + · · ·+ tni−1

(ni − 1)!
(A− λiE)ni−1 + · · · ]αi.

It is to be noted here that the terms of form

(A− λiE)kαi = 0 if k ≥ ni,

because recall that the subspace Xi is generated by the vectors, which are solutions of
(A− λiE)nix = 0, and that αi ∈ Xi, i = 1, 2, · · · ,m. Thus,

x(t) = etA
m∑
i=1

αi =
m∑
i=1

exp(λit)
[ ni−1∑
j=0

tj

j!
(A− λjE)j

]
αj , t ∈ I. (3.42)

Indeed one might wonder whether (3.42) is the desired solution. To start with we were
aiming at exp(tA) but all we have in (3.42) is exp(tA).α, where α is an arbitrary vector. But
a simple consequence of (3.42) is the deduction of exp(tA) which is done as follows. Note
that

exp(tA) = exp(tA)E

= [exp(tA)e1, exp(tA)e2, · · · , exp(tA)en].

exp(tA)ei can be obtained from (3.42), i = 1, 2, · · · , n and hence exp(tA) is determined. It
is important to note that (3.42) is useful provided all the eigenvalues are known along with
their multiplicities.

Example 3.5.5. Let x′ = Ax where

A =

0 0 0
1 0 0
0 1 0

 .
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The characteristic equation is given by

λ3 = 0.

whose roots are
λ1 = λ2 = λ3 = 0.

Since the rank of the co-efficient matrix A is 2, there is only one eigenvector namely

 0
0
1

 .
The other two generalized eigenvectors are determined by the solution of

A2x = 0 and A3x = 0.

The other two generalized eigenvectors are 0
1
0

 and

 1
0
0


Since

A3 = 0,

eAt = I +At+
A2t2

2
or

eAt =

1 0 0
t 1 0
t2 t 0

 .
We leave it as exercice to find the eAt given

A =

−1 0 0
1 −1 0
0 1 −1

 .
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Lecture 19

In this elementary study, we wish to draw the phase portraits for a system of two linear
ordinary differential equations. In order to make life easy, we first go through a bit of ele-
mentary linear algebra.Parts A and B are more or less a revision ,,which hopefully helps the
readers to draw the phase portraits. We may skip Parts A and B in case we are familiar
with curves and elementary canonical forms for real matrices.

Part A: Preliminaries.

R denotes the real line. By Rn, we mean the standard or the usual Euclidean space of
dimension n, n ≥ 1. A n×n matrix A is denoted by (aij)n×n, aij ∈ R. The set of all such real
matrices A is denoted by Mn(R). A also induces a linear operator on Rn(now understood

as column vectors) defined as x
A→ A(x) or A : Rn → Rn defined by A(x) = Ax(matrix

multiplication). The set of linear transformations from Rn to Rn is denoted by L(Rn). For
a n×n real matrix A, we some times use A ∈Mn(R) or A ∈ L(Rn) if there is no confusion .
Let T ∈ L(Rn). The Ker(T ) or N(T ) (read as kernel of T or Null space of T ) is defined as

Ker(T ) = N(T ) : = {x ∈ Rn : Tx = o}

The dimension of Ker(T ) is called the nullity of T and is denoted by ν(T ). The dimension
of range of T is called the rank of T and is denoted by ρ(T ). If T ∈ L(Rn), then the Rank
Nullity Theorem asserts

ν + ρ = n.

Consequently for T ∈ L(Rn) (i.e. T : Rn → Rn is linear.) T is one-one iff T is onto. Let us
now prove the following result.

1. Theorem : Given T ∈ L(Rn) and given t0 ≥ 0, the series

∞∑
k=0

T k

k!
tk

is absolutely and uniformly convergent for all |t| ≤ t0.
Proof : We let ‖ T ‖= a. We know

‖ T
k tk

k!
‖≤ ak tk0

k!

and
∞∑
k=0

ak tk0
k!

= ea t0

By comparison test the series
∞∑
k=0

T k tk

k!

is absolutely and uniformly convergent for all |t| ≤ t0.
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2. Definition : Let T ∈ L(Rn). The exponential eT of T is defined by

eT =
∞∑
k=0

T k

k!

Note

(a) It is clear that eT : Rn → Rn is a linear operator and ‖ eT ‖≤ e‖T‖.

(b) For a matrix A ∈MnR and for t ∈ R, we define

eAt : =
∞∑
k=0

Ak

k!
tk.

3. Some consequences

(a) Let P, T ∈ L(Rn) and S = PTP−1. Then

eS = PeTP−1

(b) For A ∈Mn(R), if P−1AP = diag(λ1, ..., λn), then

eAt = P diag(eλ1t, ..., eλnt)P−1.

(c) If S, T ∈ L(Rn) and commute (i.e. ST = TS), then

eS+T = eS eT .

(d) (c) ⇒ (eT )−1 = e−T .

4. Lemma: Let A =

[
c −b
b a

]
. Then

eAt = eat
[
cos bt − sin bt
sin bt cos bt

]
Proof : The eigen values of A are a± ib. Let λ = a± ib. By induction for k ∈ N

[
c −b
b a

]k
=

[
Re(λk) −Im(λk)
Im(λk) Re(λk)

]

or eA =

∞∑
k=0

[
Re(λk) −Im(λk)
Im(λk) Re(λk)

]
= ea

[
cos b − sin b
sin b cos b

]

5. Exercise : Supply the details for the proof of Lemma 4.

6. In Lemma 5, eA is a rotation through b when a = 0.
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7. Lemma: Let A =

[
a b
0 a

]
; a, b ∈ R. Then

eA = ea
[
1 b
0 1

]
.

Proof : Exercise.

Conclusion : Let A = Mn(Z). Then B = P−1AP where

B =

[
λ 0
0 µ

]
or B =

[
λ 1
0 λ

]
or B =

[
a −b
b a

]
and a consequence is

eBt =

[
eλt 0
0 eµt

]
or eBt = eλt

[
1 t
0 1

]
or eBt = eat

[
cos bt − sin bt
sin bt cos bt

]
and eAt = PeBtP−1.

8. Lemma : For A ∈Mn(R)

d

dt
eAt = AeAt = eAtA, t ∈ R (3.43)

Proof :

d

dt
eAt = lim

h→0

e(t+h)A − etA

h
, (|h| ≤ 1)

= eAt lim
h→0

lim
k→0

(A+
A2h

2!
+ · · ·+ Akhk−1

k!
. . . )

= eAtA = AeAt (3.44)

the last two step follows since the series for eAh converges uniformly for |h| ≤ 1.

Part B : Linear Systems of ODE

We recall the following for clarity :

Let A ∈Mn(R). Consider the system of n linear ordinary differential equations

dx

dt
= ẋ = Ax, t ∈ R (3.45)

with an initial condition
x(0) = x0 (3.46)

where x0 ∈ Rn.

9. Theorem (Fundamental Theorem for Linear ODE).
Let A ∈ Mn(R) and x0 ∈ Rn (column vector). The unique solution of the IVP (3.51)
and (3.52) is given by

x(t) = eAtx0 (3.47)
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Figure 3.1:

Proof : Let y(t) = eAtx0. Then by lemma 9,

d

dt
y(t) = ẏ(t) = AeAtx0 = eAtAx0 = eAty(t)

and y(0) = x0. Thus, eAtx0 is a solution of the IVP (3.51) and (3.52) and by the
Picard’s Theorem
x(t) : = eAtx0
is the unique solution of (3.51) and (3.52).
Remark : Let y(t) = e−Atx(t) which implies y′(t) = −Ae−Atx(t)+e−AtAx(t) = 0, t ∈
R or y(t) = c for t ∈ R.
y(0) = x0 ⇒ c = x(0) = x0 or x(t) = eAtx0.

10. Example : Let us solve the IVP

ẋ1 = −2x1 − x2, x1(0) = 1

ẋ2 = x1 − 2x2, x2(0) = 0.

Note that the above system can be rewritten as

ẋ = Ax, x(0) = (1, 0)T , where A =

[
−2 −1
1 −2

]
.

It is easy to show that 2± i are the eigenvalues of A and so by

x(t) = eAtx0

= e−2t
[
cos t − sin t
sin t cos t

](
1
0

)
= e−2t

(
cos t
sin t

)
. (3.48)

Consequences :

(a) |x(t)| = e−2t → 0 as t→∞.

(b) θ(t) : = tan−1 (x2(t)x1(t)
) = t.

(c) Perimetrically (x1(t), x2(t))
T describe a curve in R2 which spirals into (0, 0) as

shown in figure 1.

Exercise : Supply the details for Example 10.
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Lecture 20

Phase Portraits in R2

In this part, we undertake an elementary study of the Phase Portraits in R2 for a
system of two linear ordinary differential equations, viz,

ẋ = Ax (3.49)

Here A is a 2×2 real matrix (i.e. an element of M2(R)) and x ∈ R2 is a column vector.
The tuple (x1(t), x2(t)) for t ∈ R2 represents a curve C in R2 in a parametric form;
the curve C is called the phase portrait of . It is easier to draw the curve when A is in
its canonical form. However, in its original form (i.e. when A is not in the canonical
form) these portraits have similar (but distorted) diagrams. The following example
clarifies the same ideas.

Example : Let A =

[
−1 0
1 −2

]
. The canonical form B is

[
−1 0
0 −2

]
, i.e.,

A = P−1BP . The equation (3.49) with y = Px, is

y′ = By (3.50)

Equation (3.50) is sometimes is referred to (3.49), when A is in its canonical form. The
phase Portrait for (3.50) is (fig2) Figure 3.2:
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while the phase portrait of (3.49) is (fig3)

Figure 3.3:

Supply the details for drawing Figure 2 and 3.

In general, it is easy to write/draw the phase portrait of (3.49) when A in its
canonical form. Coming back to (3.49), let P be an invertible 2× 2 matrix such that
B = P−1AP , where B is a canonical form of A. We now consider the system

y′ = By (3.51)

By this time it is clear that phase portrait for (3.49) is the phase portrait of (3.50)
under the transformation x = Py. We also write that B has one of the following form.

(a) B =

[
λ 0
0 µ

]
(b) B =

[
λ 1
0 λ

]
(c) B =

[
a −b
b a

]
Let y0 be an initial condition for (3.50), i.e.,

y(0) = y0 (3.52)

Then the solution of the IVP (3.51) and (3.52) is

y(t) = eBty0 (3.53)

and for the 3 different choices of B, we have

(a) y(t) =

[
eλt 0
0 eµt

]
y0 (b) y(t) = eλt

[
1 t
0 1

]
y0 (c) B = eat

[
cos bt − sin bt
sin bt cos bt

]
y0

With the above representation of y, we are now ready to draw the phase Portrait.

Let us discuss the cases when λ > 0, µ > 0; λ > 0, µ < o; λ = µ(with λ > 0 or λ < 0)
and finally the case when λ is a complex number.

Case 1: Let λ ≤ µ < 0 with B =

[
λ 0
0 µ

]
or with B =

[
λ 1
0 λ

]
. In this case the Phase

Portrait of (3.50) looks like the following (figure 4):

Figure 3.4:

In drawing these diagrams, we note the following :

(a) y1(t), y2(t)→ 0 as t→∞ (λ1 < 0, µ < 0)

(b) lim
t→∞

y2(t)
y1(t)

= 0 if λ < µ (λ < 0, µ < 0)
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(c) lim
t→∞

y2(t)
y1(t)

=∞ if λ > µ (λ < 0, µ < 0)

(d) lim
t→∞

y2(t)
y1(t)

= c if λ = µ, λ < 0.

and hence an arrow is indicated to note that y1(t)→ 0 and y2(t)→ 0 as t→∞, in all
the diagram. In this case, every solution tends to zero as t → ∞ and in such a case
the origin is called a stable node.

In case λ ≥ µ > 0 or µ ≥ λ > 0, the phase portrait essentially remains the same as
shown in Figure 5 except the direction of the arrows are reversed.

The solutions are repelled away from origin. In this case the origin is referred to as an
unstable node.

Case 1 essentially deals with real non-zero eigenvalues of B which are either both
positive or negative. Below we consider the case when both the eigenvalues are real
nonzero but of opposite signs.

Case 2 : Let B =

[
λ 0
0 µ

]
with λ < 0 < µ. The figure 5 (below) depicts the phase

portrait.

Figure 3.5:

When µ < 0 < λ,we have a similar diagram but with arrows in opposite directions. The
origin is called, in this case, a Saddle Point. The four non-zero trajectories OA,OB,OC
and OD are called the separatrices, two of them (OA and OB) approaches to the
origin as t → ∞ and the remaining two (namely OC and OD) approaches the origin
as t→ −∞. It is an exercise to draw the phase portrait when µ < 0 < λ.

Lecture 21

Now we move to the case when A has complex eigenvalues a± ib, b 6= 0.

Case 3 : B =

[
a −b
b a

]
with a < 0.

Since the root is not real, we have b 6= 0 and so with b > 0 or b < 0. The phase
portraits for this case are as shown in Fig 6 for b > o and (b) for b < 0).

Figure 3.6:

In this case the origin is called a stable focus. We also note that it spirals around the
origin and it tends to origin as t→∞.
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When a > 0, the trajectories looks similar the one shown in Figure 7 and they
are spiralling and moving away from the origin. When a > 0, the origin is called an
unstable focus.
Case 4 : This case deals with the case when A has purely imaginary eigenvalues i.e.
±bi, (b 6= 0).

The canonical form of A is B =

[
0 −b
b 0

]
, b 6= 0. Equation (3.50) is

y′1 = −by2 and y′2 = by1

which leads to

y1(t) = A cos bt+B sin bt and y2(t) = −A sin bt+B cos bt

or y21 + y22 = A2 +B2

which are concentric circles with center at origin. The phase portraits are as shown in
Figure 7.

Figure 3.7:
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Also, we note that the phase portraits for (3.49) is a family of ellipses as shown in
Figure 8.

Figure 3.8:

In this case the origin is called the center for the system (3.49). We end this short
discussion with an example.
Example : Consider the linear system

ẋ1 = −4x2 ; ẋ2 = x1

or

(
ẋ1
ẋ2

)
=

[
0 −4
1 0

] [
x1
x2

]
; A =

[
0 −4
1 0

]
It is easy to verify that A has two non-zero (complex) eigenvalues ±2i. With usual
notations

P =

[
2 0
0 1

]
; P−1 =

[
1
2 0
0 1

]
and B = P−1AP =

[
0 −2
2 0

]

The general solution is

x(t) =

[
x1(t)
x2(t)

]
= P

[
cos 2t − sin 2t
sin 2t cos 2t

]
P−1C

=

[
cos 2t −2 sin 2t
1
2 sin 2t cos 2t

] [
c1
c2

]
, C =

[
c1
c2

]
where C is an arbitrary constant vector in R2. It is left as an exercise to show

x21 + x42 = c21 + c22

or the phase portrait is a family of ellipses.

Module 4

Oscillations and Boundary Value Problems

Lecture 22

3.6 Introduction

Qualitative properties of solutions of differential equations assume importance in the absence
of closed form solutions. In case the solutions are not expressible in terms of the usual “known
functions”, an analysis of the equation is necessary to find the various facets of the solutions.
One such qualitative property, which has wide applications, is the oscillation of solutions.
We again stess that it is but natural to expect to know the solution in an explicit form which
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unfortunately is not always possible. A rewarding alternative is to resort to qualitative study.
The point is asserted once again to justify the inclusion of qualitative theory to students
who think that it is otherwise out of place.

Before proceeding further, some definitions and their consequences are looked into as a
part of the ground work. Consider a second order equation

x′′ = f(t, x, x′), t ≥ 0, (4.1)

and let x be a solution of equation (4.1) existing on [0,∞). Unless or otherwise mentioned
we understannd (in this chapter) that a solution means a non-trivial solution.

Definition 3.6.1 (Definition 4.1). A point t = t∗ ≥ 0 is called a zero of a solution x of the
equation (4.1) if x(t∗) = 0.

Definition 3.6.2 (Definition 4.2). (a) Equation (4.1) is called “non-oscillatory” if for every
solution x there exists t0 > 0 such that x does not have a zero in [t0,∞)

(b) Equation (4.1) is called “oscillatory” if (a) is false.

Example 3.6.3 (Example 4.3). Consider the linear equation

x′′ − x = 0, t ≥ 0.

It is an easy matter to show that the above equation is non-oscillatory once we recognize that
the general solution is Aet +Be−t where A and B are constants.

Example 3.6.4 (Example 4.4). The equation

x′′ + x = 0

is oscillatory. The general solution in this case is

x(t) = A cos t+B sin t, t ≥ 0

and without loss of generality we assume that both A and B are non-zero constants; otherwise
x is trivially oscillatory. It is easy to show that x has a zero at

nπ + tan−1(A/B), n = 0, 1, 2, · · ·

and so the equation is oscillatory.

In this chapter we restrict our attention to only second order linear homogeneous equa-
tions. There are results concerning higher order equations. We conclude the introduction
with a few basic results concerning linear equations.

x′′ + a(t)x′ + b(t)x = 0, t ≥ 0, (4.2)

where a and b are real valued continuous functions defined on [0,∞)

Theorem 3.6.5 (Theorem 4.5). Assume that a′ exists and is continuous for t ≥ 0. Equation
(4.2) is oscillatory if, and only if, the equation

x′′ + c(t)x = 0 (4.3)

is oscillatory, where

c(t) = b(t)− 1

2
a2(t)− a′(t)

2
.

The equation (4.3) is called the “normal” form of equation (4.2).
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Proof. Let x be any solution of (4.2). Consider a transformation

x(t) = v(t)y(t)

where v and y are twice differentiable functions. The computation of x′, x′′ and their sub-
stitution in (4.2) gives us

vy′′ + (2v′ + a(t)v)y′ + (v′′ + a(t)v′ + b(t)v)y = 0.

Thus equating the coefficients of y′ to zero, it is seen that

v(t) = exp(−1

2

∫ t

0
a(s)ds)

.

Therefore y(t) satisfies a differential equation

y′′ + c(t)y = 0, t ≥ 0

where c(t) = b(t)− 1
2a

2(t)− a′(t)
2 . So it is concluded that if x(t) is a solution of (4.2), then

y(t) = x(t) exp(
1

2

∫ t

0
a(s)ds)

is a solution of (4.3). Similarly if y(t) is a solution of (4.3) then

x(t) = y(t) exp(−1

2

∫ t

0
a(s)ds)

is a solution of (4.2). Thus the theorem holds.

Remark We note that (4.2) is oscillatory if and only if (4.3) is oscillatory. Although
the proof of the Theorem 4.5 is elementary the conclusion simplifies subsequent work to a
great extent.

The following two theorems are of interest in themselves.

Theorem 3.6.6 (Theorem 4.6). Let x1 and x2 be two linearly independent solutions of (4.2).
Then x1 and x2 do not admit common zeros.

Proof. Suppose t = a is a common zero of x1 and x2. Then the Wronskian of x1 and
x2 vanishes at t = a. Thus, it follows that x1 and x2 are linearly dependent which is a
contradiction to the hypothesis or else x1 and x2 cannot have common zeros.

Theorem 3.6.7 (Theorem 4.7). The zeros of a solution of (4.2) are isolated.
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Proof. Let t = a be a zero of a solution x of (4.2). Then x(a) = 0 and x′(a) 6= 0, otherwise
x ≡ 0, which is not the case, since x is a non-trivial solution.

There are two cases.
Case 1: x′(a) > 0
Since the derivative of x is continuous and positive at t = a it follows that x is strictly
increasing in some neighbourhood of t = a which means that t = a is the only zero of x in
that neighbourhood. This shows that the zero t = a of x is isolated.
Case 2: x′(a) < 0
The proof is similar to that of case 1 with minor changes.

EXERCISES

1. Prove that the equation (4.2) is non-oscillatory if and only if the equation (4.3) is
non-oscillatory.

2. If t1, t2, · · · , tn, · · · are zeros of a solution x of (4.2) in (0,∞), then show that lim tn =∞
as n→∞.

3. Prove that any solution x of (4.2) has at most a countable number of zeros in (0,∞).

4. Show that the equation

x′′ + a(t)x′ + b(t)x = 0, t ≥ 0 (*)

transforms into an equation of the form

(p(t)x′)′ + q(t)x = 0, t ≥ 0 (**)

by multiplying (*) throughout by exp(
∫ t
0 a(s)ds), where a(t) and b(t) are continuous

functions on [0,∞),

p(t) = exp(
∫ t
0 a(s)ds), q(t) = b(t)p(t).

State and prove a theorem similar to Theorem 4.5 for equation (*) and (**). Also
show that if a(t) ≡ 0, then (**) reduces to x′′ + q(t)x = 0, t ≥ 0.

3.7 Sturm’s Comparison Theorem

The phrase “comparison theorem” for differential equation is used in the sense stated below:

‘ If a solution of a differential equation has a certain known property P then the solution
of a second differential equation have the same or some related property P under certain
hypothesis.’

Sturm’s comparison theorem is a result in this direction concerning zeros of solutions of
a pair of linear homogeneous differential equations. Sturm’s theorem has varied interesting
implications in the theory of oscillations.
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Theorem 3.7.1 (Theorem 4.8). (Sturm’s Comparison Theorem)
Let p, r1, r2 and p be continuous functions on (a, b) and p > 0. Assume that x and y are real
solutions of

(px′)′ + r1x = 0, (4.4)

(py′)′ + r1y = 0 (4.5)

respectively on (a, b). If r2(t) ≥ r1(t) for t ∈ (a, b) then between any two consecutive zeros
t1, t2 of x in (a, b) there exists at least one zero of y (unless r1 ≡ r2) in [t1, t2]. Moreover,
when r1 ≡ r2 in [t1, t2] the conclusion still holds if x and y are linearly independent .

Proof. If possible, let y(t) be positive in (t1, t2). Without loss of generality let us assume
that x(t) > 0 on (t1, t2) . Multiplying (4.4) and (4.5) by y and x respectively and subtraction
leads to

(px′)′y − (py′)′x− (r2 − r1)xy = 0,

which, on integration gives us∫ t2
t1

[(px′)′y − (py′)′x] dt =
∫ t2
t1

(r2 − r1)xy dt.

If r2 6= r1 on (t1, t2), then r2(t) > r1(t) in a small interval of (t1, t2) and therefore∫ t2

t1

[(px′)′y − (py′)′x] > 0. (4.6)

Using the identity

d
dt [p(x

′y − xy′)] = (px′)′y − (py′)′x,

now the inequality (4.6) implies

p(t2)x
′(t2)y(t2)− p(t1)x′(t1)y(t1) > 0, (4.7)

since x(t1) = x(t2) = 0. However x′(t1) > 0 and x′(t2) < 0 as x is a non-trivial solution which
is positive in (t1, t2). As py is positive at t1 as well as at t2, (4.7) leads to a contradiction.

Again, if r1 ≡ r2 on [t1, t2], then in place of (4.7), we have

p(t2)y(t2)x
′(t2)− p(t1)y(t1)x

′(t1) ≥ 0.

which again leads to a contradiction as above unless y is a multiple of x. This completes the
proof.

Remark What Sturm’s comparison theorem asserts is that the solution y has at
least one zero between two successive zeros t1 and t2 of x. Many times y may vanish more
than once between t1 and t2. As a special case of Theorem 4.8,we have

Theorem 3.7.2 (Theorem 4.9). Let r1 and r2 be two continuous functions such that r2 ≥ r1
on (a, b). Let x and y be solutions of equations

x′′ + r1(t)x = 0 (4.8)

and
y′′ + r2(t)y = 0 (4.9)

on the interval (a, b). Then y(t) has at least a zero between any two successive zeros t1 and
t2 of x in (a, b) unless r1 ≡ r2 on [t1, t2]. Moreover, in this case the conclusion remains valid
if the solution y(t) is linearly independent of x(t).
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Proof. the proof is immediate if we let p ≡ 1 in Theorem 4.8. Notice that the hypotheses of
Theorem 4.8 are satisfied.

The celebrated Sturm’s separation theorem is an easy consequence of Sturm’s comparison
theorem as shown below.

Theorem 3.7.3 (Theorem 4.10 ). (Sturm’s Separation Theorem) Let x(t) and y(t) be two
linearly independent real solutions of

x′′ + a(t)x′ + b(t)x = 0, t ≥ 0 (4.10)

where a, b are real valued continuous functions on (0,∞). Then, the zeros of x and y separate
each other, i.e. between any two consecutive zeros of x there is one and only one zero of y.
(Note that the roles of x and y are interchangeable.)

Proof. First we note that all the hypotheses of Theorem 4.8 are satisfied by letting

r1(t) ≡ r2(t) = b(t) exp(
∫ t
0 a(s)ds)

p(t) = exp(
∫ t
0 a(s)ds)

So between any two consecutive zeros of x, there is at least one zero of y. By repeating the
argument with x in place of y, it is clear that between any two consecutive zeros of y there
is a zero of x which completes the proof.
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By setting a ≡ 0 in Theorem 4.10 gives us the following result.

Corollary 3.7.4 (Corollary 4.11). Let r be a continuous function on (0,∞) and let x and
y be two linearly independent solutions of

x′′ + r(t)x = 0.

Then, the zeros of x and y separate each other.

After having dealt with some of the implications of Theorem 4.8, a few comments are
warrented on the hypotheses of Theorem 4.8. Example 4.12 shows that Theorem 4.8 fails if
the condition r2 ≥ r1 is dropped.

Example 3.7.5 (Example 4.12). Consider the equations

(i) x′′ + x = 0, r1(t) ≡ +1, t ≥ 0,

(ii) x′′ − x = 0, r2(t) ≡ −1, t ≥ 0.

All the conditions of Theorem 4.8 are satisfied except that r2 is not greater than r1. We note
that between any consecutive zeros of a solution x( of (i), any solution y of (ii) does not
admit a zero. Thus, Theorem 4.8 may not hold true if the condition r2 ≥ r1 is dropped.

Assuming the hypotheses of Theorem 4.8, let us pose a question: is it true that between
any two zeros of a solution y of equation (4.5) there is a zero of a solution x of equation
(4.4) ? The answer to this question is in the negative as is clear from example 4.13.

Example 3.7.6 (Example 4.13). Consider

x′′ + x = 0, r1(t) ≡ 1
y′′ + 4y = 0, r2(t) ≡ 4.

Note that r2 ≥ r1 and also that the remaining conditions of Theorem 4.8 are satisfied.
x(t) = sin t is a solution of the first equation and y(t) = sin(2t) is a solution of the second
equation which has zero at t1 = 0 and t2 = π/2. It is obvious that x(t) = sin t does not
vanish at any point in (0, π/2). This clearly shows that, under the hypotheses of Theorem
4.8, between two successive zeros of y there need not exist a zero of x.

EXERCISES

1. Let r be a positive continuous function and let m be a real number. Show that the
equation

x′′ + (m2 + r(t))x = 0, t ≥ 0

is oscillatory.

2. Assume that the equation
x′′ + r(t)x = 0, t ≥ 0

is oscillatory. Prove that the equation

x′′ + (r(t) + s(t))x = 0, t ≥ 0

is oscillatory, given that r, s are continuous functions and s(t) ≥ 0.
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3. Let r be a continuous function (for t ≥ 0) such that r(t) > m2 > 0, where m is an
integer. A solution y of

y′′ + r(t)y = 0, t ≥ 0

then prove that y must vanish in any interval of length π/m.

4. Show that the normal form of Bessel’s equation

t2x′′ + tx′ + (t2 − p2)x = 0 (∗)

is given by

y′′ + (1 + 1−4p2
4t2

)y = 0 (∗∗)

(a) Show that the solution Jp(t) of (*) and Yp(t) of (**) have common zeros for
t > 0.

(b)

(i) If 0 ≤ p < 1
2 , show that every interval of length π contains at least one zero

of Jp(t);

(ii) If p = 1
2 then prove that every zero of Jp(t) is at a distance of π from its

successive zero.

(c) Suppose t1 and t2 are two consecutive zeros of Jp(t), 0 ≤ p < 1
2 . Show that

t2 − t1 < π and that t2 − t1 approaches π in the limit as t1 → ∞. What is your
comment when p = 1

2 in this case ?

3.8 Elementary Linear Oscillations

Presently we restrict our discussion to a class of second order equation of the type

x′′ + a(t)x = 0, t ≥ 0, (4.11)

where a is a real valued continuous function defined for t ≥ 0. A very interesting implication
of Sturm’s separation theorem is

Theorem 3.8.1 (Theorem 4.14:). (a) The equation (4.11) is non-oscillatory if, and only
if, it has no solution with finite number of zeros in [0,∞). (b) Equation (4.11) is either
oscillatory or non-oscillatory but cannot be both.

Proof. (a) Necessity It has an immediate consequence of the definition.
Sufficiency Let z(t) be the given solution which does not vanish on (t∗,∞) where t∗ ≥ 0.
Then any non-trivial solution x(t) of (4.11) can vanish utmost once in (t∗,∞), i.e, there
exists t0(> t∗) such that x(t) does not have a zero in [t0,∞).

The proof of (b) is obvious.

We conclude this section with two elementary results.

Theorem 3.8.2 (Theorem 4.15). Let x be a solution of (4.11) existing on (0,∞). If a < 0
on (0,∞), then x has utmost one zero.
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Proof. Let t0 be a zero of x. It is clear that x′(t0) 6= 0 for x(t) 6≡ 0. Without loss of generality
let us assume that x′(t0) > 0 so that x is positive in some interval to the right of t0. Now
a < 0 implies that x′′ is positive on the same interval which in turn implies that x′ is an
increasing function, and so, x does not vanish to the right of t0. A similar argument shows
that x has no zero to the left of t0. Thus, x has utmost one zero.

Remark Theorem 4.15 can also be seen as a corollary of Sturm’s comparison theo-
rem. Consider the equation y′′ = 0. It is known that any non-zero constant function y(t) ≡ k
is a solution. Thus, if this equation is compared with the equation (4.11) (observe that all
the hypotheses of Theorem 4.8 are satisfied) then x(t) vanishes utmost once, for otherwise
x(t) vanishes twice and y(t) necessarily vanishes at least once by Theorem 4.8. So x(t) can-
not have more than one zero. From Theorem 4.15 the question arises: If a(t) is continuous
and a(t) > 0 on (0,∞), is the equation (4.11) oscillatory ? A partial answer is given in the
following theorem.

Theorem 3.8.3 (Theorem 4.16). Let a(t) be continuous and positive on (0,∞) with∫ ∞
1

a(s)ds =∞. (4.12)

Also assume that x(t) is any solution of (4.11) existing for t ≥ 0. Then x(t) has infinite
zeros in (0,∞).

Proof. Assume, on the contrary, that x(t) has only a finite number of zeros in (0,∞). Then
there exist a point t0 > 1 such that x(t) does not vanish on [t0,∞). Without loss of generality
it can be assumed that x(t) > 0 for all t ≥ t0. Thus

v(t) = +
x′(t)

x(t)
, t ≥ t0

is well defined. It now follows that

v′(t) = −a(t)− v2(t).

Integration on the above leads to

v(t)− v(t0) = −
∫ t
t0
a(s)ds−

∫ t
t0
v2(s)ds.

The condition (4.12) now implies that there exist two constants A and T such that v(t) <
A(< 0) if t ≥ T since v2(t) is always non-negative and v(t) ≤ v(t0)−

∫ t
t0
a(s)ds.

This means that x′(t) is negative for large t. Let T (≥ t0) be so large that x′(T ) < 0. Then
on [T,∞) notice that x(t) > 0, x′(t) < 0 and x′′(t) < 0. But

∫ t
T x
′′(s)ds = x′(t)− x′(T ) ≤ 0

integrating once again it is seen that

x(t)− x(T ) ≤ x′(T )(t− T ), t ≥ T ≥ t0. (4.13)

Since x′(T ) is negative, the right hand side of (4.13) tends to −∞ as t → ∞ while the left
hand side of (4.13) either tends to a finite limit(because x(T ) is finite) or tends to +∞ (in
case x(t)→∞ as t→∞). Thus in either case a contradiction is reached. So the assumption
that x(t) has a finite number of zeros in (0,∞) is false. Hence x(t) has infinite number of
zeros in (0,∞), which completes the proof.
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It is not possible to do away with the condition (4.12) as shown by the following example.

Example 3.8.4 (Example 4.17). Consider Euler’s equation x′′ + 2
9t2
x = 0. x(t) = t1/3 is a

solution of this equation which does not vanish anywhere in (0,∞) and hence the equation
is non-oscillatory. Also in this case

a(t) =
2

9t2
> 0;

∫ ∞
1

2

9t2
dt =

2

9
<∞

.

Thus all the conditions of Theorem 4.16 are satisfied except the condition (4.12).

EXERCISES

1. Prove (b) part of Theorem 4.14.

2. Suppose a(t) is a continuous function on (0,∞) such that a(t) < 0 for t ≥ α, α is a
finite real number. Show that x′′ + a(t)x = 0 is non-oscillatory.
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3. Check for the oscillations or non-oscillations of:

(i) x′′ − (t− sin t)x = 0, t ≥ 0

(ii) x′′ + etx = 0, t ≥ 0

(iii) x′′ − etx = 0, t ≥ 0

(iv) x′′ − t
log tx = 0, t ≥ 1

(v) x′′ + (t+ e−2t)x = 0, t ≥ 0

4. Prove that Euler’s equation x′′ + k
t2
x = 0

(a) is oscillatory if k > 1
4

(b) is non-oscillatory if k ≤ 1
4

5. The normal form of Bessel’s equation t2x′′ + tx′ + (t2 − p2)x = 0, t ≥ 0, is

x′′ + (1 + 1−4p2
4t2

)x = 0, t ≥ 0. (*)

(i) Show that Bessel’s equation is oscillatory for all values of p.

(ii) If p > 1
2 show that t2 − t1 > π and approaches π as t1 →∞, where t1, t2(with

t1 < t2) are two successive zeros of Bessel’s function Jp(t).
( Hint: Show that Jp(t) and the solution Yp(t) of (*) have common zeros. Then compare
(*) with x′′ + x = 0, successive zeros of which are at a distance of π.)
(Exercise 4 of sec. 2 and Exercise 5 above justify the assumption of the existence of
zeros of Bessel’s functions

6. Decide whether the following equations are oscillatory or non-oscillatory:

(i) (tx′)′ + x/t = 0,

(ii) x′′ + x′/t+ x = 0,

(iii) tx′′ + (1− t)x′ + nx = 0, n is a constant(Laguerre’s equation),

(iv) x′′ − 2tx′ + 2nx = 0, n is a constant(Hermite’s equation),

(v) tx′′ + (2n+ 1)x′ + tx = 0, n is a constant,

(vi) t2x+ ktx′ + nx = 0, k, n are constants.

3.9 Boundary Value Problems

In Chapter 1, the definition of a boundary value problem (BVP) was introduced. BVPs
appear in various branches of science and engineering. A problem in calculus of variation
leads to a BVP. Solutions to the problems of vibrating strings and membranes are the
outcome of solutions of certain BVPs. Thus the importance of the study of BVP, both in
mathematics and in the applied sciences, needs no emphasis.

Speaking in general, BVPs pose many difficulties in comparison with IVPs. The problem
of existence, both for linear and nonlinear equations with boundary conditions, requires
discussions which are quite complicated. Needless to say nonlinear BVPs are far tougher to
solve than linear BVPs.
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In this chapter attention is focused on some aspects of the regular BVP of the second
order. Picard’s theorem on the existence of a unique solution to a nonlinear BVP is also
dealt with in the last section.

Consider a second order linear equation

L(x) = a(t)x′′ + b(t)x′ + c(t)x = 0, A ≤ t ≤ B. (4.14)

It is tacitly assumed throughout this chapter that a, b, c are continuous real valued func-
tions defined on [A, b]. To proceed further the concepts of linear forms in necessary. Let
x1, x2, x3, x4 be four variables. Then, for any scalars a1, a2, a3, a4

V (x1, x2, x3, x4) = a1x1 + a2x2 + a3x3 + a4x4

is called a “linear form” in the variables x1, x2, x3, x4. V (x1, x2, x3, x4) is denoted in short
by V . Two linear forms V1 and V2 are said to be linearly dependent if there exists a scalar
K such that V1 = KV2 for all x1, x2, x3, x4. V1 and V2 are called linearly independent if V1
and V2 are not linearly dependent.

Definition 3.9.1 (Definition 4.18). (Linear Homogeneous BVP) Consider an equation
of type (4.14). Let V1 and V2 be two linearly independent linear forms in the variables
x(A), x(B), x′(A) and x′(B). Then a linear homogeneous BVP is the problem of finding a
function x defined on [A,B] which satisfies

L(x) = 0, t ∈ [A.B] and

Vi[x(A), x(B), x′(A), x′(B)] = 0, i = 1, 2 (4.15)

simultaneously. The condition 4.15 is called a “linear homogeneous boundary condition”
stated at t = A and t = B.

Definition 3.9.2 (Definition 4.19). (Linear Non-homogeneous BVP) Let d(t) be a given
continuous real valued function on [A,B]. A linear non-homogeneous BVP is the problem of
finding a function x defined on [A,B] satisfying

L(x) = d(t), t ∈ [A.B] and

Vi[x(A), x(B), x′(A), x′(B)] = 0, i = 1, 2 (4.16)

simultaneously where Vi are two given linear forms and the operator L is defined by equation
(4.14).

Example 3.9.3 (Example 4.20). (i) Consider

L(x) = x′′ + x′ + x = 0 and

V1[x(A), x′(A), x(B), x′(B)] = x(A)
V2[x(A), x′(A), x(B), x′(B)] = x(B).

Then any solution x(t) of L(x) = 0, A ≤ t ≤ B which satisfies x(A) = x(B) = 0 is a
solution of the given BVP.

(ii) L(x) = x′′ + etx′ + 2x = 0, 0 ≤ t ≤ 1, with boundary conditions x(0) = x(1) and
x′(0) = x′(1) is a linear homogeneous BVP. In this case

V1[x(0), x′(0), x(1), x′(1)] = x(0)− x(1)
V2[x(0), x′(0), x(1), x′(1)] = x′(0)− x′(1).

Also L(x) = sin 2πt, 0 ≤ t ≤ 1, along with boundary conditions x(0) = x(1) and
x′(0) = x′(1) constitute a linear non-homogeneous BVP.
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Definition 3.9.4 (Definition 4.21). (Periodic Boundary Conditions) The boundary con-
ditions x(A) = x(B) and x′(A) = x′(B) are usually known as periodic boundary conditions
stated at t = A and t = B.

Definition 3.9.5 (Definition 4.22). (Regular Linear BVP) A linear BVP, homogeneous or
non-homogeneous, is called a regular BVP if A and B are finite and in addition to that
a(t) 6= 0 for all t in [A,B].

Definition 3.9.6 (Definition 4.23). (Singular Linear BVP) A linear BVP which is not
regular is called a singular linear BVP.

Lemma 3.9.7 (Lemma 4.24). A linear BVP (4.14) and (4.15) (or (4.16) and (4.15)) is
singular if and only if one of the following conditions holds:

(a) Either A = −∞ or B =∞.

(b) Both A = −∞ and B =∞.

(c) a(t) = 0 for at least one point t in [A,B].

The proof is obvious.

In this chapter, the discussions are confined to only regular BVPs. The definitions listed
so far lead to the definition of a nonlinear BVP.

Definition 3.9.8 (Definition 4.25). A BVP which is not a linear BVP is called a nonlinear
BVP.

A careful analysis of the above definition shows that the nonlinearity in a BVP may be
introduced because

(i) the differential equation may be nonlinear;

(ii) the given differential equation may be linear but the boundary conditions may not be
linear homogeneous.

The assertion made in (i) and (ii) above is further clarified in example 4.7.

Example 3.9.9 (Example 4.26). (i) Consider a differential equation x′′ + |x| = 0, 0 ≤
t ≤ π with boundary conditions x(0) = x(π) = 0. Notice that this BVP is not linear
because of the presence of |x|.

(ii) x′′ − 4x = et,≤ t ≤ 1 with boundary conditions x(0).x(1) = x′(0), x′(1) = 0 is a
nonlinear BVP because one of the boundary conditions is not linear homogeneous.

EXERCISES

1. State with reasons whether the following BVPs are linear homogeneous, linear non-
homogeneous or non-linear.

(i) x′′ + sinx = 0, x(0) = x(2π) = 0.

(ii) x′′ + x = 0, x(0) = x(π), x′(0) = x′(π).

(iii) x′′ + x = sin 2t, x(0) = x(π) = 0.

(iv) x′′ + x = cos 2t, x2(0) = 0, x2(π) = x′(0).

2. Are the following BVPs regular ?

(i) 2tx′′ + x′ + x = 0, x(−1) = 1, x(1) = 1.

(ii) 2x′′ − 3x′ + 4x = 0, x(−∞) = 0, x(0) = 1.
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(iii) x′′ − 9x = 0, x(0) = 1, x(∞) = 0.

3. Find a solution of

(i) BVP (ii) of Exercise 2;

(ii) BVP (iii) of Exercise 2.

3.10 Sturm-Liouville Problem

The Sturm-Liouville problem represents a class of linear BVPs. The importance of these
problems lies in the fact that they generate sets of orthogonal functions (indeed complete
sets of orthogonal functions). The sets of orthogonal functions are useful in the expansion of
a certain class of function. Few examples of such sets of functions have already been studied
in Chapter 3, namely the Legendre and Bessel functions. In all of what follows, we consider
a differential equation of the form

(px′)′ + qx+ λrx = 0, A ≤ t ≤ B (4.17)

where p′, q and r are real valued continuous functions on [A,B] and λ is a real parameter.
We focus our attention on second order equations with a special kind of boundary condition.
Let us consider two sets of boundary conditions, namely

m1x(A) +m2x
′(A) = 0, (4.18a)

m3x(B) +m4x
′(B) = 0, (4.18b)

x(A) = x(B), x′(A) = x′(B), p(A) = p(B), (4.19)

where at least one of m1 and m2 and at least one of m3 and m4 are non-zero. A glance at
the boundary conditions (4.18) shows that the two conditions are separately stated on A
ans B. Relation (4.19) is the periodic boundary condition at A and B.

A BVP consisting of equation (4.17) with (4.18) or equation (4.17) with (4.19) is called
a Sturm-Liouville boundary value problem. It is trivial to show that the identically zero
functions on [A,B] is always a solution of Sturm-Liouville problem. It is of interest to
examine the existence of a non-trivial solution and its properties.

Suppose that for a value of λ, xλ is a non-trivial solution of (4.17) with (4.18) or (4.17)
with (4.19). Then λ is called an “eigenvalue” and xλ is called an “eigenfunction” (correspond-
ing to λ) of the Sturm-Liouville problem of (4.17) with (4.18) or with (4.19) respectively.
The following theorem is of fundamental importance whose proof is beyond the scope of this
book.

Theorem 3.10.1 (Theorem 4.27). Assume that

(i) A,B are finite real numbers;

(ii) the functions p′(t), q(t) and r(t) are real valued continuous functions on [A,B]; and

(iii) m1,m2,m3 and m4 are real numbers.

Then the Sturm-Liouville problem (4.17) with (4.18) or (4.17) with (4.19) has countably
many eigenvalues with no finite limit point. Corresponding to each eigenvalue there exists
an eigenfunction.

Theorem 4.27 just guarantees the existence of solutions. Some properties of such eigen-
functions which can be exploited in expansion theorems are discussed. One such is the
orthogonal property.
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Definition 3.10.2 (Definition 4.28). Two distinct functions x and y, defined and continuous
on [A,B] are said to be orthogonal with respect to a continuous weight function r(t) if∫ B

A
r(s)x(s)y(s)ds = 0. (4.20)

Theorem 3.10.3 (Theorem 4.29). Let all the assumptions of Theorem 4.27 hold. For
the parameters λ, µ(λ 6= µ) let x and y be the corresponding solutions of (4.17) such that[
pW (x, y)

]B
A

= 0, where W (x, y) is the Wronskian of x and y and
[
Z
]B
A

means Z(B)−Z(A).

Then ∫ B

A
r(s)x(s)y(s)ds = 0

.

Proof. From the hypotheses of theorem it is seen that

(px′)′ + qx+ λrx = 0,
(py′)′ + qy + µry = 0.

The above two equations imply that

(λ− µ)rxy = (py′)′x− (px′)′y,

that is

(λ− µ)rxy =
d

dt
[(py′)x− (px′)y]. (4.21)

Integrating Eq. (4.21), the following is obtained.

(λ− µ)

∫ B

A
r(s)x(s)y(s)ds =

[
(py′)x− (px′)y

]B
A

=
[
pW (x, y)

]B
A

.

Since λ 6= µ it follows from the assumptions that
∫ B
A r(s)x(s)y(s)ds = 0. The proof is

complete.

From Theorem 4.29 it is clear that if a search is made for conditions which imply[
pW (x, y)

]B
A

= 0,

then the desired orthogonal property is obtained. Also notice that till now the boundary
conditions (4.18) or (4.19) have not been made use of. It can be shown that (4.18) or (4.19)

implies that
[
pW (x, y)

]B
A

= 0.

Theorem 3.10.4 (Theorem 4.30). Let the hypotheses of Theorem 4.27 be satisfied. In
addition let xm and xn be two eigenfunctions of the BVP (4.17) and (4.18) corresponding to
two distinct eigenvalues λm and λn. Then[

pW (xm, xn)
]B
A

= 0. (4.22)

If p(A) = 0 then (4.22) holds without the use of (4.18a). If p(B) = 0, then (4.22) holds with
(4.18b) being deleted.
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Proof. Let p(A) 6= 0, p(B) 6= 0. From (4.18a) it is seen that

m1xn(A) +m2x
′
n(A) = 0, m1xm(A) +m2x

′
m(A) = 0.

Without loss of generality it can be assumed that m1 6= 0. Elimination of m2 from the above
two equation leads to

m1[xn(A)x′m(A)− xm(A)x′m(A)] = 0.

Since m1 6= 0, it is seen that

xn(A)x′m(A)− xm(A)x′n(A) = 0. (4.23)

Similarly if m4 6= 0 (or m3 6= 0) in (4.18b), it is seen that

xn(B)x′m(B)− x′n(B)xm(B) = 0. (4.24)

From the relations (4.23) and (4.24) it is obvious that (4.22) is satisfied.
If p(A) = 0, then the relation (4.22) holds since[

pW (xm, xn)
]B
A

= p(B)[xn(B)x′m(B)− x′n(B)xm(B)] = 0,

in view of the equation (4.24). Similar is the case when p(B) = 0. This completes the
proof.

The following theorem deals with periodic boundary conditions given in (4.19).

Theorem 3.10.5 (Theorem 4.31). Let the assumptions of theorem 4.27 be true. Suppose xm
and xn are eigenfunctions of BVP (4.17) and (4.19) corresponding to the distinct eigenvalues
λm and λn respectively. Then xm and xn are orthogonal with respect to the weight function
r(t).

Proof. In this case[
pW (xn, xm)

]B
A

= p(B)[xn(B)x′m(B)− x′n(B)xm(B)− xn(A)x′m(A) + x′n(A)xm(A)].

The expression inside the brackets is zero once we use the periodic boundary condition
(4.19).

The following theorem ensures that the eigenvalues of (4.17), (4.18) or (4.17), (4.19) are
real if r(t) > 0 (or r(t) < 0) on [A,B].

Theorem 3.10.6 (Theorem 4.32). Let the hypotheses of Theorem 4.27 hold. Suppose that
r(t) is positive on [A,B] or r(t) is negative on [A,B]. Then all the eigenvalues of BVP
(4.17), (4.18) or (4.17), (4.19) are real.

Proof. Let λ = a + ib be an eigenvalue and let x(t) = m(t) + in(t) be a corresponding
eigenfunction. It is clear that a, b,m(t) and n(t) are real. So, it is seen that

(pm′ + pin′)′ + q(m+ in) + (a+ ib)r(m+ in) = 0.

Equating the real and imaginary parts, the following is obtained

(pm′)′ + (q + ar)m− brn = 0

and
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(pn′)′ + (q + ar)n+ brm = 0.

Elimination of (q + ar) in the above two equations implies

−b(m2 + n2)r = m(pn′)′ − n(pm′)′ = d
dt [(pn

′)m− (pm′)n].

Thus, by integrating, we get

−b
∫ B

A
(m2(s) + n2(s))r(s)ds =

[
(pn′)m− (pm′)n

]B
A
. (4.25)

Since m and n satisfy either of the boundary conditions (4.18) or (4.19), we have, as shown
earlier, [

p(n′m−m′n)
]B
A

=
[
pW (m,n)

]B
A

= 0. (4.26)

Also,
∫ B
A [m2(s) + n2(s)]r(s)ds 6= 0 by the assumptions. Hence from (4.25) and (4.26) it is

clear that b = 0, which means that λ is real. This completes the proof.

An important application of the previous result is Theorem 4.33.

Theorem 3.10.7 (Theorem 4.33). (Eigenfunction expansion) Let g(t) be a piecewise
continuous function defined on [A,B] satisfying the boundary conditions (4.18) or (4.19).
Let x1, x2, · · · , xn, · · · be the set of eigenfunctions of the Sturm-Liouville problem (4.17) and
(4.18) or (4.17) and (4.19). Then

g(t) = c1x1(t) + c2x2(t) + · · ·+ cnxn(t) + · · · (4.27)

where cn’s are given by

cn

∫ B

A
r(s)x2n(s)ds =

∫ B

A
r(s)g(s)xn(s)ds, n = 1, 2, · · · (4.28)

note that r(s)x2n(s) > 0 on [A,B] so that cn’s in (4.28) are well defined.

Example 3.10.8 (Example 4.34). (i) Consider the BVP x′′+λx = 0, x(0) = 0, x′(1) = 0.
Note that this BVP is a Sturm-Liouville problem with p ≡ 1, q ≡ 0, r ≡ 1;A = 0 and
B = 1. Hence by Theorem 4.29 the eigenfunctions are pairwise orthogonal. It is easy
to show that the eigenfunctions are

xn(t) = sin
(2n+ 1)

2
πt, n = 0, 1, 2, · · · ; 0 ≤ t ≤ 1. (4.29)

Thus, if g(t) is any function such that g(0) = 0 and g′(1) = 0, then there exist constants
c1, c2, · · · such that

g(t) = c0x0(t) + c1x1(t) + · · ·+ cnxn(t) + · · · (4.30)

where cn’s are determined by the relation (4.28).

(ii) It is known, from Chapter 3, that the Legendre polynomials Pn(t) are the solutions of
the Legendre equation

d
dt [(1− t

2)x′] + λx = 0, λ = n(n+ 1),−1 ≤ t ≤ 1.
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The polynomials Pn(t) form an orthogonal set of functions on [−1, 1]. In this case
p(t) = (1 − t2), q ≡ 0, r ≡ 1. Also notice that p(1) = p(−1) = 0 so that the boundary
conditions are not needed for establishing the orthogonality of Pn(t). Hence, if g(t) is
any piece-wise continuous function, then the eigenfunction expansion of g(t) is

g(t) = c0p0(t) + c1p1(t) + · · ·+ cnpn(t) + · · · ,

where

cn = 2n+1
2

∫ 1
−1 g(s)Pn(s)ds, n = 0, 1, 2, · · ·

since
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∫ 1
−1 P

2
n(s)ds = 2

2n+1 , n = 0, 1, 2, · · ·

EXERCISES

1. Show that corresponding to an eigenvalue the Sturm-Liouville problem (4.17), (4.18)
or (4.17), (4.19) has a unique eigenfunction.

2. Show that the eigenvalues for the BVP x′′ + λx = 0, x(0) = 0 and x(π) + x′(π) = 0
satisfies the equation

√
λ = − tanπ

√
λ. Prove that the corresponding eigenfunctions

are sin(t
√
λn) where λn is an eigenvalue.

3. Consider the equation x′′+λx = 0, 0 < t ≤ π. Find the eigenvalues and eigenfunctions
in the following cases:

(i) x′(0) = x′(π) = 0;

(ii) x(0) = 0, x′(π) = 0;

(iii) x(0) = x(π) = 0;

(iv) x′(0) = x(π) = 0.

3.11 Green’s Functions

The aim of this article is to construct what is known as Green’s Function and then use it to
solve a non-homogeneous BVP. We start with

L(x) + f(t) = 0, a ≤ t ≤ b (4.31)

where L is a differential operator defined by L(x) = (px′)′+qx. Here p, p′ and q are given real
valued continuous functions defined on [a, b] such that p(t) is non-zero on [a, b]. Equation
(4.31) is considered with separated boundary conditions

m1x(a) +m2x
′(a) = 0 (4.32a)

m3x(b) +m4x
′(b) = 0 (4.32b)

with the usual assumptions that at least one of m1 and m2 and one of m3 and m4 are
non-zero.

Definition 3.11.1 (Definition 4.35). A function G(t, s) defined on [a, b] × [a, b] is called
Green’s function for L(x) = 0 if, for a given s,G(t, s) = G1(t, s) if t < s and G(t, s) =
G2(t, s) for t > s where G1 and G2 are such that:

(i) G1 satisfies the boundary condition (4.32a) at t = a and L(G1) = 0 for t < s;

(ii) G2 satisfies the boundary condition (4.32b) at t = b and L(G2) = 0 for t > s;

(iii) The function G(t, s) is continuous at t = s;

(iv) The derivative of G with respect to t has a jump discontinuity at t = s and[
∂G2
∂t −

∂G1
∂t

]
t=s

= − 1
p(s) .

With this definition, the Green’s function for (4.31), (4.32) is constructed. Let y(t) be a
non-trivial solution of L(x) = 0 satisfying the boundary condition (4.32a). Also let z(t) be
a non-trivial solution of L(x) = 0 which satisfies the boundary condition (4.32b).

Assumption Let y and z be linearly independent solutions of L(x) = 0 on (a, b). For
some constants c1 and c2 define G1 = c1y(t) and G2 = c2z(t). Let
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G(t, s) =

{
c1y(t) if t ≤ s,
c2z(t) if t ≥ s. (4.33)

Choose c1 and c2 such that

c2z(s)− c1y(s) = 0
c2z
′(s)− c1y′(s) = −1/p(s).

(4.34)

With this choice of c1 and c2, G(t, s) defined by the relation (4.33) has all the properties of
the Green’s function. Since y and z satisfy L(x) = 0 it follows that

y(pz′)′ − z(py′)′ ≡ d

dt
[p(yz′ − y′z)] = 0. (4.35)

Hence

p(t)[y(t)z′(t)− y′(t)z(t)] = A for all t in [a, b]

where A is a non-zero constant (because y and z are linearly independent solutions of L(x) =
0). In particular it is seen that

y(s)z′(s)− y′(s)z(s)] = A/p(s), A 6= 0 (4.36)

From equation (4.34) and (4.36) it is seen that

c1 = −z(s)/A, c2 = −y(s)/A.

Hence the Green’s function is

G(t, s) =

{
−y(t)z(s)/A if t ≤ s,
−y(s)z(t)/A if t ≥ s. (4.37)

The main result of this article is Theorem 4.36.

Theorem 3.11.2 (Theorem 4.36). Let G(t, s) be given by the relation (4.37) then x(t) is a
solution of (4.31),
(4.32) if and only if

x(t) =

∫ b

a
G(t, s)f(s)ds. (4.38)

Proof. Let the relation (4.38) hold. Then

x(t) = −
[ ∫ t

a
z(t)y(s)f(s)ds+

∫ b

t
y(t)z(s)f(s)ds

]/
A. (4.39)

Differentiating (4.39) with respect to t yields

x′(t) = −
[ ∫ t

a
z′(t)y(s)f(s)ds+

∫ b

t
y′(t)z(s)f(s)ds

]/
A. (4.40)

Next on computing (px′)′ from (4.40) and adding to qx in view of y and z being solutions
of L(x) = 0 it follows that

L(x(t)) = −f(t) (4.41)

Further, from the relations (4.39) and (4.40), it is seen that{
Ax(a) = −y(a)

∫ b
a z(s)f(s)ds,

Ax′(a) = −y′(a)
∫ b
a z(s)f(s)ds.

(4.42)
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Since y(t) satisfies the boundary condition given in (4.32a), it follows from (4.42) that
x(t) also satisfies the boundary condition (4.32a). Similarly x(t) satisfies the boundary
condition (4.32b). This proves that x(t) satisfies (4.31) and (4.32).

Conversely, let x(t) satisfy (4.31) and (4.32). Then from (4.31) it is clear that

−
∫ b

a
G(t, s)L(x(s))ds =

∫ b

a
G(t, s)f(s)ds (4.43)

The left side of (4.43) is

−
∫ t

a
G1(t, s)L(x(s))ds−

∫ b

t
G2(t, s)L(x(s))ds. (4.44)

Now a well-known result is used that if u and v are two functions which admit continuous
derivatives in [t1, t2], then∫ t2

t1

u(s)L(v(s))ds =

∫ t2

t1

v(s)L(u(s))ds+
[
p(s)(u(s)v′(s)− u′(s)v(s))

]t2
t1

(4.45)

Applying the identity (4.45) in (4.44) and using the properties of G1(t, s) and G2(t, s) the
left side of (4.43) becomes

−p(t)
{[
G1(t, t)x

′(t)− ∂G1(t, s)

∂t

∣∣∣
s=t
x(t)

]
−
[
G2(t, t)x

′(t)− ∂G2(t, s)

∂t

∣∣∣
s=t
x(t)

]}
(4.46)

The first and third term in (4.46) cancel each other because of continuity of G(t, s) at
t = s. The condition (iv) in the definition of Green’s function now shows that the value
of the expression (4.46) is x(t). But (4.46) is the left side of (4.43) which means x(t) =∫ b
a G(t, s)f(s)ds. This completes the proof.

Example 3.11.3 (Example 4.37). Consider the BVP

x′′ = f(t);x(0) = x(1) = 0. (4.47)

It is easy to verify that the Green’s function G(t, s) is given by

G(t, s) =

{
t(1− s) if t ≤ s,
s(1− t) if t ≥ s. (4.48)

Thus the solution of (4.47) is given by x(t) = −
∫ 1
0 G(t, s)f(s)ds.

EXERCISES

1. In theorem 4.36 establish the relations (4.41), (4.45) and (4.46). Also show that if x
satisfies (4.38), then x also satisfies the boundary conditions (4.32).

2. Prove that the Green’s function defined by (4.37) is symmetric, that is G(t, s) = G(s, t).

3. Show that the Green’s function for L(x) = x′′ = 0, x(1) = 0;x′(0) + x′(1) = 0 is

G(t, s) =

{
1− s if t ≤ s,
1− t if t ≥ s.

Hence solve the BVP

x′′ = f(t), x(0) + x(1) = 0, x′(0) + x′(1) = 0
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where

(i) f(t) = sinπt;

(ii) f(t) = et; 0 ≤ t ≤ 1

(iii) f(t) = t.

4. Consider the BVP x′′ + f(t, x, x′) = 0, x(a) = 0, x(b) = 0. Show that x(t) is a solution
of the above BVP if and only if

x(t) =
∫ b
a G(t, s)f(s, x(s), x′(s))ds,

where G(t, s) is the Green’s function given by

(b− a)G(t, s) =

{
(b− t)(s− a) if a ≤ s ≤ t ≤ b,
(b− s)(t− a) if a ≤ t ≤ s ≤ b.

Also establish that

(i) 0 ≤ G(t, s) ≤ b−a
4

(ii)
∫ b
a G(t, s)ds = (b−t)(t−a)

2

(iii)
∫ b
a G(t, s)ds ≤ (b−a)2

8

(iv) G(t, s) is symmetric.

5. Consider the BVP x′′ + f(t, x, x′) = 0, x(a) = 0, x′(b) = 0. Show that x is a solution
of this BVP if, and only if, x satisfies

x(s) =
∫ b
a H(t, s)f(s, x(s), x′(s))ds, a ≤ t ≤ b

where H(t, s) is the Green’s function defined by

H(t, s) =

{
s− a if a ≤ s ≤ t ≤ b,
t− a if a ≤ t ≤ s ≤ b.

Module 5

Aysmptotic behavior and Stability Theory

Lecture

3.12 Introduction

Once the existence of a solution for a differential equation is established, the next question
is :“ How does a solution grow with time ”? It is all the more necessary to investigate such
a behavior of solutions in the absence of an explicit solution. One of the way out is to find
suitable criteria, in terms of the known quantities, to establish the asypmtotic behavior. A
few such criteria are studied below. More or less a detailed analysis for linear systems is
known.

In this chapter the asymtotic behavior of n-th order equations, autonomous systems of
order two, linear homogeneous and non-homogeneous systems with constant and variable
coefficients are dealt . The study includes the behavior of solutions for arbitrary large values
of t as well as phase plane analysis. They are some kind of stability propeties for the
concerned equatons..
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3.13 Linear Systems with Constant Coefficients

Consider a linear system
x′ = Ax, 0 ≤ t <∞, (3.54)

where A is an n × n constant matrix. It is clear that the priori knowledge of eigenvalues
of the matrix A kcompletely determines all solutions of (5.1) . So much so, the eigenvalues
determine the behavior of solutions as t → ∞. A suitable upper bound for the solutions of
(5.1) is obtained below.

Theorem 3.13.1. Let λ1, λ1, · · · , λm (m ≤ n) be the distinct eigenvalues of the matrix A
and λj be repeated nj times (n1 + n2 + · · ·+ nm = n). Let

λj = αj + iβj (i =
√
−1, j = 1, 2, · · · ,m), (3.55)

and η ∈ R be a number such that

αj > η, (j = 1, 2, · · · ,m). (3.56)

Then, there exists a real constant M > 0 such that

|eAt| ≤Meηt, 0 ≤ t <∞. (3.57)

Proof. Let ej be the n-vector with 1 in the j-th place and zero elsewhere. Then,

ϕj(t) = eAtej , (3.58)

denotes the j-th column of the matrix eAt. From the previous modules on systems of
equations , we know that

eAtej =
m∑
r=1

(cr1 + cr2t+ · · ·+ crnr t
nr−1)eλrt, (3.59)

where cr1, cr2, · · · , crnr are constant vectors. From (5.5) and (5.6) we have

|ϕj(t)| ≤
m∑
r=1

(|cr1|+ |cr2|t+ · · ·+ |crnr |tnr−1)| exp(αr + iβr)t| =
m∑
r=1

Pr(t)e
αrt (3.60)

where Pr is a polynomial in t. By (5.3),

tkeαrt < eηt, (3.61)

for sufficiently large values of t. In view of (5.7) and (5.8) there exists Mj > 0 such that
|ϕj(t)| ≤Mje

ηt, 0 ≤ t <∞; (j = 1, 2, · · · , n). Now

|eAt| ≤
n∑
j=1

|ϕj(t)| ≤ (M1 +M2 + · · ·+Mn)eηt = Meηt (0 ≤ t <∞),

where M = M1 +M2 + · · ·+Mn which proves the inequality (5.4).

Actually we have estimated an upper bound for the fundamental matrix eAt for the equa-
tion (5.1) in terms of an exponential function given through the inequality (5.4). Theorem
5.2.2 proved subsequently is a direct consequence of Theorem 5.2.1 . It tells us about a
necessary and sufficient conditions for the solutions of (5.1) decaying to zero as t → ∞. In
other words, it chaterizes a certain asymptotic behavior of solutions of (5.1)
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Theorem 3.13.2. Every solution of the equation (5.1) tends to zero as t→ +∞ if and only
if the real parts of all the eigenvalues of A are negative.

Obviously, if the real part of an eigenvalue is positive and if ϕ is a solution corresponding
to this eigenvalue then |ϕ(t)| → +∞ as t→∞.

The system
x′ = Ax+ b(t), (3.62)

where A is an n × n constant matrix, is a perturbed system with the perturbation term b,
where b : [0,∞) → R is assumed to be continuous . Since the fundamental matrix for the
system (5.1) is etA any solution of (5.9) is ( by the method of variation of parameters) is

x(t) = e(t−t0)Ax0 +

∫ t

t0

e(t−s)Ab(s)ds, t ≥ t0 ≥ 0,

satisfies the equation (5.9). Here x0 is an n-vector such that x(t0) = x0 and eAt is the
fundamental matrix of (5.1). Taking the norm on both sides it is seen

|x(t)| ≤ |e(t−t0)Ax0|+
∫ t

t0

|e(t−s)A||b(s)|ds, 0 ≤ t0 ≤ t <∞.

Suppose |x0| ≤ K and η is a number such that η > R expλi, i = 1, 2, · · · ,m, where λi are
the eigenvalues of the matrix A. Now, in view of (5.4) it is seen that

|x(t)| ≤ KMeη(t−t0) +M

∫ t

t0

eη(t−t0)|b(s)|ds. (3.63)

The inequality (5.10) has been obtained by using the conclusion arrived at in Theorem 5.2.1
. We note that the right side is independent of x. It depends on the constants K,M and η
and the function b. The inequality (5.10) is a pointwise estimate. The nature of solution x
for large value of t would depend on the sign of the constant ϕ and the nature of the function
b. In the following theorem, b is assumed to satisfy a certain growth condition.

Theorem 3.13.3. Suppose the function b is such that

|b(t)| ≤ peat, t ≥ T ≥ 0, (3.64)

where p and a are constants with p ≥ 0. Then every solution x(t) of the system (5.9) satisfies

|x(t)| ≤ Leqt (3.65)

where L and q are constants.

Proof. Since b is continuous on 0 ≤ t <∞, it is clear that every solution x(t) of (5.9) exists
on 0 ≤ t <∞. Further

x(t) = eAtc+

∫ t

0
e(t−s)Ab(s)ds, 0 ≤ t <∞, (3.66)

where c is a suitable constant vector. From Theorem 5.2.1 it is clear that there exists M
and η such that

|eAt| ≤Meηt, 0 ≤ t <∞. (3.67)
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For some T (0 ≤ T <∞) Rewrite (5.13) as,

x(t) = eAtc+

∫ t

0
e(t−s)Ab(s)ds+

∫ t

T
e(t−s)Ab(s)ds. (3.68)

Define
M1 = sup{|b(s)| : 0 ≤ s ≤ T}. (3.69)

Now from the relation (5.11), (5.14) and (5.16) the following is follows:

|x(t)| ≤M |c|eηt +M

∫ T

0
eη(t−s)M1ds+M

∫ t

T
eη(t−s)peasds

= Meηt
[
|c|+

∫ T

0
e−ηsM1ds+

∫ t

T
e(a−η)sp ds

]
.

Assume that a 6= η. Then

|x(t)| ≤Meηt
[
|c|+

∫ T

0
e−ηsM1ds+

p

|a− η|
e(a−η)T

]
+

pM

a− η
eat

Now, by choosing q = max(η, a)we have

|x(t)| ≤M
[
|c|+

∫ T

0
e−ηsM1ds+

p

|a− η|
e(a−η)T +

pM

a− η

]
eat = Leqt

where

L = M
[
|c|+

∫ T

0
e−ηsM1ds+

p

|a− η|
e(a−η)T +

pM

a− η

]
and the above inequality yeilds the desired estimate of a solution x. Thus t he behavior of
the solution for the large values of t depends on the the q and on L.

Example 3.13.4. Consider

x′1 =− 3x1 − 4x2,

x′2 =4x1 − 9x2.

The characteristic equation is
λ2 + 12λ+ 43 = 0.

whose roots are λ1 = −6 + 7i, λ2 = −6− 7i. The real parts of the roots are negative. Hence,
all solutions tend to zero at t→ +∞.

Example 3.13.5. Consider x1
x2
x3

′ =
 2 3 1
−3 0 1
1 −1 0

 x1
x2
x3


The characteristic equation is

λ3 − 2λ2 + 9λ− 8 = 0

whose roots are

λ1 = 1, λ2 =
1 +
√

31i

2
, λ3 =

1−
√

31i

2
.

The real parts of the roots are positive. All non-trivial solutions of the system are unbounded.
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EXERCISES

1. Complete the proof of Theorem 5.2.2.

2. Determine the nature of the solutions as t→ +∞ for the system x′ = Ax where

(i) A =

 −9 19 4
−3 7 1
−7 17 2

 ;

(ii) A =

 1 1 2
0 2 2
1 −1 0

;

(iii) A

 0 1 −1
1 0 −1
1 −1 0

.

3. Determine the behavior of solutions and their first two derivatives as t→ +∞ for the
following equations:

(i) x′′′ + 4x′′ + x′ − 6x = 0;

(ii) x′′′ + 5x′′ + 7x′ = 0;

(iii) x′′′ + 4x′′ + x′ + 6x = 0.

4. Find all solutions of the following nonhomogeneous system and discuss their behavior
as t→ +∞.

[
x1
x2

]′
=

[
0 1
−1 0

] [
x1
x2

]
+

[
b1(t)
b2(t)

]

where

(i) b1(t) = sin t, b2(t) = cos t;

(ii) b1(t) = 0, b2(t) = 1; and

(iii) b1(t) = t, b2(t) = 0.

Lecture

3.14 Linear Systems with Variable Coefficients

Consider a linear system

x′ = A(t)x, t ≥ 0 (3.70)

where for each t ∈ (0 ≤ t < ∞) , A(t) is a real valued, continuous n × n matrix . We
intende to find the behavior of solution of (5.17) as t→ +∞. Two such results proved below
which depends on the eigenvalues of the matrix A(t) +AT (t), where AT (t) is the transpose
of matrix A(t). Obviously, the eigenvalues are functions of t.
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Theorem 3.14.1. for each t ∈ (0 ≤ t < ∞) let A(t) be a real valued, continuous n × n
matrix . Let M(t) be the largest eigenvalues of A(t) +AT (t). If

lim
t→+∞

∫ t

t0

M(s)ds = −∞ (t0 > 0 is fixed); (3.71)

then every solution of (5.17) tends to zero as t→ +∞.

Proof. Let ϕ be a solution of (5.17). Then, |ϕ(t)|2 = ϕT (t)ϕ(t). Differentiation leads to

d

dt
|ϕ(t)|2 = ϕT (t)ϕ′(t) + ϕT

′
(t)ϕ(t)

= ϕT (t)A(t)ϕ(t) + ϕT (t)AT (t)ϕ(t)

= ϕT (t)[A(t) +AT (t)]ϕ(t)

The matrix A(t) +AT (t) is symmetric and since M(t) is the largest eigenvalue we have

|ϕT (t)[A(t) +AT (t)]ϕ(t)| ≤M(t)|ϕ(t)|2

0 ≤ |ϕ(t)|2 ≤ |ϕ(t0)|2
(

exp
(∫ t

t0

M(s)ds
))
. (3.72)

By the condition (5.18) the right side tends to zero. Hence

lim ϕ(t) = 0 as t→∞

which completes the proof.

Theorem 3.14.2. Let m(t) be the smallest eigenvalue of A(t) +AT (t). If

lim sup
t→+∞

∫ t

t0

m(s)ds = +∞ (t0 > 0 is fixed); (3.73)

then every nonzero solution of (5.17) is unbounded as t→ +∞.

Proof. As in the proof of Theorem 5.2.1 we have

d

dt
|ϕ(t)|2 ≥ m(t)|ϕ(t)|2.

Thus

d

dt

[
exp

(
−
∫ t

t0

m(s)ds
)
|ϕ(t)|2

]
= exp

(
−
∫ t

t0

m(s)ds
)[ d
dt
|ϕ(t)|2 −m(t)|ϕ(t)|2

]
≥ 0

whence

|ϕ(t)|2 ≥ |ϕ(t0)|2 exp
(
−
∫ t

t0

m(s)ds

By (5.20) we note that the expression on the right hand side tends to +∞ as t→∞ or else

lim |ϕ(t)| =∞, as t→∞.
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Example 3.14.3. Consider the system[
x1
x2

]′
=

[
1/t2 t2

−t2 −1

] [
x1
x2

]
Comparing the system with (5.17), we get

A(t) +AT (t) =

[
2/t2 0
0 −2

]
So

M(t) =
2

t2
, m(t) = −2, lim

t→∞

∫ t

t0

2

s2
ds =

2

t0
> −∞.

The exponential term remains bounded as t → ∞ due to (5.19). Thus, ϕ(t) is bounded
as t→ +∞.

Example 3.14.4. For the system x′ = A(t)x, where

A(t) =

[
−1/t t2 + 1
−(t2 + 1) −2

]
, A(t) +AT (t) =

[
−2/t 0
0 −4

]
for which M(t) = −2/t for t > 1

2 and m(t) = −4. Now

lim
t→+∞

∫ t

t0

−2

s
ds = lim

t→∞
(−2 log t+ 2 log t0) = −∞.

The condition (5.18) holds and so the solutions tends to zero as t→ +∞.

Theorem 5.3.5 provides a criterion for boundedness of the inverse of a fundamental
matrix.

Theorem 3.14.5. Let Φ be a fundamental matrix of (5.17) which is uniformly bounded over
[0,∞). Suppose

lim inf

∫ t

t0

trA(s)ds > −∞ as t→∞. (3.74)

Then |Φ−1(t)| is uniformly bounded on [0,∞).

Proof. Let Φ be a fundamental matrix of (5.17). By Able’s formula

det Φ(t) = det Φ(0) exp

∫ t

t0

tr A(s)ds. (3.75)

Now the relations (5.21) and (5.22) imply det Φ(t) 6= 0, t ∈ [0,∞). Further, since |Φ(t)| is
uniformly bounded so is det Φ(t). Now it is known that

Φ−1(t) =
adj [Φ(t)]

det Φ(t)

or else we have a bound k > 0 such that∣∣adj [Φ(t)]
∣∣ ≤ k, t ∈ [0,∞).

Thus, |Φ−1(t)| is well-defined and uniformly bounded.
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also let us note that (since det Φ(t) 6= 0) for all values of t none of the solutions φ which
form the fundamental matrix, can tend to zero as t → +∞. Thus, no solution except the
null solution of the equation (5.17) tends to zero as t→ +∞.

It is interesting to note that the above Theorem (5.3.5) can be used to study the behavior
of solutions of an equation of the form

x′ = B(t)x, t ∈ [0,∞), (3.76)

where B is a continuous n× n matrix defined on [0,∞). Let ψ denote a solution of (5.23).
Suppose ∫ ∞

0
|A(t)−B(t)|dt <∞. (3.77)

The following is a reult on boundedness of solutions.

Theorem 3.14.6. Let the hypotheses of Theorem ?? and the condition (5.24) hold. Then,
any solution ψ(t) of (5.23) is bounded on [0,∞).

Proof. Let ϕ(t) be a solution of (5.17). It is easy to verify that ψ(t) is a solution of the
equation

x′ = A(t)x+ [B(t)−A(t)]x.

Hence, by using the variation of parameters formula, we obtain

ψ(t) = ϕ(t) + Φ(t)

∫ t

0
Φ−1(s)(B(s)−A(s))ψ(s)ds.

With the norm on either side

|ψ(t)| ≤ |ϕ(t)|+ |Φ(t)|
∫ t

0
|Φ−1(s)||B(s)−A(s)||ψ(s)|ds

Using the more general form of the Gronwall’s inequality,we have

|ψ(t)| ≤ |ϕ(t)|+
∫ t

0
|Φ(t)||φ(s)||Φ−1(s)||B(s)−A(s)|

(
exp

∫ t

s
|Φ(u)||Φ−1(u)||B(u)−A(u)|du

)
ds.

= |ϕ(t)|+ |Φ−1(t)|
∫ t

0
|ϕ(s)||Φ−1(s)||B(s)−A(s)|

(
exp

∫ t

s
|B(u)−A(u)|du

)
ds.

By (5.24), observe that the right side is bounded. Thus, ψ(t) is bounded on [0,∞).

Theorem 3.14.7. Let the hypotheses of Theorems 5.3.5 and 5.3.6 hold. Then, corresponding
to any solution ϕ of (5.17) there exists a unique solution ψ of (5.23), such that |ψ(t)−ϕ(t)| →
0 as t→∞.

Proof. Let ϕ be a given solution of (5.17). Any solution ψ of (5.23) may be written in the
form

ψ(t) = ϕ(t)−
∫ ∞
t

Φ(t)Φ−1(s)(B(s)−A(s))ϕ(s)ds, t ∈ [0,∞).

The above relation determines uniquely the solution ψ of (5.23). Clearly under the given
conditions

lim |ψ(t)− ϕ(t)| = 0 as t→∞.
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The above theorem establishes a kind of equivalence between the two systems (5.17)
and (5.23). This relationship between the two systems is many times known as asymptotic
equivalence. It is not intended here to go into details of this concept.
Perturbed Sysems: The equation

x′ = A(t)x+B(t), 0 ≤ t <∞, (3.78)

is called a perturbed system of (5.17), where B is a continuous n-column vector function
defined on 0 ≤ t <∞. The behavior of the solutions of such a system (5.25) is closely related
to the behavior of solution of the system (5.17).

Theorem 3.14.8. Suppose every solution of (5.17) tends to zero as t → +∞. If one
solution of (5.25) is bounded then, all of its solutions are bounded.

Proof. Let ψ1 and ψ2 be any two solutions of (5.25). Then ϕ = ψ1 − ψ2 is a solution of
(5.17). By Noting ψ1 = ψ2 + ϕ then, clearly ψ1(t) is bounded, if ψ2(t) is bounded, since
ϕ(t)→ 0 as t→ +∞. This completes the proof.

From the Theorem 5.3.8 it is clear that if ψ2(t) → ∞ as t → ∞ then ψ1(t) → ∞ as
t → ∞. If ψ2(t) → 0 as t → ∞ then ψ1(t) → 0 as t → ∞. The next comparison theorem
asserts the boundedness of solutions of (5.25).

Theorem 3.14.9. Let the matrix A(t) in (5.17) be such that

lim inf
t→∞

∫ t

0
tr A(s)ds > −∞ (3.79)

and let
∫∞
0 |b(s)|ds <∞. If every solution of (5.17) is bounded on [0,∞) then, every solution

of the equation (5.25) is bounded.

Proof. Let ϕ(t) be any solution of (5.25). Then

ϕ(t) = Φ(t)C + Φ(t)

∫ t

0
Φ−1(s)b(s)ds.

Here Φ represents a fundamental matrix of the equation (5.17) and C is a constant vector.
Since every solution of (5.17) is bounded on [0,∞), there is a constant K such that Φ(t) ≤ K
for t ∈ [0,∞). Hence, Φ(t) is uniformly bounded on [0,∞). The condition in (5.26) implies,
as in Theorem ??, that Φ−1(t) is bounded. Taking the norm on either side we have

|ϕ(t)| ≤ |Φ(t)||C|+ |Φ(t)|
∫ t

0
|Φ−1(s)||b(s)|ds

Now each term on the right side is bounded which shows that ϕ(t) is also bounded.

EXERCISES

1. Show that any solution of x′ = A(t)x tend to zero as t→ 0 where,

(i) A(t) =

 −t 0 0
0 −t2 0
0 0 −t2

 ;
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(ii) A(t) =

 −et −1 − cos t
1 −e2t t2

cos t −t2 −e3t

;

(iii) A(t) =

[
−t sin t
0 e−t

]
.

2. Consider a system x′ = A(t)x. Let M(t) be the largest eigenvalue of A(t)+AT (t) such
that

∫∞
t0
M(s)ds <∞. Show that all the solutions of x′ = A(t)x are bounded.

3. Prove that all the solutions of x′ = A(t)x are bounded, where A(t) is given by

(i)

 et −1 −2
1 e−2t 3
2 −3 e−3t

, (ii)

 (1 + t)−2 sin t 0
− sin t 0 cos t
0 − cos t 0

 and (iii)

[
e−t 0
0 −1

]
.

4. What can you say about the boundedness of solutions of the system x′ = A(t)x+ f(t)
on (0,∞) when a particular solution xp, the matrix A(t) and the function f are as
given below:

(i) xp(t) =

[
e−t sin t
e−t cos t

]
, A(t) =

[
−1 0
0 −1

]
, f(t) =

[
e−t cos t
−e−t sin t

]
,

(ii) xp(t) =

 1
2(sin t− cos t)

0
0

, A(t) =

 −1 0 0
0 −t2 0
0 0 −t2

, f(t) =

 sin t
0
0

.

5. Show that the solutions of x′ = A(t)x + f(t) are bounded on [0,∞) for the following
cases:

(i) A(t) =

[
e−t 0
0 e−2t

]
, f(t) =

[
sin t
sin t2

]
;

(ii) A(t) =

 (1 + t)−2 sin t 0
− sin t 0 t
0 −t 0

, f(t) =

 0
(1 + t)−2

(1 + t)−3

.

3.15 Second Order Linear Differential Equations

Hitherto we have considered the asymptotic behavior and boundedness of solutions of a linear
system. Now we glace at asymptotoic behavior of solutions of second order linear differential
equations. A large number of methods are available for such a study the behavior of solutions
of second order linear differential equations. In this section, we consider some of them mainly
concentrating on the equation

x′′ + a(t)x = 0, 0 ≤ t <∞ (3.80)

where a : [0,∞] → R is a continuous function . The following results through light on the
boundedness of solutions of (5.27).

Theorem 3.15.1. Let a be a non-decreasing continuous function such that

a(t)→∞ as t→∞.

Then, all solutions of (5.27) are bounded.
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Proof. Multiply (5.27) by x′ to get

x′x′′ + a(t)xx′ = 0.

Integration leads to ∫ t

0
x′(s)x′′(s)ds+

∫ t

0
a(s)x(s)x′(s)ds = c1

which is the same as

1

2
x′2(t) +

1

2
a(t)x2(t)−

∫ t

0

x2(s)

2
da(s) = c1.

The first term on the left side is nonnegative. Consequently

a(t)
x2(t)

2
≤ c1 +

1

2

∫ t

0
x2(s)da(s).

Now an application of Gronwall’s inequality gives us

a(t)
x2(t)

2
≤ c1 exp

∫ t

0

da(s)

a(s)
≤ c1a(t)

which shows that x2(t) ≤ 2|c1| thereby completing the proof.

Theorem 3.15.2. Let x be a solution of the equation (5.27) and let∫ ∞
0

t|a(t)|dt <∞.

Then limx′ exists and further the general solution of (5.27) is asymptotic to a0 +a1t, where
a0 and a1 are constants simultaneously not equal to zero.

Proof. We integrate (5.27) twice to get

x(t) = c1 + c2t−
∫ t

1
(t− s)a(s)x(s)ds (3.81)

from which we have, for t ≥ 1,

|x(t)| ≤ (|c1|+ |c2|)t+ t

∫ t

1
|a(s)||x(s)|ds.

That is,
|x(t)|
t
≤ (|c1|+ |c2|) +

∫ t

1
s|a(s)| |x(s)|

s
ds.

Gronwall’s inequality now implies

|x(t)|
t
≤ (|c1|+ |c2|) exp

∫ t

1
s|a(s)|ds ≤ c3, (3.82)

in view of the hypothyses of the theorem. Differentiation of (5.28) now yields

x′(t) = c2 −
∫ t

1
a(s)x(s)ds.
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Now the estimate (5.29) gives us

|x′(t)| ≤ |c2|+
∫ t

1
|a(s)||x(s)|ds ≤ |c2|+ c3

∫ t

1
s|a(s)|ds <∞. (3.83)

Thus, lim sup |x′(t)| as t→∞ exists.
Let lim sup |x′(t)| 6= 0 as t→∞. Then, from (5.29) we have

x(t) ∼ a1t as t→∞ (a1 6= 0).

The second solution of (5.27) is

u(t) = x(t)

∫ ∞
t

ds

x2(s)
∼ a1t

∫ ∞
t

ds

a21s
2
∼ 1

a1
= a0 (say).

Hence, the general solution of (5.27) is asymptotic to a0 + a1t.

Remark : In the above proof it is assumed that lim
t→∞
|x′(t)| 6= 0. Such a choice is al-

ways possible. For this purpose, choose c2 = 1 and the lower limit t0 in place of 1. Let
1− c3

∫∞
t0
s|a(s)|ds > 0. Clearly, lim

t→∞
|x′(t)| 6= 0.

EXERCISES

1. Prove that, if a(t) > 0 and a′(t) exists for all t ≥ 0 then, any solution of x′′+a(t)x = 0
satisfies the inequality

x2t ≤ c1
a(t)

exp
(∫ t

0

a′(t)

a(t)
dt
)
, t ≥ 0.

2. If
∫∞
0 |a(t)|dt <∞, prove that all the solutions of u′′ + a(t)u = 0 cannot be bounded.

3. Show that the equation x′′ − φ(t)x = 0 can have no non-trivial solutions bounded for
−∞ < t <∞, if φ(t) > α > 0 for −∞ < t <∞.

4. Prove that if all solutions of x′′ + a(t)x = 0 are bounded then all solutions of x′′ +
[a(t) + b(t)]x = 0 are also bounded if

∫∞
0 |b(s)|ds <∞.

5. Prove that all solutions of x′′ + [1 + a(t) + b(t)]x = 0 are bounded provided that

(i)
∫∞
0 |a(s)|ds <∞,

(ii)
∫∞
0 |b(s)|ds <∞, b(t)→ 0 as t→∞.

Stability of Nonlinear Systems

Introduction

We have studied the behavior of solutions of linear systems when the time increased indef-
initely. It was mentioned that the behavior of solutions as t → ∞ is a kind of stability
property. So far the notion of stability has not been precisely defined. We devote the rest
of this module to introduce the concept of stability of solutions. Before proceeding, let us
examine the following problem.
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Suppose a physical phenomenon is governed by a differential equation. Fix a stationary
state of the system (which is also known as the unperturbed state). Let an external force act
on the system which results in perturbing the stationary state. The question now is whether
this perturbed state will be “close” enough to the unperturbed state. In other words, what
is the order of the magnitude of the change from the stationary state ? Usually this change
is estimated by a norm which also measures the size of the perturbation.

A system is called stable if the change is small provided at the time of starting the
size of the perturbation is small enough. If the perturbed system moves away from the
stationary state in spite of the size of the perturbation being small at the initial time, then
it is customary to label such a system as unstable. The following example illustrates further
the concept of stability.

Let us consider the oscillation of a pendulum of a clock. When we start a clock we deflect
the pendulum away from its vertical position. If the pendulum is given a small deflection then
after some time it returns to its vertical position. If the deflection is sufficiently large then
oscillations start and after some time the amplitude of the oscillations retains a fairly constant
value. The clock then works for a long time with this amplitude. Now the oscillations of a
pendulum can be described by a system of equation. This system has two equilibrium states
(stationary solutions), one being the position of rest and the other the normal periodic
motion. For any perturbation of the pendulum a new motion is obtained which is also a
solution of the system. This new solution approaches fast to either of these two stationary
solutions and after some time they almost coincide with them. In this case it is said that
both the stationary solutions are stable.

This chapter is devoted to the study of the stability of stationary solutions. Below, the
definitions of stability due to Lyapunov are listed. Among the methods known today, to study
the stability properties, the direct or the second method due to Lyapunov is important and
useful. This method involves a construction of a scalar function satisfying certain conceivable
conditions. Further it does not depend on the knowledge of solutions in a closed form.
Stability Definitions
In many of the problems the main interest revolves round the stability behavior of solutions
of nonlinear differential equations which describes the problem. Such a study turns out to
be difficult due to the lack of closed form solutions of such equations. The study is more or
less concerned with the family of motions defined by a differential equation

x′ = f(t, x), t ≥ t0 ≥ 0, (3.84)

where x and f are n-vectors. The following notion is used:

I = [t0,∞), for ρ > 0, Sρ = {x ∈ Rn : |x| < ρ}. (3.85)

Let us assume that the function f in the equation (5.32) is defined and in continuous on
I×Sρ. Let (5.32) posses a unique solution x(t; t0, x0) in Sρ passing through a point (t0, x0) on
I and let it continuously depend on (t0, x0). For simplicity, the solution x(t; t0, x0) is denoted
by x(t). x(t) is treated as a special solution the stability of which is under consideration. In
the physical sense this implies that x(t) is an equilibrium position of an object the motion
of which is determined by the equation (5.32). It is to be noted that we are assuming the
existence of a unique solution of (5.32). The following definitions distinguish between various
types of behavior of solutions.

Definition 3.15.3 (Definition 6.17). (i) A solution x(t) is said to be stable if for each
ε > 0(ε < ρ) there exists a positive number δ = δ(ε) such that any solution y(t) of (5.32)
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existing on I satisfies

|y(t)− x(t)| < ε, t ≥ t0 whenever |y(t0)− x(t0)| < δ.

(ii) A solution x(t) is said to be asymptotically stable if it is stable and if there exists a
number δ0 > 0 such that any other solution y(t) of (5.32) existing on I is such that

|y(t)− x(t)| → 0 as t→∞ whenever |y(t0)− x(t0)| < δ0.

(iii) A solution x(t) is said to be unstable if it is not stable.

In this definition the existence of a solution x(t) of (5.32) is assumed. In general, there
is no loss of generality if we consider this special solution to be the zero solution. This
assumption would be at once clear if we consider the transformation

z(t) = y(t)− x(t), (3.86)

where y(t) is any solution of (5.32). Since y(t) satisfies (5.32), it is seen that

y′(t) = z′(t) + x′(t) = f(t, z(t) + x(t)).

Hence z′(t) = f(t, z(t) + x(t))− x′(t). Set f̃(t, z(t)) = f(t, z(t) + x(t))− x′(t). Hence

z′(t) = f̃(t, z(t)). (3.87)

Clearly, in view of (5.32), it is seen that

f̃(t, 0) = f(t, x(t))− x′(t) ≡ 0

Thus the resulting system (5.34) possesses a trivial solution or a zero solution. It is important
to note that the transformation (5.33) does not change the character of the stability of a
solution of (5.32). In subsequent discussions it is assumed that (5.32) possesses a trivial or
a null solution which is the state of equilibrium.

The stability Definition 6.17 becomes clearer when it is viewed geometrically. Figure 6.1
depicts this behavior and is drawn in phase space for n = 2. Time axis can be considered
as a line perpendicular to the plane at the origin. The solution represented in the figure are
the projections of solutions y(t) on the phase space. Let us assume that the origin is the
unperturbed state.

Consider a circle with origin at the center and radius ε where ε < ρ. The definition
6.17 for stability states that a circle with radius δ exists such that if y(t0) is in Sδ then y(t)
remains in Sε for all t ≥ t0. Further, it never reaches the boundary point of Sε. Clearly in
this case δ ≤ ε (Refer to Fig. 6.1).

Now let the origin be stable. Let the starting point y(t0) lie in Sδ0 , δ0 > 0. Let y(t)
approach the origin as time increases indefinitely. In this case the origin is asymptotically
stable.

Further consider an Sε region and any arbitrary number δ(δ < ε) however small. Let y(t)
be a solution through any point of Sδ. If the system is unstable y(t) reaches the boundary
of Sε for some t in I.

The stability definitions given above are due to Lyapunov. We have mentioned above
only few stability behaviors of solutions of (5.32). It is to be remarked that several other
stability properties have been introduced and investigated in detail and voluminous literature
is now available on this topic. However, only the above mentioned stability properties are
discussed in this chapter.

The following examples illustrates Definition 6.17.
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Example 3.15.4 (Example 6.18). Let x′ = 0. Then y(t) = c where c is an arbitrary
constant is a solution. Let the solution x(t) ≡ 0 be the unperturbed state. For a given ε > 0,
for stability it is necessary to have |y(t) − x(t)| = |y(t) − 0| = |c| < ε for t ≥ t0 whenever
|y(t0) − x(t0)| = |c − 0| = |c| < δ. If we choose δ ≤ ε, then the criterion for stability is
satisfied. Note that x(t) ≡ 0 is not asymptotically stable.

Example 3.15.5 (Example 6.19). Let x′ = −x. Then y(t) = ce−(t−t0) is a solution. We
first study the stability of the origin and so compute |y(t)− x(t)| = |ce−(t−t0)| < ε for t ≥ t0.
Let δ < ε. By choosing |y(t0) − x(t0)| = |c| < δ, it is clear that x(t) ≡ 0 is stable. Further,
let δ = δ0 so that |c| < δ0. Clearly |ce−(t−t0)| → 0 as t → ∞. Hence it is concluded that
x(t) ≡ 0 is asymptotically stable.

Example 3.15.6 (Example 6.20). Consider the equation x′ = x. Then any solution through
(t0, η) is y(t) = η exp(t − t0). Choose any η > 0. Clearly as t increases indefinitely this
solution escapes out of any neighborhood of the origin. The origin, in this case, is unstable.

EXERCISES

1. Show that the system x′ = y, y′ = −x is stable but not asymptotically stable.

2. Prove that x′ = −x, y′ = −y is asymptotically stable; however, the system
x′ = x, y′ = y is unstable.

3. Determine the stability of the origin in the following cases:

(i) x′′′ + 6x′′ + 11x′ + 6x = 0,

(ii) x′′′ − 6x′′ + 11x′ − 6x = 0,

(iii) x′′′ + ax′′ + bx′ + cx = 0, for all possible values of a, b and c.

4. Consider the system  x1
x2
x3

′ =
 0 2 0
−2 0 0
0 0 0

 x1
x2
x3

.

Show that no non-trivial solution of this system tends to zero as t → ∞. Is every
solution bounded ? Is it periodic ?

5. Prove that for 1 < α <
√

2, x′ = (sin log t+ cos log t− α)x is asymptotically stable.

6. Consider the equation x′ = a(t)x. Show that the origin is asymptotically stable if and
only if

∫∞
0 a(s)ds = −∞. Under what condition is it stable ?

3.16 Stability of Quasi-linear Systems

In many physical problems the equation (5.32) may be written in a more useful form

x′ = A(t)x+ f(t, x). (3.88)

The equation (5.35) simplifies the work since it is closely related with the system

x′ = A(t)x. (3.89)

Many properties of (5.36) have already been discussed. Under some restrictions on A and
f , stability properties of (5.35) are very similar to those of (5.36). It is assumed that
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(i) the matrix A(t) is an n× n matrix which is continuous on I;

(ii) f is a n-vector and it is continuous on I × Sα and f(t, 0) ≡ 0, t ∈ I.

These two conditions guarantee the existence of solutions of (5.35) on some interval. The
solutions may not be unique. However, for stability it is assumed that solutions of (5.35)
uniquely exist on I. Let Φ(t) denote a fundamental matrix of (5.36) such that Φ(t0) = E,
where E is the identity matrix. As a first step, we obtain necessary and sufficient conditions
for the stability of (5.36). Note that x(t) = 0, t ∈ I satisfies (5.36).

Theorem 3.16.1 (Theorem 6.21). The null solution of equation (5.36) is stable if and only
if a positive constant k exists such that

|Φ(t)| ≤ k, t ≥ t0. (3.90)

Proof. The solution y(t) of (5.36) which takes the value c at t0 ∈ I is given by

y(t) = Φ(t)c (Φ(t0) = E).

Let the inequality (5.37) hold. Then for t ∈ I, |y(t)| = |Φ(t)c| ≤ k|c| < ε, if |c| < ε/k. The
origin is thus stable.

Conversely, let |y(t)| = |Φ(t)c| < ε, t ≥ t0 for all c such that |c| < δ. Then |Φ(t)| < ε/δ.
Choose k = ε/δ. Hence the inequality (5.37) follows. The proof is complete.

Theorem 3.16.2 (Theorem 6.22). The null solution of the system (5.36) is asymptotically
stable if and only if

|Φ(t)| → 0 as t→∞. (3.91)

Proof. The condition in (5.37) is a special case of (5.38). Hence the origin is obviously
stable. Further, since |Φ(t)| → 0 as t → ∞ in view of (5.38) |y(t)| → 0 as t → ∞. The
asymptotic stability follows.

The stability of (5.36) has already been considered when A(t) = A is a constant matrix.
It is known that if the characteristic roots of the matrix A have negative real parts then a
solution of (5.36) tends to zero as t → ∞. In fact, this is asymptotic stability. It has been
already proved that the fundamental matrix Φ(t) is given by

Φ(t) = e(t−t0)A, t0, t ∈ I. (3.92)

When the characteristic roots of the matrix A have negative real parts then two positive
constants M and ρ can be found such that

|e(t−t0)A| ≤Me−ρ(t−t0), t0, t ∈ I. (3.93)

Let the function f(t, x) satisfy the condition

|f(t, x)| = o(|x|) (3.94)

uniformly in t for t ∈ I. This implies that for x in a sufficiently small neighborhood of the

origin,
|f(t, x)|
|x|

can be made arbitrary small. The proof of the following result depends on

the use of Gronwall’s inequality.
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Theorem 3.16.3 (Theorem 6.23). In equation (5.35), let A(t) be a constant matrix A and
let all the characteristic roots of A have negative real parts. Assume further that f satisfies
the condition (5.8.3). Then the origin for the system (5.35) is asymptotically stable.

Proof. The solution of the equation (5.35) when A(t) = A is a constant matrix exists on
some subset of the interval I provided y(t0) = y0 is sufficiently small. We assume this result.
By the variation of parameters formula, the solution y(t) of the equation (5.35) passing
through (t0, y0) satisfies the integral equation

y(t) = e(t−t0)Ay0 +

∫ t

t0

e(t−s)Af(s, y(s))ds. (3.95)

The inequality (5.40) together with (5.42) yields

|y(t)| ≤M |y0|e−ρ(t−t0) +M

∫ t

t0

e−ρ(t−s)|f(s, y(s))|ds. (3.96)

which takes the form

|y(t)|eρt ≤M |y0|e ρt0 +M

∫ t

t0

e ρs|f(s, y(s))|ds.

Let |y0| < α. Then the relation (5.42) is true in any interval [t0, t1) for which |y(t)| < α.

In view of the condition (5.8.3), for a given ε > 0 we can find a positive number δ such
that

|f(t, x)| ≤ ε|x|, t ∈ I, (3.97)

for |x| < δ. Let us assume that |y0| < δ. Then, there exists a number T such that |y(t)| < δ
for t ∈ [t0, T ]. Using (5.44) in (5.43), we obtain

e ρt|y(t)| ≤M |y0|e ρt0 +Mε

∫ t

t0

e ρs|y(s)|ds, (3.98)

for t0 ≤ t < T . Applying Gronwall’s inequality to (5.45), it is seen that

e ρt|y(t)| ≤M |y0|e ρt0 .eM ε(t−t0). (3.99)

Hence, for t0 ≤ t < T , we obtain

|y(t)| ≤M |y0|e(M ε−ρ)(t−t0). (3.100)

Choose Mε < ρ and y(t0) = y0. If |y0| < δ/M , then (5.47) yields

|y(t)| < δ, t0 ≤ t < T .

The solution y(t) of the equation (5.35) exists locally at each point (t, y), t ≥ t0, |y| < α.
Since the function f(t, x) is defined on I × Sα, we can extend the solution y(t) interval
by interval by preserving the bound δ. Hence given any solution y(t) = y(t; t0, y0) with
|y0| < δ/M , it is defined on t0 ≤ t < ∞ and satisfies |y(t)| < δ. In the above discussion, δ
can be made arbitrarily small. Hence y(t) ≡ 0 is asymptotically stable when Mε < ρ.
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When the matrix A(t) is non-constant the relations between solutions of (5.35) and (5.36)
still exist but now the fundamental matrix needs to satisfy some stronger conditions. Let
the function f be continuous and satisfy the inequality

|f(t, x)| ≤ r(t)|x|, (3.101)

(t, x) ∈ I × Sα, where r(t) is a non-negative continuous function such that∫ ∞
t0

r(s)ds < +∞.

The condition (5.48) guarantees the existence of a null solution of (5.35). Now the following
result is proved on asymptotic stability of (5.35).

Theorem 3.16.4 (Theorem 6.24). Let the fundamental matrix Φ(t) satisfy the condition

|Φ(t)Φ−1(s)| ≤ K, (3.102)

where K is a positive constant and t0 ≤ s ≤ t < ∞. Let f satisfy the hypotheses given by
(5.48). Then, a positive constant M can be found such that if t1 ≥ t0, any solution y(t) of
(5.35) is defined and satisfies |y(t)| ≤ M |y(t1)|, t ≥ t1 whenever |y(t1)| < α/M . Moreover,
if the fundamental matrix |Φ(t)| → 0 as t→∞ then |y(t)| → 0 as t→∞.

Proof. Let t1 ≥ t0 and y(t) be any solution of (5.35) such that |y(t1)| < α. Then y(t) satisfies
the integral equation

y(t) = Φ(t)Φ−1(t1)y(t1) +

∫ t

t1

Φ(t)Φ−1(s)f(s, y(s))ds. (3.103)

for t1 ≤ t < T , where |y(t)| < α for t1 ≤ t < T .
In view of the conditions (5.48) and (5.49) we obtain

|y(t)| ≤ K|y(t1)|+K

∫ t

t1

r(s)|y(s)|ds

The Gronwall’s inequality now yields

|y(t)| ≤ K|y(t1)| exp
(
K

∫ t

t1

r(s)ds
)
. (3.104)

Note that due to the condition (5.48) the integral on the right side is bounded. Let

M = K exp
(
K

∫ ∞
t1

r(s)ds
)
.

Then
|y(t)| ≤M |y(t1)|. (3.105)

Clearly this inequality holds if |y(t1)| < α/M . By following the argument as in Theorem
6.23 we can extend the solution for all t ≥ t1. Hence the inequality (5.52) holds for t ≥ t1.

The general solution y(t) of (5.35) also satisfies the integral equation

y(t) = Φ(t)Φ−1(t0)y(t0) +

∫ t

t0

Φ(t)Φ−1(s)f(s, y(s))ds
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= Φ(t)y(t0) +

∫ t1

t0

Φ(t)Φ−1(s)f(s, y(s))ds+

∫ t

t1

Φ(t)Φ−1(s)f(s, y(s))ds.

Note that Φ(t0) = E. In view of the conditions (5.48), (5.49) and (5.52), we obtain

|y(t)| ≤ |Φ(t)||y(t0)|+ |Φ(t)|
∫ t1

t0

|Φ−1(s)||f(s, y(s))|ds+K

∫ ∞
t1

r(s)|y(s)|ds

≤ |Φ(t)||y(t0)|+ |Φ(t)|
∫ t1

t0

|Φ−1(s)||f(s, y(s))|ds+KM |y(t1)|
∫ ∞
t1

r(s)ds. (3.106)

The last term of the right side of the inequality (5.53) can be made less than (arbitrary) ε/2
by choosing t1 sufficiently large. By hypotheses Φ(t) → 0 as t → ∞. The first two terms
on the right side contain the term |Φ(t)|. Hence their sum together can be made arbitrarily
small by choosing t large enough, say less than ε/2. Thus |y(t)| < ε for large t. This proves
that |y(t)| → 0 as t→∞.

The inequality (5.52) shows that the origin is stable for t ≥ t1. But note that t1 ≥ t0 is
any arbitrary number. Here, condition (5.52) holds for any t1 ≥ t0. Thus this stability is
stronger than the stability of the origin defined previously. This is uniform stability. We do
not propose to go into the detailed study of such types of stability behaviors.

EXERCISES

1. Prove that all solutions of the system (5.36) are stable if and only if they are bounded.

2. Consider a linear nonhomogeneous system x′A(t)x + b(t), where b(t) is an n-vector
which is continuous for t ≥ t0. Prove that a solution x(t) is stable, asymptotically sta-
ble, unstable, if the same holds for the null solution of the corresponding homogeneous
system (5.36).

3. Prove that if the characteristic polynomial of the matrix A is stable, the matrix C(t) is
continuous on 0 ≤ t <∞ and

∫∞
0 |C(t)|dt <∞, then all solutions of x′ = (A+C(t))x

are asymptotically stable.

4. Prove that the system (5.36) is unstable if

Re
(∫ t

t0

tr A(s)ds
)
→∞, as t→∞.

5. Define the norm of a matrix A(t) by µ(A(t)) = lim
h→0

|E + hA(t)| − 1

h
, where E is the

n× n identity matrix.

(i) Prove that µ is a continuous function of t.

(ii) For any solution y(t) of (5.36) prove that

|y(t0)| exp
(
−
∫ t

t0

µ(−A(s))ds
)
≤ |y(t)| ≤ |y(t0)| exp

∫ t

t0

µ(A(s))ds.[
Hint : Let r(t) = |y(t)|. Then

r′+(t) = lim
h→0+

|y(t) + hy′(t)| − |y(t)|
h

.

Show that r′+(t) ≤ µ(A(t))r(t).
]
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(iii) When A(t) = A a constant matrix, show that | exp(tA)| ≤ exp[tµ(A)].

(iv) Prove that the trivial solution is stable if lim sup
t→∞

∫ t

t0

µ(A(s))ds <∞.

(v) Show that the trivial solution is asymptotically stable if∫ t

t0

µ(A(s))ds→ −∞ as t→∞.

(vi) Establish that the solution is unstable if lim inf
t→∞

∫ t

t0

µ(−A(s))ds = −∞.

3.17 Stability of Autonomous Systems

The previous section includes some stability properties of the equation (5.32). The function
f(t, x) in equation (5.32) depends on both variables t and x. In some physical problems the
time variable does not appear explicitly. For example, the equation x′ = k x(k is a constant)
representing the growth of population does not explicitly involve t. In situations of this type
the equation (5.32) takes the form

x′ = g(x) (3.107)

where g : Rn → Rn.
A system of the form (5.54) is called an autonomous system. Let us assume that the

function g together with its first partial derivatives with respect to x1, x2, · · · , xn are con-
tinuous in Sρ. Further let g(0) = 0 so that (5.54) admits the trivial solution. Presently, the
aim is to study the behavior of solutions of (5.54) on the interval I.

The main question which arise is how to determine the stability behavior of (5.54) when
a solution cannot be obtained in a closed form. Very few methods are known to solve
nonlinear differential equations to get a solution in a closed form. Lyapunov’s direct method
provides the study of stability of a solution without the actual knowledge of the solution.
Hence it is very useful too to determine stability properties of linear and nonlinear equations.
During the last twenty-five years many mathematicians have made interesting contributions
to this method. The study cannot be said to be complete since many problems still remain
unsolved.

This method involves the construction of a scalar function satisfying certain properties.
In fact, this method is the generalization of the energy concept in classical mechanics. It
is known that a mechanical system is stable if its energy(kinetic energy+ potential energy)
continuously decreases. These two energies are always positive quantities and are zero when
the system is completely at rest. Lyapunov thought of a generalized energy function which
is known as the ’Lyapunov function’. This function is generally denoted by V . The function
V : Sρ → R is said to be positive definite if the following conditions hold:

(i) V (x) and ∂V
∂xj

(j = 1, 2, · · · , n) be continuous on Sρ.

(ii) V (0) = 0.

(iii) V (x) is positive for all x ∈ Sρ and x 6= 0.

The definition of negative definite function can be written similarly. The function V (x)
attains the minimum value at the origin. Further the origin is the only point in Sρ at which
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the minimum value is attained. Since V (x) has continuous first order partial derivatives, the

chain rule may be used to obtain dV (x)
dt as

dV (x)

dt
= V (x) =

∂V (x)

∂x1

dx1
dt

+
∂V (x)

∂x2

dx2
dt

+ · · ·+ ∂V (x)

∂xn

dxn
dt

=

n∑
j=1

∂V (x)

∂xj
x′j = grad V (x).g(x).

The last step is true in view of (5.54). Observe that the derivative of V with respect
to t along a solution of (5.54) is now known to us, although we do not have the explicit
form of a solution. The conditions on the V function are not very stringent and it is
possible to construct several functions which satisfy these conditions. V (x) = x2( x scalar)
or V (x1, x2) = x41 + x42 are some of the simple examples.

It has been assumed that the scalar function V (x) = V (x1, x2, · · · , xn) is positive definite.
One can visualize the nature of this function in a three dimensional space. For this purpose
we consider a simple function V (x1, x2) = x21 + x22; clearly all the conditions (i),(ii) and (iii)
hold. Let z = x21 + x22. Since z ≥ 0 for all (x1, x2) the surface will always lie in the upper
part of the plane OX1X2. Further z = 0 when x1 = x2 = 0. Thus the surface passes through
the origin. This surface is like a parabolic mirror pointed upwards. It has an appearance as
shown in Fig.6.2.

Now consider a section of this cup-like surface by a plane parallel to the plane OX1X2.
This section is a curve x21 + x22 = k, z = k. Its projection on the OX1X2 plane is x21 + x22 =
k, z = 0. Clearly these are circles with radius k, and the center as the origin (Fig.6.3).
In a general situation, instead of circles, closed curves around the origin are obtained. The
geometrical picture for any Lyapunov function in three dimensional, in a small neighborhood
of the origin, is of this type. If we consider Lyapunov function in higher dimensions than
three the above discussion helps us to imagine the geometrical nature of such functions.

We state below three theorems regarding the stability behavior of the system (5.54).
The geometrical explanation given below these theorems describes the line of the proof. But
they are not proofs in a strict mathematical sense. In the next section we provide detailed
mathematical proofs of these theorems. Note further that the conditions guaranteeing the
different stability behavior are only sufficient.

Theorem 3.17.1 (Theorem 6.25). If there exists in Sρ a positive definite function V (x)
such that V̇ (x) ≤ 0 then, the origin of the equation (5.54) is stable.

Geometrical Interpretation : Let ε > 0 be an arbitrary number such that 0 < ε < ρ̄ < ρ,
where ρ̄ is some number very near ρ. Consider the hypersphere Sε. Find a constant K > 0
such that the surface V (x) = K lies inside Sε. Such a K always exists for each ε. Also a
number δ > 0 can be determined such that the hypersphere Sδ lies inside the oval-shaped
surface V (x) = K. Choose x0 ∈ Sδ. Obviously V (x0) < K. Let x(t; t0, x0) be a solution of
(5.54) through (t, x0). Since V̇ ≤ 0, i.e. V is non-decreasing along the solution, x(t; t0, x0)
will not reach the surface V (x) = K. This implies that the solution x(t; t0, x0) remains in
Sε. This is the case for each solution of (5.54). Hence the origin is stable.(See Fig.6.4)

Now V > 0 is continuous on the boundary of Sε. Note that the boundary of Sε is a
compact set. V actually attains the minimum value K on this set. Thus V (x) ≥ K on the
boundary of Sε. Since V (x) is continuous and V (0) = 0 a positive number δ can be found
sufficiently small such that V (x) < K for x ∈ Sδ. This proves the existence of δ.
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Theorem 3.17.2 (Theorem 6.26). If in Sρ there exists a positive definite function V such
that −V̇ is also positive definite, then the origin of the equation (5.54) is asymptotically
stable.

The hypotheses of this theorem include the hypotheses of Theorem 6.25. It is concluded
that the origin is stable. Since −V̇ is positive definite, V (x) decreases along the solution.
Assume that lim

t→∞
V (x(t, t0, x0)) = l where l > 0. It is proved that this is impossible. This

implies that −V̇ tends to zero outside a hypersphere Sr1 for some r1 > 0. But this cannot
be true since −V̇ is positive definite. Hence

lim
t→∞

V (x(t, t0, x0)) = 0.

This implies that lim
t→∞
|x(t; t0, x0)| = 0. Thus the origin is asymptotically stable. (see Fig.

6.5).

Theorem 3.17.3 (Theorem 6.27(Cetav)). Let V (x) be given function and N a region in Sρ
such that

(i) V (x) has continuous first partial derivatives on N ;

(ii) at the boundary points of N(inside Sρ), V (x) = 0;

(iii) the origin is on the boundary of N ;

(iv) V (x) and V̇ (x) are positive on N .

Then the origin of 6.53 is unstable.

Figure 6.6 explains the conditions of the theorem for a function V (x) = V (x1, x2). Notice
that the boundary of N in Sρ is defined by V (x) = 0. Figure 6.6 shows the curves V (x) =
K1, V (x) = K2, K2 > K1 (K1 and K2 are constants). Consider a solution x(t; t0, x0)
through (t0, x0). Now V (x) is positive on N . The solution moves in the increasing direction
of the function V (x). This is the case even though x0 is very close to the origin. The
direction of increasing V (x) is away from the origin which proves that the origin is unstable.

Example 3.17.4 (Example 6.28). Consider the systems x′1 = −x2, x′2 = x1. The system is
autonomous and possesses a trivial solution. Let V (x1, x2) = x21 + x22. Clearly, V (x1, x2) is
positive definite. The derivative V̇ along the solution is V̇ (x1, x2) = 2[x1(−x2) + x2(x1)] =
0. The hypotheses of Theorem 6.25 holds. Hence the origin is stable. Geometrically it is
observed that since x1x

′
1 +x2x

′
2 = 0, x21 +x22 = c(c is arbitrary constant) is a solution which

represents circles with the origin as the center. Further (0, 0) is the only critical point.
The solutions are represented in Fig 6.7. Note that none of the solutions tend to zero.

Hence it is not a case of asymptotic stability.

Example 3.17.5 (Example 6.29). Consider the system

x′1 = (x1 − bx2)(αx21 + βx22 − 1)
x′2 = (ax1 + x2)(αx

2
1 + βx22 − 1).

Let V (x1, x2) = ax21 + bx22. When a > 0, b > 0, V (x1, x2) is positive definite.

V̇ (x1, x2) = 2(ax21 + bx22)(αx
2
1 + βx22 − 1).
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Let α > 0, β > 0. If αx21 + βx22 < 1 then V̇ (x1, x2) is negative definite. The trivial solution
is asymptotically stable since V (x1, x2) satisfies the conditions of Theorem 6.26.

Example 3.17.6 (Example 6.30). Consider the system

x′1 = x2 − x1f(x1, x2)
x′2 = −x1 − x2f(x1, x2),

where f is represented by a convergent power series in x1, x2 and f(0, 0) = 0. Let V =
1
2(x21 + x22). Then V̇ (x1, x2) = −(x21 + x22)f(x1, x2). Clearly if f(x1, x2) ≥ 0 arbitrarily near
the origin, the origin is stable. If f is positive definite in some neighborhood of the origin,
the origin is asymptotically stable. If f(x1, x2) < 0 arbitrarily near the origin, the origin is
unstable.

EXERCISES

1. Determine the nature of the following functions with regard to positive definiteness or
negative definiteness:

(i) 4x21 + 3x1x2 + 2x22,

(ii) −3x21 − 4x1x2 − x22,
(iii) 10x21 + 6x1x2 + 9x22,

(iv) −x21 − 4x1x2 − 10x22.

2. Prove that ax21 + bx1x2 + cx22 is positive definite if a < 0 and b2−4ac < 0 and negative
definite if a < 0 and b2 − 4ac > 0.

3. Consider the quadratic form xTRx where x is a n-column-vector and R = [rij ] is an
n×n symmetric matrix. Prove that this quadratic form is positive definite if and only
if r11 > 0, r11r22 − r21r12 > 0 and det[rij ] > 0, i = 1, 2, · · · ;m = 3, 4, · · · , n.

4. Find the condition under which the following matrices are positive definite:

(i) 1
ab−c

 ac c 0
c a2 + b a
0 a 1


(ii) 1

9−a

 6a+27
a a+ 2a 9− a

9 + 2a a(a+ 3) 3a
9− a 3a 3a

.

5. Let V (x1, x2) = 1
2x

2
2 +

∫ x1
0 f(s)ds where f(x) is such that f(0) = 0, and xf(x) > 0 for

x 6= 0. Show that V (x1, x2) is positive definite.

6. Show that the trivial solution of the equation x′′ + f(x) = 0, where f is a continuous
function on |x| < ρ, f(0) = 0 and xf(x) > 0 is stable.

7. Show that the following systems are asymptotically stable:

(i) x′1 = −x2 − x31, x′2 = x1 − x32.
(ii) x′1 = −x31 − x1x32, x′2 = x41 − x32.
(iii) x′1 = −x31 − 3x2, x′2 = 3x1 − 5x32.
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8. Consider the system

x′1 = −x1 + 2x1(x1 + x2)
2

x′2 = −x32 + 2x32(x1 + x2)
2

Show that the origin is asymptotically stable if |x1|+ |x2| < 1/
√

2.

3.18 Stability of Non-autonomous Systems

The study of the stability properties of non-autonomous systems involves some difficulties.
Systems of this kind are given by (5.32). For this purpose a Lyapunov function V (t, x) is
needed which depends on t and x. Let f in (5.32) be such that f(t, 0) ≡ 0, t ∈ I. Let f
together with its first partial derivative be continuous on I × Sρ. This condition guarantees
the existence and the uniqueness of solutions. For stability it is assumed that solutions of
(5.32) exist on the entire time interval I and that the trivial solution is the equilibrium or
the steady state.

Definition 3.18.1 (Definition 6.31). A real valued function φ is said to belong to the class
K if

(i) φ is defined and continuous on 0 ≤ r <∞,

(ii) φ is strictly increasing on 0 ≤ r <∞,

(iii) φ(0) = 0 and φ(r)→∞ as r →∞.

The function φ(r) = αr2, α > 0, is of class K .

Definition 3.18.2 (Definition 6.32). A real valued function V (t, x) defined on I × Sρ is
said to be positive definite if V (t, 0) = 0 and there exists a function φ ∈ K such that
V (t, x) ≥ φ(|x|), (t, x) ∈ I × Sρ. It is negative definite if V (t, x) ≤ −φ(|x|).

The function V (t, x) = (t2 + 1)x4 is positive definite since V (t, 0) = 0 and φ ∈ K can be
found (φ(r) = r4), such that V (t, x) ≥ φ(|x|).

Definition 3.18.3 (Definition 6.33). A real valued function V (t, x) defined on I×Sρ is said
to be decrescent if there exists a function ψ ∈ K such that in a neighborhood of the origin
and for all t ≥ t0, V (t, x) ≤ ψ(|x|).

The function V (t, x1, x2) = 1
t2+1

(x21 + x22), (t, x) ∈ I ×R2, is decrescent. In this case, we

can choose Ψ(r) = r2. The function V (t, x1, x2) = (1+e−t)(x21 +x22) is both positive definite
and decrescent since x21+x22 ≤ (1+e−t)(x21+x22) ≤ 2(x21+x22). Choose φ(r) = r2, ψ(r) = 2r2.

The following hypotheses (H*) is assumed:

(H*) Let V (t, x) be such that V (t, 0) = 0 for t ∈ I, V (t, x) is bounded and the first order
partial derivatives of V with respect to xi(i = 1, 2, · · · , n) are continuous on I × Sρ.

The chain rule is now applied to get the derivative V̇ (t, x). Since (H*) holds, it is seen
that

V̇ (t, x) =
dV (t, x)

dt
=
∂V (t, x)

∂t
+

n∑
i=1

∂V

∂xi

dxi
dt
.
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Our interest is in the derivative of V (t, x) along a solution x(t) of the system (5.32). Indeed,
we have

V̇ (t, x(t)) =
∂V (t, x(t))

∂t
+

n∑
i=1

∂V (t, x(t))

∂xi
fi(t, x(t)).

It is to be noted that the derivative of V (t, x) with respect to the system (5.32) i.e. along
the solution of (5.32) does not depend directly on the knowledge of the solution.

We are now set to prove the fundamental theorems on the stability of the equilibrium of
the system (5.32).

Theorem 3.18.4 (Theorem 6.34). Let a function V (t, x) exists satisfying the hypotheses
(H*) and such that it is positive definite and V̇ (t, x) ≤ 0; then the system (5.32) is stable.

Proof. The function V is positive definite. Hence, there exists a function φ ∈ K such that

0 ≤ φ(|x|) ≤ V (t, x), |x| < ρ, t ∈ I. (3.108)

Let x(t) = x(t; t0, x0) be a solution of (5.32). Since V̇ (t, x) ≤ 0, it is seen that

V (t, x(t; t0, x0)) ≤ V (t0, x0), t ∈ I. (3.109)

Since V is a continuous function, given ε > 0, a number δ = δ(ε) > 0 can be found so that

V (t0, x0) < φ(ε), (3.110)

whenever |x0| < δ. Now the inequalities (5.55) and (5.56) yield

0 ≤ φ(|x(t; t0, x0)|) ≤ V (t, x(t; t0, x0)) ≤ V (t0, x0) < φ(ε).

Hence, |x(t; t0, x0)| < ε for t ∈ I, whenever |x0| < δ which shows that the origin is stable.

The next theorem provides us sufficient conditions for the asymptotic stability of the
origin.

Theorem 3.18.5 (Theorem 6.35). Let the function V (t, x) satisfying the hypotheses (H*)
exists such that V (t, x) is positive definite and decrescent, and V̇ (t, x) is negative definite.
Then, the system (5.32) is asymptotically stable.

Proof. Let x(t; t0, x0) be a solution of (5.32). Since the hypotheses of Theorem 6.35 include
those of Theorem 6.34, the null solution of (5.32) is stable. Hence, given ε > 0 assume that
there exist two positive numbers and λ such that 0 < λ ≤ |x(t; t0, x0)| < ε, t ≥ t0, whenever
|x0| < δ. By hypotheses, since V̇ (t, x) is negative definite, there exists a function σ ∈ K
such that

V̇ (t, x(t; t0, x0)) ≤ −σ(|x(t; t0, x0)|). (3.111)

Further suppose that |x(t; t0, x0)| ≥ λ > 0 for t ≥ t0. In view of (5.58) a number γ > 0 can
be found out such that

V̇ (t, x(t; t0, x0)) ≤ −γ < 0, t ≥ t0.
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Integrating both sides of this inequality, we get

V (t, x(t; t0, x0)) ≤ V (t0, x0)− γ(t− t0). (3.112)

For large value of t the right side of (5.59) becomes negative which contradicts the fact that
V is positive definite. The assumption that |x(t; t0, x0)| ≥ λ > 0 for t ∈ I is false. No such
λ exists. Since V (t, x) is a positive definite and decrescent function, V (t, x(t; t0, x0)) → 0
as t → ∞ and therefore it follows that |x(t; t0, x0)| → 0 as t → ∞. Thus the origin is
asymptotically stable.

In some cases ρ may be infinite. Thus it is possible that the system is asymptotically
stable for any choice of x0. The following theorem is stated without proof which provides
sufficient conditions for the asymptotic stability in the large.

Theorem 3.18.6 (Theorem 6.36). The equilibrium state of (5.32) is asymptotically stable
in the large if there exists, a positive definite function V (t, x) which is decrescent everywhere
and such that V (t, x)→∞ as |x| → ∞ for each t ∈ I and such that V̇ is negative definite.

Example 3.18.7 (Example 6.37). Consider the system x′ = A(t)x, where A(t) = (aij),
aij = −aji, i 6= j and aij ≤ 0, for all values of t ∈ I and i, j = 1, 2, · · · , n. Let V (x) =
x21 + x22 + · · ·+ x2n. Obviously V (x) > 0 for x 6= 0 and V (0) = 0. Further

V̇ (x(t)) = 2
n∑
i=1

xi(t)x
′
i(t) = 2

n∑
i=1

xi(t)
[ n∑
j=1

aijxj(t)
]

= 2
n∑
i=1

n∑
j=1

aijxi(t)xj(t) = 2
n∑
i=1

aiix
2
i (t) ≤ 0.

The last step is obtained by using the assumption for the matrix A(t). Now the conditions
of the Theorem 6.34 hold and so the origin is stable. If aii < 0 for all values of t then it is
seen that V̇ (x(t)) < 0 which implies asymptotic stability of the origin of the given system.

EXERCISES

1. (i) Show that V (t, x1, x2) = t(x21 + x22)− 2x1x2 cos t is positive definite for n = 2 and
t > 2.

(ii) Prove that x21(1+sin2 t)+x22(1+cos2 t) is positive definite for all values of (t, x1, x2).

2. Show that

(i) (x21 + x22) sin2 t is decrescent.

(ii) x21 + (1 + t)x22 is positive definite but not decrescent.

(iii) x21 + 1
1+t2

x22 is decrescent but not positive definite.

(iv) x21 + e−2tx22 is decrescent.

(v) (1 + e−2t)((x21 + x22)) is positive definite and decrescent.

3. Prove that a function V (t, x) which has bounded partial derivatives ∂V
∂xi

(i = 1, 2, · · · , n)
on Sρ for t ≥ t0 ≥ 0 is decrescent.
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4. Consider the equation x′ = −x − x
t (1 − x

2t2). For y = tx it becomes y′ = y(y2 − 1).
Prove that the trivial solution is stable when, for a fixed t0, |x0| ≤ 1

t0
.

5. For the system

x′1 = etx2 − (t2 + 1)x1(x
2
1 + x22)

x′2 = −etx1 − (t2 + 1)x2(x
2
1 + x22),

show that the origin is asymptotically stable.

6. Prove that the trivial solution of the system

x′1 = a(t)x2 + b(t)x1(x
2
1 + x22)

x′1 = −a(t)x1 + b(t)x2(x
2
1 + x22)

is stable if b(t) ≤ 0, asymptotically stable if b(t) ≤ q < 0 and unstable if b(t) > 0.

3.19 A Particular Lyapunov Function

Consider a linear system
x′ = Ax, x ∈ Rn, (3.113)

where A = (aij) is an n× n constant matrix. The aim is to study the stability of (5.60) by
Lyapunov’s direct method. The stability is determined by the nature of the characteristic
roots of the matrix A. Let V (x) represent a quadratic form

V (x) = xTRx, (3.114)

where R = (rij) is an n×n constant, positive definite, symmetric matrix. The time derivative
of V (x) along the solution of (5.60) is given by

V̇ (x) = x′TRx+ xTRx′ = xTATRx+ xTRAx

= xT (ATR+RA)x = −xTQx,

where
Q = −(ATR+RA). (3.115)

Here Q = (qij) is n×n constant symmetric matrix. For the asymptotic stability of (5.60) the
time derivative of V (x) needs to be negative definite. Hence, the matrix Q given by (5.62)
must be positive definite. If we start with an arbitrary matrix R then, the matrix Q need
not be positive definite. Hence, in order that V (x) given by (5.61) be a Lyapunov function,
the matrix R needs to be selected properly. One way out for this is that Q is assumed as an
arbitrary positive definite matrix and the equation (5.62) is solved for the matrix R. The
positive definiteness of the matrices R and Q is a necessary and sufficient condition for the
asymptotic stability of the linear system (5.60).

The sufficiency of this condition is obvious. The function V (x) is positive definite and
V̇ (x) is negative definite. The conditions of Theorem 6.26 are satisfied and hence the system
(5.60) is discussed below. The matrix Q is assumed to be positive definite and the equation
(5.62) is solved for R. The question is :

Under what conditions the equation (5.62) gives rise to a unique solution?
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It is remarked that the equation (5.62) unaffected if the system (5.60) is transformed from x-
system to y-system by the relation x = Py, where P is a non-singular constant matrix. The
system (5.60) is then transformed into y′ = (P−1AP )y. Thus, the matrix A is transformed
to P−1AP . Now choose the matrix P such that P−1AP is a triangular matrix. Such
a transformation is always possible by Jordan normal form. Hence, there is no loss of
generality by assuming in (5.60) that, the matrix A is such that its main diagonal consists
of eigenvalues of A and for i < j, aij = 0. The triangular matrix A has the following form:

A =


λ1 0 0 · · · 0
a21 λ2 0 · · · 0
a31 a32 λ3 · · · 0
...

...
...

. . .
...

an1 an2 an3 · · · λn

.

Now the equation (5.62) is
λ1 a21 a31 · · · an1
0 λ2 a32 · · · an2
...

...
...

. . .
...

0 0 0 · · · λn



r11 r12 r13 · · · r1n
r21 r22 r23 · · · r2n
...

...
...

. . .
...

rn1 rn2 rn3 · · · rnn



+


r11 r12 r13 · · · r1n
r21 r22 r23 · · · r2n
...

...
...

. . .
...

rn1 rn2 rn3 · · · rnn



λ1 0 0 · · · 0
a21 λ2 0 · · · 0
...

...
...

. . .
...

an1 an2 an3 · · · λn



= −


q11 q12 q13 · · · q1n
q21 q22 q23 · · · q2n
...

...
...

. . .
...

qn1 qn2 qn3 · · · qnn

.

Now the elements on both the side are equated. This result in a system of equations of the
form (λj +λk)rjk = −qjk + δjk(· · · , rhk, · · · ), where δjk is a linear form in rhk, h+k > j+k,
with coefficients in ars. In the case of asymptotic stability all the characteristic roots of
A have negative real parts. Hence, this system can be solved for rjk. The solution of this
linear system is unique if the determinant of the coefficients is non-zero. Obviously the
determinant contains the product of the coefficients of the form λj + λk. Thus the matrix
R is uniquely determined. If none of the characteristic roots λi is zero and further the sum
of any two different roots is not zero.

The following example illustrates the procedure in determining the matrix R.

Example 3.19.1 (Example 6.38). Consider the system

x′1 = −3x1 + kx2, x′2 = −2x1 − 4x2.

In this case A =

[
−3 k
−2 4

]
. Let Q be an arbitrary positive definite matrix, say

Q =

[
2 0
0 2

]
.
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Now Eq. (5.62) is[
−3 −2
k −4

] [
r11 r12
r21 r22

]
+

[
r11 r12
r21 r22

] [
−3 k
−2 4

]
=

[
−2 0
0 −2

]
.

Equating the terms on both sides, we get on solving the system of equations

r11 =
16 + k

7(k + 6)
, r12 = r21 =

−3 + 2k

7(k + 6)
, r22 =

21 + 2k + k2

14(k + 6)
.

Thus

R =
1

14(k + 6)

[
32 + 2k −6 + 4k
−6 + 4k 21 + 2k + k2

]
.

Now R is positive definite if

(i)
32 + 2k

14(k + 6)
> 0,

(ii)
(32 + 2k)(21 + 2k + k2)− (4k − 6)2

14(k + 6)
> 0.

Consequently, it is true if k > −6 or k < −16. Choose any k satisfying this condition to
obtain the matrix R which is positive definite. Thus the given system is asymptotically stable
for all x.

The stability of the system (5.60) is clear if the nature of the characteristic roots of A
is known. The Lyapunov function (5.61) can also be used to study the stability behavior
of certain nonlinear systems which are related to the system (5.60). Consider the following
system of equation in a vector form

x′ = g(x), (3.116)

where g(0) = 0. Let the Taylor’s expansion of g(x) about the origin be

g(x) = g(0) +

n∑
i=1

( ∂g
∂xi

)
x=0

xi +

n∑
j=1

n∑
i=1

( ∂2g

∂xi∂xj

)
x=0

xixj + the terms of higher order.

Let us denote ∂gi
∂xj

by aij . Then equation (5.63) may be written as

x′ = Ax+ f(x), (3.117)

where f(x) contains terms of order two or more and A = [aij ]. Now we consider the system
(5.64) for stability behavior. The homogeneous part is the system (5.60). Let the Lyapunov
function be V (x) = xTRx, where R is the unique solution of the equation (5.62). We
have already discussed the method to determine the matrix R. Thus, when A is a stable
matrix the system (5.60) is asymptotically stable. It is to be remarked that the asymptotic
stability property of (5.60) holds for all x. In such a case, the system (5.60) is said to be
asymptotically stable in the large or that it is globally asymptotically stable.

For the asymptotic stability of the zero solution system (5.64), the function f has crucial
role to play. It is natural that if f is small then there may be at least a small region
containing the origin wherein the zero solution of the system (5.64) is asymptotically stable.
With this short introduction let us employ the same Lyapunov function (5.61) to determine
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the stability of the origin of (5.64). Now the time derivative of V (x) along a solution of
(5.64) is

V̇ (x) = x′TRx+ xTRx′ = (xTAT + fT )Rx+ xTR(Ax+ f)

= xT (ATR+RA)x+ fTRx+ xTRf = −xTQx+ 2xTRf, (3.118)

because of (5.62) and (5.64). The second term on the right side of (5.65) contains terms of
degree three or higher in x. The first one contains a term of degree two in x. The first term
is negative whereas the sign of the second term depends on f . Whatever the second term
is, at least a small region containing the origin can definitely be found such that the first
term predominates the second term and thus, in this small region the sign of V̇ (x) remains
negative. This implies that the zero solution of nonlinear equation (5.64) is asymptotically
stable. Obviously this stability is local since the negative definiteness of V̇ (x) is only in a
small region around origin.

The above discussion shows that the asymptotic stability of a system need not be the
entire region. It may be a subset of Rn. It is therefore interesting in each case to determine
such a subset. At this juncture a Lyapunov function is very handy and useful.

Definition 3.19.2 (Definition 6.39). The region of stability for a differential equation (5.64)
is the set of all initial points x0 such that

lim
t→∞

x(t, t0, x0) = 0.

If the stability region is the whole of Rn then we get the asymptotic stability in the large
or global asymptotic stability. We give below a method of determining the stability region
for the system (5.64).

Consider below a surface V (x) = k (where k is a constant to be determined) lying entirely
inside the surface V̇ (x) = 0. Now find k such that V (x) = k is tangential to the surface
V̇ (x) = 0. Then stability region for the system (5.64) is the set {x : V (x) ≤ k}.

Example 5.8.3 given below illustrates a procedure for finding the region of stability.

Example 3.19.3. Consider a nonlinear system[
x1
x2

]′
=

[
−1 3
−3 −1

] [
x1
x2

]
+

[
0
x22

]
.

Let V (x) = xTRx, where R is the solution of the equation[
−1 −3
3 −1

]
R+R

[
−1 3
−3 −1

]
= Q

Choose Q =

[
4 0
0 4

]
, so that R =

[
2 0
0 2

]
. Thus

V (x1, x2) = 2(x21 + x22)

V̇ (x1, x2) = 4(x1x
′
1 + x2x

′
2) = 4[−x21 − x22(1− x2)]

with respect to the given system. To find the region of asymptotic stability consider the
surface V̇ (x1, x2) = 4[−x21 − x22(1− x2)] = 0. Clearly when x2 < 1, V̇ (x1, x2) < 0 for all x1.
Hence, V (x) = 2(x21 + x22) ≤ 1 is the region which lies in the region V̇ (x1, x2) < 0. The size
of the stability region thus obtained depends on the choice of a matrix Q.

122



EXERCISES

1. Prove that the stability properties of solutions the equation (5.62) remains unaffected
by a transformation x = Py, where P is a non-singular matrix.

2. If R is a solution of the equation (5.62) then, prove that so is RT and hence, RT = R.

3. The matrices A and Q are given below. Find a matrix R satisfying the equation (5.62)
for each of the following cases.

(i) A =

[
0 1
−2 −3

]
, Q =

[
2 0
0 2

]
;

(ii) A =

[
−1 3
−3 −1

]
, Q =

[
4 0
0 4

]
; and

(iii) A =

[
−3 −5
−2 −4

]
, Q =

[
2 0
0 2

]
.

4. For the system  x1
x2
x3

′ =
 0 p 0

0 −2 1
−1 −1 −1

 x1
x2
x3

.

Choose

Q =

 2 0 0
0 0 0
0 0 0

.

Determine the value/vaues of p for which the matrix R is positive definite.

5. For the system
x′1 = −x1 + 2x2, x

′
2 = −2x1 + x2 + x22

find the region of the asymptotic stability.

6. Prove that the zero solution of the system

(x1, x2)
′ = (−x1 + 3x2,−3x1 − x2 − x32)

is asymptotically stable.
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Module 4

Oscillations and Boundary Value
Problems

Lecture 22

4.1 Introduction

Qualitative properties of solutions of differential equations assume importance in the absence
of closed form solutions. In case the solutions are not expressible in terms of the usual
“known functions”, an analysis of the equation is necessary to find the various facets of the
solutions. One such qualitative property, which has wide applications, is the oscillation of
solutions. We again stress that it is but natural to expect to know the solution in an explicit
form which unfortunately is not always possible. A rewarding alternative is to resort to
qualitative study. The point is asserted once again to justify the inclusion of qualitative
theory to students who think that it is otherwise out of place.

Before proceeding further, some definitions and their consequences are looked into as a
part of the ground work. Consider a second order equation

x′′ = f(t, x, x′), t ≥ 0, (4.1)

and let x be a solution of equation (4.1) existing on [0,∞). Unless or otherwise mentioned
we understand (in this chapter) that a solution means a non-trivial solution.

Definition 4.1.1. A point t = t∗ ≥ 0 is called a zero of a solution x of the equation (4.1) if
x(t∗) = 0.

Definition 4.1.2. (a) Equation (4.1) is called “non-oscillatory” if for every solution x there
exists t0 > 0 such that x does not have a zero in [t0,∞)

(b) Equation (4.1) is called “oscillatory” if (a) is false.

Example 4.1.3. Consider the linear equation

x′′ − x = 0, t ≥ 0.

It is an easy matter to show that the above equation is non-oscillatory once we recognize
that the general solution is Aet +Be−t where A and B are constants.
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Example 4.1.4. The equation

x′′ + x = 0

is oscillatory. The general solution in this case is

x(t) = A cos t+B sin t, t ≥ 0

and without loss of generality we assume that both A andB are non-zero constants; otherwise
x is trivially oscillatory. It is easy to show that x has a zero at

nπ + tan−1(A/B), n = 0, 1, 2, · · ·

and so the equation is oscillatory.

In this chapter we restrict our attention to only second order linear homogeneous equa-
tions. There are results concerning higher order equations. We conclude the introduction
with a few basic results concerning linear equations.

x′′ + a(t)x′ + b(t)x = 0, t ≥ 0, (4.2)

where a and b are real valued continuous functions defined on [0,∞)

Theorem 4.1.5. Assume that a′ exists and is continuous for t ≥ 0. Equation (4.2) is
oscillatory if, and only if, the equation

x′′ + c(t)x = 0 (4.3)

is oscillatory, where

c(t) = b(t)− 1

2
a2(t)− a′(t)

2
.

The equation (4.3) is called the “normal” form of equation (4.2).

Proof. Let x be any solution of (4.2). Consider a transformation

x(t) = v(t)y(t)

where v and y are twice differentiable functions. The computation of x′, x′′ and their sub-
stitution in (4.2) gives us

vy′′ + (2v′ + a(t)v)y′ + (v′′ + a(t)v′ + b(t)v)y = 0.

Thus, equating the coefficients of y′ to zero, it is seen that

v(t) = exp(−1

2

∫ t

0
a(s)ds)

.

Therefore y satisfies a differential equation

y′′ + c(t)y = 0, t ≥ 0

where c(t) = b(t)− 1
2a

2(t)− a′(t)
2 .Actually, if x is a solution of (4.2), then
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y(t) = x(t) exp(
1

2

∫ t

0
a(s)ds)

is a solution of (4.3). Similarly if y is a solution of (4.3) then

x(t) = y(t) exp(−1

2

∫ t

0
a(s)ds)

is a solution of (4.2). Thus, the theorem holds.

Remark We note that (4.2) is oscillatory if and only if (4.3) is oscillatory. Although
the proof of the Theorem 4.1.5 is elementary the conclusion simplifies subsequent work to a
great extent.

The following two theorems are of interest in themselves.

Theorem 4.1.6. Let x1 and x2 be two linearly independent solutions of (4.2). Then, x1
and x2 do not admit common zeros.

Proof. Suppose t = a is a common zero of x1 and x2. Then, the Wronskian of x1 and
x2 vanishes at t = a. Thus, it follows that x1 and x2 are linearly dependent which is a
contradiction to the hypothesis or else x1 and x2 cannot have common zeros.

Theorem 4.1.7. The zeros of a solution of (4.2) are isolated.

Proof. Let t = a be a zero of a solution x of (4.2). Then ,x(a) = 0 and x′(a) 6= 0, otherwise
x ≡ 0, which is not the case, since x is a non-trivial solution. There are two cases.
Case 1:

x′(a) > 0.

Since the derivative of x is continuous and positive at t = a it follows that x is strictly
increasing in some neighborhood of t = a which means that t = a is the only zero of x in
that neighborhood. This shows that the zero t = a of x is isolated.
Case 2:

x′(a) < 0.

The proof is similar to that of case 1 with minor changes.

EXERCISES

1. Prove that the equation (4.2) is non-oscillatory if and only if the equation (4.3) is
non-oscillatory.

2. If t1, t2, · · · , tn, · · · are zeros of a solution x of (4.2) in (0,∞), then show that lim tn =∞
as n→∞.

3. Prove that any solution x of (4.2) has at most a countable number of zeros in (0,∞).

4. Show that the equation

x′′ + a(t)x′ + b(t)x = 0, t ≥ 0 (*)
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transforms into an equation of the form

(p(t)x′)′ + q(t)x = 0, t ≥ 0 (**)

by multiplying (*) throughout by exp(
∫ t
0 a(s)ds), where a and b are continuous func-

tions on [0,∞),

p(t) = exp(
∫ t
0 a(s)ds), q(t) = b(t)p(t).

State and prove a theorem similar to Theorem 4.1.5 for equation (*) and (**). Also
show that if a(t) ≡ 0, then, (**) reduces to x′′ + q(t)x = 0, t ≥ 0.

Lecture 23

4.2 Sturm’s Comparison Theorem

The phrase “comparison theorem” for differential equation is used in the sense stated below:

‘ If a solution of a differential equation has a certain known property P then the solution
of a second differential equation have the same or some related property P under certain
hypothesis.’

Sturm’s comparison theorem is a result in this direction concerning zeros of solutions of
a pair of linear homogeneous differential equations. Sturm’s theorem has varied interesting
implications in the theory of oscillations.

Theorem 4.2.1. (Sturm’s Comparison Theorem)
Let p, r1, r2 and p be continuous functions on (a, b) and p > 0. Assume that x and y are real
solutions of

(px′)′ + r1x = 0, (4.4)

(py′)′ + r1y = 0 (4.5)

respectively on (a, b). If r2(t) ≥ r1(t) for t ∈ (a, b) then between any two consecutive zeros
t1, t2 of x in (a, b) there exists at least one zero of y (unless r1 ≡ r2) in [t1, t2]. Moreover,
when r1 ≡ r2 in [t1, t2] the conclusion still holds if x and y are linearly independent .

Proof. If possible, let y be positive in (t1, t2). Without loss of generality let us assume that
x(t) > 0 on (t1, t2) . Multiplying (4.4) and (4.5) by y and x respectively and subtraction
leads to

(px′)′y − (py′)′x− (r2 − r1)xy = 0,

which, on integration gives us∫ t2

t1

[(px′)′y − (py′)′x] dt =

∫ t2

t1

(r2 − r1)xy dt.

If r2 6= r1 on (t1, t2), then, r2(t) > r1(t) in a small interval of (t1, t2) and therefore∫ t2

t1

[(px′)′y − (py′)′x] > 0. (4.6)

Using the identity
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d

dt
[p(x′y − xy′)] = (px′)′y − (py′)′x,

now the inequality (4.6) implies

p(t2)x
′(t2)y(t2)− p(t1)x′(t1)y(t1) > 0, (4.7)

since x(t1) = x(t2) = 0. However, x′(t1) > 0 and x′(t2) < 0 as x is a non-trivial solu-
tion which is positive in (t1, t2). As py is positive at t1 as well as at t2, (4.7) leads to a
contradiction.

Again, if r1 ≡ r2 on [t1, t2], then in place of (4.7), we have

p(t2)y(t2)x
′(t2)− p(t1)y(t1)x

′(t1) ≥ 0.

which again leads to a contradiction as above unless y is a multiple of x. This completes the
proof.

Remark : What Sturm’s comparison theorem asserts is that the solution y has at least
one zero between two successive zeros t1 and t2 of x. Many times y may vanish more than
once between t1 and t2. As a special case of Theorem 4.3,we have

Theorem 4.2.2. Let r1 and r2 be two continuous functions such that r2 ≥ r1 on (a, b). Let
x and y be solutions of equations

x′′ + r1(t)x = 0 (4.8)

and
y′′ + r2(t)y = 0 (4.9)

on the interval (a, b). Then y has at least a zero between any two successive zeros t1 and t2
of x in (a, b) unless r1 ≡ r2 on [t1, t2]. Moreover, in this case the conclusion remains valid
if the solutions y and x are linearly independent.

Proof. the proof is immediate if we let p ≡ 1 in Theorem 4.3. Notice that the hypotheses of
Theorem 4.3 are satisfied.

The celebrated Sturm’s separation theorem is an easy consequence of Sturm’s comparison
theorem as shown below.

Theorem 4.2.3. (Sturm’s Separation Theorem) Let x and y be two linearly independent
real solutions of

x′′ + a(t)x′ + b(t)x = 0, t ≥ 0 (4.10)

where a, b are real valued continuous functions on (0,∞). Then, the zeros of x and y separate
each other, i.e. between any two consecutive zeros of x there is one and only one zero of y.
(Note that the roles of x and y are interchangeable.)

Proof. First we note that all the hypotheses of Theorem 4.3 are satisfied by letting

r1(t) ≡ r2(t) = b(t) exp
( ∫ t

0
a(s)ds

)
p(t) = exp

( ∫ t

0
a(s)ds

)
So between any two consecutive zeros of x, there is at least one zero of y. By repeating the
argument with x in place of y, it is clear that between any two consecutive zeros of y there
is a zero of x which completes the proof.
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By setting a ≡ 0 in Theorem 4.2.3 gives us the following result.

Corollary 4.2.4. Let r be a continuous function on (0,∞) and let x and y be two linearly
independent solutions of

x′′ + r(t)x = 0.

Then, the zeros of x and y separate each other.

A few comments are warranted on the hypotheses of Theorem 4.3. Example shows that
Theorem 4.3 fails if the condition r2 ≥ r1 is dropped.

Example 4.2.5. Consider the equations

(i) x′′ + x = 0, r1(t) ≡ +1, t ≥ 0,

(ii) x′′ − x = 0, r2(t) ≡ −1, t ≥ 0.

All the conditions of Theorem 4.3 are satisfied except that r2 is not greater than r1. We
note that between any consecutive zeros of a solution x ( of (i), any solution y of (ii) does
not admit a zero. Thus, Theorem 4.3 may not hold true if the condition r2 ≥ r1 is dropped.

Assuming the hypotheses of Theorem 4.3, let us pose a question: is it true that between
any two zeros of a solution y of equation (4.5) there is a zero of a solution x of equation
(4.4)? The answer to this question is in the negative as is clear from Example .

Example 4.2.6. Consider

x′′ + x = 0, r1(t) ≡ 1
y′′ + 4y = 0, r2(t) ≡ 4.

Note that r2 ≥ r1 and also that the remaining conditions of Theorem 4.8 are satisfied.
x(t) = sin t is a solution of the first equation and y(t) = sin(2t) is a solution of the second
equation which has zero at t1 = 0 and t2 = π/2. It is obvious that x(t) = sin t does not
vanish at any point in (0, π/2). This clearly shows that, under the hypotheses of Theorem
4.3, between two successive zeros of y there need not exist a zero of x.

EXERCISES

1. Let r be a positive continuous function and let m be a real number. Show that the
equation

x′′ + (m2 + r(t))x = 0, t ≥ 0

is oscillatory.

2. Assume that the equation
x′′ + r(t)x = 0, t ≥ 0

is oscillatory. Prove that the equation

x′′ + (r(t) + s(t))x = 0, t ≥ 0

is oscillatory, given that r, s are continuous functions and s(t) ≥ 0.

3. Let r be a continuous function (for t ≥ 0) such that r(t) > m2 > 0, where m is an
integer. For a solution y of
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y′′ + r(t)y = 0, t ≥ 0

prove that y vanish in any interval of length π/m.

4. Show that the normal form of Bessel’s equation

t2x′′ + tx′ + (t2 − p2)x = 0 (∗)

is given by

y′′ + (1 + 1−4p2
4t2

)y = 0 (∗∗)

(a) Show that the solution Jp of (*) and Yp of (**) have common zeros for t > 0.

(b) (i) If 0 ≤ p < 1
2 , show that every interval of length π contains at least one

zero of Jp(t);

(ii) If p = 1
2 then prove that every zero of Jp(t) is at a distance of π from its

successive zero.

(c) Suppose t1 and t2 are two consecutive zeros of Jp(t), 0 ≤ p < 1
2 . Show that

t2 − t1 < π and that t2 − t1 approaches π in the limit as t1 → ∞. What is your
comment when p = 1

2 in this case ?

Lecture 24

4.3 Elementary Linear Oscillations

Presently we restrict our discussion to a class of second order equation of the type

x′′ + a(t)x = 0, t ≥ 0, (4.11)

where a is a real valued continuous function defined for t ≥ 0. A very interesting implication
of Sturm’s separation theorem is

Theorem 4.3.1. (a) The equation (4.11) is non-oscillatory if, and only if, it has no so-
lution with finite number of zeros in [0,∞).

(b) Equation (4.11) is either oscillatory or non-oscillatory but cannot be both.

Proof. (a) Necessity It has an immediate consequence of the definition.
Sufficiency Let z be the given solution which does not vanish on (t∗,∞) where t∗ ≥ 0.
Then any non-trivial solution x(t) of (4.11) can vanish utmost once in (t∗,∞), i.e, there
exists t0(> t∗) such that x(t) does not have a zero in [t0,∞).

The proof of (b) is obvious.

We conclude this section with two elementary results.

Theorem 4.3.2. Let x be a solution of (4.11) existing on (0,∞). If a < 0 on (0,∞), then
x has utmost one zero.
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Proof. Let t0 be a zero of x. It is clear that x′(t0) 6= 0 for x(t) 6≡ 0. Without loss of generality
let us assume that x′(t0) > 0 so that x is positive in some interval to the right of t0. Now
a < 0 implies that x′′ is positive on the same interval which in turn implies that x′ is an
increasing function, and so, x does not vanish to the right of t0. A similar argument shows
that x has no zero to the left of t0. Thus, x has utmost one zero.

Remark Theorem is also a corollary of Sturm’s comparison theorem. For the equa-
tion

y′′ = 0

any non-zero constant function y ≡ k is a solution. Thus, if this equation is compared
with the equation (4.11) (observe that all the hypotheses of Theorem are satisfied) then, x
vanishes utmost once, for otherwise if x vanishes twice then y necessarily vanishes at least
once by Theorem ,which is not true. So x cannot have more than one zero.

From Theorem the question arises: If a is continuous and a(t) > 0 on (0,∞), is the
equation (4.11) oscillatory ? A partial answer is given in the following theorem.

Theorem 4.3.3. Let a be continuous and positive on (0,∞) with∫ ∞
1

a(s)ds =∞. (4.12)

Also assume that x is any (non-zero) solution of (4.11) existing for t ≥ 0. Then, x has
infinite zeros in (0,∞).

Proof. Assume, on the contrary, that x has only a finite number of zeros in (0,∞). Then,
there exist a point t0 > 1 such that x does not vanish on [t0,∞). Without loss of generality
we assume that x(t) > 0 for all t ≥ t0. Thus

v(t) =
x′(t)

x(t)
, t ≥ t0

is well defined. It now follows that

v′(t) = −a(t)− v2(t).

Integration on the above leads to

v(t)− v(t0) = −
∫ t
t0
a(s)ds−

∫ t
t0
v2(s)ds.

The condition (4.12) now implies that there exist two constants A and T such that v(t) <
A(< 0) if t ≥ T since v2(t) is always non-negative and

v(t) ≤ v(t0)−
∫ t

t0

a(s)ds.

This means that x′ is negative for large t. Let T (≥ t0) be so large that x′(T ) < 0. Then, on
[T,∞) notice that x > 0, x′ < 0 and x′′ < 0. But∫ t

T
x′′(s)ds = x′(t)− x′(T ) ≤ 0
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Now integrating once again we have

x(t)− x(T ) ≤ x′(T )(t− T ), t ≥ T ≥ t0. (4.13)

Since x′(T ) is negative, the right hand side of (4.13) tends to −∞ as t → ∞ while the left
hand side of (4.13) either tends to a finite limit (because x(T ) is finite) or tends to +∞ (in
case x(t)→∞ as t→∞). Thus, in either case we have a contradiction . So the assumption
that x has a finite number of zeros in (0,∞) is false. Hence, x has infinite number of zeros
in (0,∞), which completes the proof.

It is not possible to do away with the condition (4.12) as shown by the following example.

Example 4.3.4. x(t) = t1/3 is a solution of the Euler’s equation

x′′ +
2

9t2
x = 0.

which does not vanish anywhere in (0,∞) and so the equation is non-oscillatory. Also in
this case

a(t) =
2

9t2
> 0;

∫ ∞
1

2

9t2
dt =

2

9
<∞

.

Thus, all the conditions of Theorem are satisfied except the condition (4.12).

EXERCISES

1. Prove (b) part of Theorem .

2. Suppose a is a continuous function on (0,∞) such that a(t) < 0 for t ≥ α, α is a finite
real number. Show that

x′′ + a(t)x = 0

is non-oscillatory.

3. Check for the oscillations or non-oscillations of:

(i) x′′ − (t− sin t)x = 0, t ≥ 0

(ii) x′′ + etx = 0, t ≥ 0

(iii) x′′ − etx = 0, t ≥ 0

(iv) x′′ − t
log tx = 0, t ≥ 1

(v) x′′ + (t+ e−2t)x = 0, t ≥ 0

4. Prove that Euler’s equation x′′ + k
t2
x = 0

(a) is oscillatory if k > 1
4

(b) is non-oscillatory if k ≤ 1
4
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5. The normal form of Bessel’s equation t2x′′ + tx′ + (t2 − p2)x = 0, t ≥ 0, is

x′′ + (1 + 1−4p2
4t2

)x = 0, t ≥ 0. (*)

(i) Show that Bessel’s equation is oscillatory for all values of p.

(ii) If p > 1
2 show that t2 − t1 > π and approaches π as t1 →∞, where t1, t2(with

t1 < t2) are two successive zeros of Bessel’s function Jp.
( Hint: Show that Jp and the solution Yp of (*) have common zeros. Then compare
(*) with x′′ + x = 0, successive zeros of which are at a distance of π.)
(Exercise 4 of sec. 2 and Exercise 5 above justifies the assumption of the existence of
zeros of Bessel’s functions (which was taken for granted in Theorem 4.9 in Chapter 4.)

6. Decide whether the following equations are oscillatory or non-oscillatory:

(i) (tx′)′ + x/t = 0,

(ii) x′′ + x′/t+ x = 0,

(iii) tx′′ + (1− t)x′ + nx = 0, n is a constant(Laguerre’s equation),

(iv) x′′ − 2tx′ + 2nx = 0, n is a constant(Hermite’s equation),

(v) tx′′ + (2n+ 1)x′ + tx = 0, n is a constant,

(vi) t2x+ ktx′ + nx = 0, k, n are constants.

Lecture 25

4.4 Boundary Value Problems

Boundary value problems (BVPs) appear in various branches of sciences and engineering.
Many problems in calculus of variation leads to a BVPs. Solutions to the problems of
vibrating strings and membranes are the outcome of solutions of certain class of BVPs.
Thus, the importance of the study of BVP, both in mathematics and in the applied sciences,
needs no emphasis.

Speaking in general, BVPs pose many difficulties in comparison with IVPs. The problem
of existence, both for linear and nonlinear equations with boundary conditions, requires
discussions which are quite intricate. Needless to say the study of nonlinear BVPs are far
tougher to solve than linear BVPs.

In this module attention is focused on some aspects of the regular BVP of the second
order. Picard’s theorem on the existence of a unique solution to a nonlinear BVP is also
dealt with in the last section.

Consider a second order linear equation

L(x) = a(t)x′′ + b(t)x′ + c(t)x = 0, A ≤ t ≤ B. (4.14)

It is tacitly assumed throughout this chapter that a, b, c are continuous real valued func-
tions defined on [A,B]. L is a differential operator defined twice continuously differentiable
functions on [A,B].

To proceed further we need the concepts of linear forms. Let x1, x2, x3, x4 be four vari-
ables. Then, for any scalars a1, a2, a3, a4
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V (x1, x2, x3, x4) = a1x1 + a2x2 + a3x3 + a4x4

is called a “linear form” in the variables x1, x2, x3, x4. V (x1, x2, x3, x4) is denoted in short
by V . Two linear forms V1 and V2 are said to be linearly dependent if there exists a scalar
K such that V1 = KV2 for all x1, x2, x3, x4. V1 and V2 are called linearly independent if V1
and V2 are not linearly dependent.

Definition 4.4.1. (Linear Homogeneous BVP) Consider an equation of type (4.14). Let
V1 and V2 be two linearly independent linear forms in the variables x(A), x(B), x′(A) and
x′(B). A linear homogeneous BVP is the problem of finding a function x defined on [A,B]
which satisfies

L(x) = 0, t ∈ (A.B) and

Vi(x(A), x(B), x′(A), x′(B)) = 0, i = 1, 2 (4.15)

simultaneously. The condition 4.15 is called a “linear homogeneous boundary condition”
stated at t = A and t = B.

Definition 4.4.2. (Linear Non-homogeneous BVP) Let d : [a,B] → R be a given con-
tinuous function . A linear non-homogeneous BVP is the problem of finding a function x
defined on [A,B] satisfying

L(x) = d(t), t ∈ (A.B) and

Vi(x(A), x(B), x′(A), x′(B)) = 0, i = 1, 2 (4.16)

where Vi are two given linear forms and the operator L is defined by equation (4.14).

Example 4.4.3. (i) Consider

L(x) = x′′ + x′ + x = 0 and

V1(x(A), x′(A), x(B), x′(B)) = x(A)

V2(x(A), x′(A), x(B), x′(B)) = x(B).

Then, any solution x of

L(x) = 0, A < t < B

which satisfies x(A) = x(B) = 0 is a solution of the given BVP. In this example it is
no way implied that whether such a solution exists or not.

(ii) An example of a linear homogeneous BVP is

L(x) = x′′ + etx′ + 2x = 0, 0 < t < 1,

with boundary conditions x(0) = x(1) and x′(0) = x′(1) . In this case

V1(x(0), x′(0), x(1), x′(1)) = x(0)− x(1)

V2(x(0), x′(0), x(1), x′(1)) = x′(0)− x′(1).
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Also
L(x) = sin 2πt, 0 < t < 1,

along with boundary conditions x(0) = x(1) and x′(0) = x′(1) is another example of
linear non-homogeneous BVP.

Definition 4.4.4. (Periodic Boundary Conditions) The boundary conditions

x(A) = x(B) and x′(A) = x′(B)

are usually known as periodic boundary conditions stated at t = A and t = B.

Definition 4.4.5. (Regular Linear BVP) A linear BVP, homogeneous or non-homogeneous,
is called a regular BVP if A and B are finite and in addition to that a(t) 6= 0 for all t in
(A,B).

Definition 4.4.6. (Singular Linear BVP) A linear BVP which is not regular is called a
singular linear BVP.

Lemma 4.4.7. A linear BVP (4.14) and (4.15) (or (4.16) and (4.15)) is singular if and
only if one of the following conditions holds:

(a) Either A = −∞ or B =∞.

(b) Both A = −∞ and B =∞.

(c) a(t) = 0 for at least one point t in (A,B).

The proof is obvious.

In this chapter, the discussions are confined to only regular BVPs. The definitions listed
so far lead to the definition of a nonlinear BVP.

Definition 4.4.8. A BVP which is not a linear BVP is called a nonlinear BVP.

A careful analysis of the above definition shows that the nonlinearity in a BVP may be
introduced because

(i) the differential equation may be nonlinear;

(ii) the given differential equation may be linear but the boundary conditions may not be
linear homogeneous.

The assertion made in (i) and (ii) above is further clarified in the following example .

Example 4.4.9. (i) The BVP

x′′ + |x| = 0, 0 < t < π

with boundary conditions x(0) = x(π) = 0 is not linear due of the presence of |x|.

(ii) The BVP
x′′ − 4x = et, 0 < t < 1

with boundary conditions

x(0).x(1) = x′(0), x′(1) = 0

is a nonlinear BVP since one of the boundary conditions is not linear homogeneous.
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EXERCISES

1. State with reasons whether the following BVPs are linear homogeneous, linear non-
homogeneous or non-linear.

(i) x′′ + sinx = 0, x(0) = x(2π) = 0.

(ii) x′′ + x = 0, x(0) = x(π), x′(0) = x′(π).

(iii) x′′ + x = sin 2t, x(0) = x(π) = 0.

(iv) x′′ + x = cos 2t, x2(0) = 0, x2(π) = x′(0).

2. Are the following BVPs regular ?

(i) 2tx′′ + x′ + x = 0, x(−1) = 1, x(1) = 1.

(ii) 2x′′ − 3x′ + 4x = 0, x(−∞) = 0, x(0) = 1.

(iii) x′′ − 9x = 0, x(0) = 1, x(∞) = 0.

3. Find a solution of

(i) BVP (ii) of Exercise 2;

(ii) BVP (iii) of Exercise 2.

Lecture 26

4.5 Sturm-Liouville Problem

The Sturm-Liouville problems represents a class of linear BVPs which have wide applica-
tions. The importance of these problems lies in the fact that they generate sets of orthogonal
functions (sometimes complete sets of orthogonal functions). The sets of orthogonal func-
tions are useful in the expansion for a certain class of functions. Few examples of such sets
of functions are the Legendre and Bessel functions. In all of what follows, we consider a
differential equation of the form

(px′)′ + qx+ λrx = 0, A ≤ t ≤ B (4.17)

where p′, q and r are real valued continuous functions on [A,B] and λ is a real parameter.
We focus our attention on second order equations with a special kind of boundary condition.
Let us consider two sets of boundary conditions, namely

m1x(A) +m2x
′(A) = 0, (4.18)

m3x(B) +m4x
′(B) = 0, (4.19)

x(A) = x(B), x′(A) = x′(B), p(A) = p(B), (4.20)

where at least one of m1 and m2 and at least one of m3 and m4 are non-zero. A glance
at the boundary conditions (4.18) and (4.19) shows that the two conditions are separately
stated at x = A and x = B. Relation (4.20) is the periodic boundary condition at x = A
and x = B.

A BVP consisting of equation (4.17) with (4.18) and (4.19) or equation (4.17) with (4.20)
is called a Sturm-Liouville boundary value problem. It is trivial to show that the identically
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zero functions on [A,B] is always a solution of Sturm-Liouville problem. It is of interest to
examine the existence of a non-trivial solution and its properties.

Suppose that for a value of λ, xλ is a non-trivial solution of (4.17) with (4.18) and (4.19)
or (4.17) with (4.20) . Then λ is called an “eigenvalue” and xλ is called an “eigenfunction”
(corresponding to λ) of the Sturm-Liouville problem of (4.17) with (4.18) and (4.19) or
with (4.20) respectively. The following theorem is of fundamental importance whose proof
is beyond the scope of this book.

Theorem 4.5.1. Assume that

(i) A,B are finite real numbers;

(ii) the functions p′, q and r are real valued continuous functions on [A,B]; and

(iii) m1,m2,m3 and m4 are real numbers.

Then, the Sturm-Liouville problem (4.17) with (4.18) and (4.19) or (4.17) with (4.20) has
countably many eigenvalues with no finite limit point. ( consequently corresponding to each
eigenvalue there exists an eigenfunction.)

Theorem 4.5.3 just guarantees the existence of solutions. Such a class of such eigenfunc-
tions are useful in a series expansion of a few functions . These expansions are a consequence
of the orthogonal property of the eigenfunctions.

Definition 4.5.2. Two functions x and y ( smooth enough ), defined and continuous on
[A,B] are said to be orthogonal with respect to a continuous weight function r if∫ B

A
r(s)x(s)y(s)ds = 0. (4.21)

By smoothness of x and y we mean the integral in Definition 4.5.2 exists. We are now
ready to state and prove the orthogonality of the eigenfunctions.

Theorem 4.5.3. Let all the assumptions of Theorem hold. For the parameters λ, µ(λ 6= µ)
let x and y be the corresponding solutions of (4.17) such that[

pW (x, y)
]B
A

= 0,

where W (x, y) is the Wronskian of x and y and
[
Z
]B
A

means Z(B)− Z(A). Then,

∫ B

A
r(s)x(s)y(s)ds = 0

.

Proof. From the hypotheses we have

(px′)′ + qx+ λrx = 0,
(py′)′ + qy + µry = 0.

which imply

(λ− µ)rxy = (py′)′x− (px′)′y,
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that is

(λ− µ)rxy =
d

dt
[(py′)x− (px′)y]. (4.22)

Now integration of Equation (4.22) leads to

(λ− µ)

∫ B

A
r(s)x(s)y(s)ds =

[
(py′)x− (px′)y

]B
A

=
[
pW (x, y)

]B
A

.

Since λ 6= µ ( by assumptions ) it readily follows that∫ B

A
r(s)x(s)y(s)ds = 0

which completes the proof.

From Theorem it is clear that if we have any conditions which imply[
pW (x, y)

]B
A

= 0,

then, the desired orthogonal property is folows. Now the boundary conditions (4.18) and
(4.19) or (4.20) play a central ole in the desired orthogonality of the eigenfunction.. In fact

(4.18) and (4.19) or (4.20) implies
[
pW (x, y)

]B
A

= 0.

Theorem 4.5.4. Let the hypotheses of Theorem 4.5.3 be satisfied. In addition let xm and xn
be two eigenfunctions of the BVP (4.17) and (4.18) and (4.19) corresponding to two distinct
eigenvalues λm and λn. Then [

pW (xm, xn)
]B
A

= 0. (4.23)

If p(A) = 0 then (4.23) holds without the use of (4.18) . If p(B) = 0, then (4.23) holds
with (4.19) deleted.

Proof. Let p(A) 6= 0, p(B) 6= 0. From (4.18) we note

m1xn(A) +m2x
′
n(A) = 0, m1xm(A) +m2x

′
m(A) = 0.

Without loss of generality, let us assume that m1 6= 0. Elimination of m2 from the above
two equation leads to

m1[xn(A)x′m(A)− xm(A)x′m(A)] = 0.

Since m1 6= 0, we have
xn(A)x′m(A)− xm(A)x′n(A) = 0. (4.24)

Similarly if m4 6= 0 (or m3 6= 0) in (4.19) , it is seen that

xn(B)x′m(B)− x′n(B)xm(B) = 0. (4.25)

From the relations (4.24) and (4.25) it is obvious that (4.23) is satisfied.
If p(A) = 0, then the relation (4.23) holds since[

pW (xm, xn)
]B
A

= p(B)[xn(B)x′m(B)− x′n(B)xm(B)] = 0,
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in view of the equation (4.25) . Similar is the case when p(B) = 0. This completes the
proof.

Lecture 27

The following theorem deals with periodic boundary conditions given in (4.20) .

Theorem 4.5.5. Let the assumptions of theorem 4.5.3 be true. Suppose xm and xn are
eigenfunctions of BVP (4.17) and (4.20) corresponding to the distinct eigenvalues λm and
λn respectively. Then, xm and xn are orthogonal with respect to the weight function r(t).

Proof. In this case[
pW (xn, xm)

]B
A

= p(B)[xn(B)x′m(B)− x′n(B)xm(B)− xn(A)x′m(A) + x′n(A)xm(A)].

The expression inside the brackets is zero once we use the periodic boundary condition (4.20)
.

The following theorem ensures that the eigenvalues of (4.17), (4.18) or (4.17), (4.19) are
real if r > 0 (or r(t0) on (A,B) and r is continuous on [a,B].

Theorem 4.5.6. Let the hypotheses of Theorem 4.5.3 hold. Suppose that r is positive on
(A,B) or r is negative on (A,B) and r is continuous on [a,B]. Then, all the eigenvalues of
BVP (4.17), (4.18) or (4.17), (4.19) are real.

Proof. Let λ = a + ib be an eigenvalue and let x(t) = m(t) + in(t) be a corresponding
eigenfunction. We have a, b,m(t) and n(t) are real and so,

(pm′ + pin′)′ + q(m+ in) + (a+ ib)r(m+ in) = 0.

Equating the real and imaginary parts, we have

(pm′)′ + (q + ar)m− brn = 0

and

(pn′)′ + (q + ar)n+ brm = 0.

Elimination of (q + ar) in the above two equations implies

−b(m2 + n2)r = m(pn′)′ − n(pm′)′ = d
dt [(pn

′)m− (pm′)n].

Thus, by integrating, we get

−b
∫ B

A
(m2(s) + n2(s))r(s)ds =

[
(pn′)m− (pm′)n

]B
A
. (4.26)

Since m and n satisfy one of the boundary conditions (4.18) and (4.19) or (4.20) , we have,
as shown earlier, [

p(n′m−m′n)
]B
A

=
[
pW (m,n)

]B
A

= 0. (4.27)

Also ∫ B

A
[m2(s) + n2(s)]r(s)ds 6= 0

by the assumptions. Hence, from (4.26) and (4.27) it follows that b = 0, which means that
λ is real which completes the proof.
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An important application of the previous discussion is Theorem 4.5.7.

Theorem 4.5.7. (Eigenfunction expansion) Let g be a piecewise continuous function
defined on [A,B] satisfying the boundary conditions (4.18) and (4.19) or (4.20) . Let
x1, x2, · · · , xn, · · · be the set of eigenfunctions of the Sturm-Liouville problem (4.17) and
(4.18) and (4.19) or (4.17) and (4.20) . Then

g(t) = c1x1(t) + c2x2(t) + · · ·+ cnxn(t) + · · · (4.28)

where cn’s are given by

cn

∫ B

A
r(s)x2n(s)ds =

∫ B

A
r(s)g(s)xn(s)ds, n = 1, 2, · · · (4.29)

note that

r(s)x2n(s) > 0 on [A,B]

so that cn’s in (4.29) are well defined.

Example 4.5.8. (i) Consider the BVP

x′′ + λx = 0, x(0) = 0, x′(1) = 0.

Note that this BVP is a Sturm-Liouville problem with

p ≡ 1, q ≡ 0, r ≡ 1;A = 0, and B = 1.

Hence, by Theorem 4.5 the eigenfunctions are pairwise orthogonal. It is easy to show
that the eigenfunctions are

xn(t) = sin
(2n+ 1)

2
πt, n = 0, 1, 2, · · · ; 0 ≤ t ≤ 1. (4.30)

Thus, if g is any function such that g(0) = 0 and g′(1) = 0, then there exist constants
c1, c2, · · · such that

g(t) = c0x0(t) + c1x1(t) + · · ·+ cnxn(t) + · · · (4.31)

where cn’s are determined by the relation (4.29) .

(ii) Let the Legendre polynomials Pn(t) be the solutions of the Legendre equation

d
dt [(1− t

2)x′] + λx = 0, λ = n(n+ 1),−1 ≤ t ≤ 1.

The polynomials Pn form an orthogonal set of functions on [−1, 1]. In this case p(t) =
(1− t2), q ≡ 0, r ≡ 1. Also note that

p(1) = p(−1) = 0

so that the boundary conditions are not needed for establishing the orthogonality of
Pn. Hence, if g is any piece-wise continuous function, then the eigenfunction expansion
of g is
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g(t) = c0p0(t) + c1p1(t) + · · ·+ cnpn(t) + · · · ,

where

cn = 2n+1
2

∫ 1
−1 g(s)Pn(s)ds, n = 0, 1, 2, · · ·

since ∫ 1
−1 P

2
n(s)ds = 2

2n+1 , n = 0, 1, 2, · · ·

EXERCISES

1. Show that corresponding to an eigenvalue the Sturm-Liouville problem (4.17), (4.18)
or (4.17), (4.19) has a unique eigenfunction.

2. Show that the eigenvalues for the BVP

x′′ + λx = 0, x(0) = 0 and x(π) + x′(π) = 0

satisfies the equation √
λ = − tanπ

√
λ.

Prove that the corresponding eigenfunctions are

sin(t
√
λn)

where λn is an eigenvalue.

3. Consider the equation
x′′ + λx = 0, 0 < t ≤ π.

Find the eigenvalues and eigenfunctions for the following cases:

(i) x′(0) = x′(π) = 0;

(ii) x(0) = 0, x′(π) = 0;

(iii) x(0) = x(π) = 0;

(iv) x′(0) = x(π) = 0.

Lecture 28

4.6 Green’s Functions

The aim of this article is to construct what is known as Green’s Function and then use it to
solve a non-homogeneous BVP. We start with

L(x) + f(t) = 0, a ≤ t ≤ b (4.32)

where L is a differential operator defined by L(x) = (px′)′+qx. Here p, p′ and q are given real
valued continuous functions defined on [a, b] such that p(t) is non-zero on [a, b]. Equation
(4.32) is considered with separated boundary conditions

m1x(a) +m2x
′(a) = 0 (4.33)

m3x(b) +m4x
′(b) = 0 (4.34)

with the usual assumptions that at least one of m1 and m2 and one of m3 and m4 are
non-zero.
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Definition 4.6.1. A function G(t, s) defined on [a, b] × [a, b] is called Green’s function for
L(x) = 0 if, for a given s,G(t, s) = G1(t, s) if t < s and G(t, s) = G2(t, s) for t > s where
G1 and G2 are such that:

(i) G1 satisfies the boundary condition (4.33) at t = a and L(G1) = 0 for t < s;

(ii) G2 satisfies the boundary condition (4.34) at t = b and L(G2) = 0 for t > s;

(iii) The function G(t, s) is continuous at t = s;

(iv) The derivative of G with respect to t has a jump discontinuity at t = s and[
∂G2
∂t −

∂G1
∂t

]
t=s

= − 1
p(s) .

With this definition, the Green’s function for (4.32) with conditions (4.33) and (4.34) is
constructed. Let y(t) be a non-trivial solution of L(x) = 0 satisfying the boundary condition
(4.33). Also let z(t) be a non-trivial solution of L(x) = 0 which satisfies the boundary
condition (4.34).

Assumption Let y and z be linearly independent solutions of L(x) = 0 on (a, b). For
some constants c1 and c2 define G1 = c1y(t) and G2 = c2z(t). Let

G(t, s) =

{
c1y(t) if t ≤ s,
c2z(t) if t ≥ s. (4.35)

Choose c1 and c2 such that

c2z(s)− c1y(s) = 0
c2z
′(s)− c1y′(s) = −1/p(s).

(4.36)

With this choice of c1 and c2, G(t, s) defined by the relation (4.35) has all the properties of
the Green’s function. Since y and z satisfy L(x) = 0 it follows that

y(pz′)′ − z(py′)′ ≡ d

dt
[p(yz′ − y′z)] = 0. (4.37)

Hence

p(t)[y(t)z′(t)− y′(t)z(t)] = A for all t in [a, b]

where A is a non-zero constant (because y and z are linearly independent solutions of L(x) =
0). In particular it is seen that

y(s)z′(s)− y′(s)z(s)] = A/p(s), A 6= 0 (4.38)

From equation (4.36) and (4.38) it is seen that

c1 = −z(s)/A, c2 = −y(s)/A.

Hence the Green’s function is

G(t, s) =

{
−y(t)z(s)/A if t ≤ s,
−y(s)z(t)/A if t ≥ s. (4.39)

The main result of this article is Theorem .

143



Theorem 4.6.2. Let G(t, s) be given by the relation (4.39) then x(t) is a solution of (4.32)
,
(4.33) and (4.34) if and only if

x(t) =

∫ b

a
G(t, s)f(s)ds. (4.40)

Proof. Let the relation (4.40) hold. Then

x(t) = −
[ ∫ t

a
z(t)y(s)f(s)ds+

∫ b

t
y(t)z(s)f(s)ds

]/
A. (4.41)

Differentiating (4.41) with respect to t yields

x′(t) = −
[ ∫ t

a
z′(t)y(s)f(s)ds+

∫ b

t
y′(t)z(s)f(s)ds

]/
A. (4.42)

Next on computing (px′)′ from (4.42) and adding to qx in view of y and z being solutions
of L(x) = 0 it follows that

L(x(t)) = −f(t) (4.43)

Further, from the relations (4.41) and (4.42), it is seen that{
Ax(a) = −y(a)

∫ b
a z(s)f(s)ds,

Ax′(a) = −y′(a)
∫ b
a z(s)f(s)ds.

(4.44)

Since y(t) satisfies the boundary condition given in (4.33), it follows from (4.44) that x(t)
also satisfies the boundary condition (4.33). Similarly x(t) satisfies the boundary condition
(4.34). This proves that x(t) satisfies (4.32) and (4.33) and (4.34).

Conversely, let x(t) satisfy (4.32) and (4.33) and (4.34). Then from (4.32) it is clear that

−
∫ b

a
G(t, s)L(x(s))ds =

∫ b

a
G(t, s)f(s)ds (4.45)

The left side of (4.45) is

−
∫ t

a
G1(t, s)L(x(s))ds−

∫ b

t
G2(t, s)L(x(s))ds. (4.46)

Now a well-known result is used that if u and v are two functions which admit continuous
derivatives in [t1, t2], then∫ t2

t1

u(s)L(v(s))ds =

∫ t2

t1

v(s)L(u(s))ds+
[
p(s)(u(s)v′(s)− u′(s)v(s))

]t2
t1

(4.47)

Applying the identity (4.47) in (4.46) and using the properties of G1(t, s) and G2(t, s) the
left side of (4.45) becomes

−p(t)
{[
G1(t, t)x

′(t)− ∂G1(t, s)

∂t

∣∣∣
s=t
x(t)

]
−
[
G2(t, t)x

′(t)− ∂G2(t, s)

∂t

∣∣∣
s=t
x(t)

]}
(4.48)

The first and third term in (4.48) cancel each other because of continuity of G(t, s) at
t = s. The condition (iv) in the definition of Green’s function now shows that the value
of the expression (4.48) is x(t). But (4.48) is the left side of (4.45) which means x(t) =∫ b
a G(t, s)f(s)ds. This completes the proof.
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Example 4.6.3. Consider the BVP

x′′ = f(t);x(0) = x(1) = 0. (4.49)

It is easy to verify that the Green’s function G(t, s) is given by

G(t, s) =

{
t(1− s) if t ≤ s,
s(1− t) if t ≥ s. (4.50)

Thus the solution of (4.49) is given by x(t) = −
∫ 1
0 G(t, s)f(s)ds.

EXERCISES

1. In theorem establish the relations (4.41), (4.45) and (4.48). Also show that if x satisfies
(4.40), then x also satisfies the boundary conditions (4.33) and (4.34).

2. Prove that the Green’s function defined by (4.39) is symmetric, that is G(t, s) = G(s, t).

3. Show that the Green’s function for L(x) = x′′ = 0, x(1) = 0;x′(0) + x′(1) = 0 is

G(t, s) =

{
1− s if t ≤ s,
1− t if t ≥ s.

Hence solve the BVP

x′′ = f(t), x(0) + x(1) = 0, x′(0) + x′(1) = 0

where

(i) f(t) = sinπt;

(ii) f(t) = et; 0 ≤ t ≤ 1

(iii) f(t) = t.

4. Consider the BVP x′′ + f(t, x, x′) = 0, x(a) = 0, x(b) = 0. Show that x(t) is a solution
of the above BVP if and only if

x(t) =
∫ b
a G(t, s)f(s, x(s), x′(s))ds,

where G(t, s) is the Green’s function given by

(b− a)G(t, s) =

{
(b− t)(s− a) if a ≤ s ≤ t ≤ b,
(b− s)(t− a) if a ≤ t ≤ s ≤ b.

Also establish that

(i) 0 ≤ G(t, s) ≤ b−a
4

(ii)
∫ b
a G(t, s)ds = (b−t)(t−a)

2

(iii)
∫ b
a G(t, s)ds ≤ (b−a)2

8

(iv) G(t, s) is symmetric.

5. Consider the BVP x′′ + f(t, x, x′) = 0, x(a) = 0, x′(b) = 0. Show that x is a solution
of this BVP if, and only if, x satisfies
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x(s) =
∫ b
a H(t, s)f(s, x(s), x′(s))ds, a ≤ t ≤ b

where H(t, s) is the Green’s function defined by

H(t, s) =

{
s− a if a ≤ s ≤ t ≤ b,
t− a if a ≤ t ≤ s ≤ b.
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Module 5

Asymptotic behavior and Stability
Theory

Lecture 29

5.1 Introduction

Once the existence of a solution for a differential equation is established, the next question
is :
How does a solution grow with time?
It is all the more necessary to investigate such a behavior of solutions in the absence of
an explicit solution. One of the way out is to find suitable criteria, in terms of the known
quantities, to establish the asymptotic behavior. A few such criteria are studied below. More
or less we have adequate information for the asymptotic behavior of linear systems .

5.2 Linear Systems with Constant Coefficients

Consider a linear system
x′ = Ax, 0 ≤ t <∞, (5.1)

where A is an n × n constant matrix. The priori knowledge of eigenvalues of the matrix
A completely determines the solutions of (5.1). So much so, the eigenvalues determine the
behavior of solutions as t → ∞. A suitable upper bound for the solutions of (5.1) are very
useful and we have one such result in the ensuing result.

Theorem 5.2.1. Let λ1, λ1, · · · , λm (m ≤ n) be the distinct eigenvalues of the matrix A
and λj be repeated nj times (n1 + n2 + · · ·+ nm = n). Let

λj = αj + iβj (i =
√
−1, j = 1, 2, · · · ,m), (5.2)

and η ∈ R be a number such that

αj > η, (j = 1, 2, · · · ,m). (5.3)

Then, there exists a real constant M > 0 such that

|eAt| ≤Meηt, 0 ≤ t <∞. (5.4)
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Proof. Let ej be the n-vector with 1 in the j-th place and zero elsewhere. Then,

ϕj(t) = eAtej , (5.5)

denotes the j-th column of the matrix eAt. From the previous module on systems of equa-
tions, we know that

eAtej =

m∑
r=1

(cr1 + cr2t+ · · ·+ crnr t
nr−1)eλrt, (5.6)

where cr1, cr2, · · · , crnr are constant vectors. From (5.5) and (5.6) we have

|ϕj(t)| ≤
m∑
r=1

(|cr1|+ |cr2|t+ · · ·+ |crnr |tnr−1)| exp(αr + iβr)t| =
m∑
r=1

Pr(t)e
αrt (5.7)

where Pr is a polynomial in t. By (5.3),

tkeαrt < eηt, (5.8)

for sufficiently large values of t. In view of (5.7) and (5.8) there exists Mj > 0 such that

|ϕj(t)| ≤Mje
ηt, 0 ≤ t <∞ ; (j = 1, 2, · · · , n).

Now

|eAt| ≤
n∑
j=1

|ϕj(t)| ≤ (M1 +M2 + · · ·+Mn)eηt = Meηt (0 ≤ t <∞),

where M = M1 +M2 + · · ·+Mn which proves the inequality (5.4).

Actually we have estimated an upper bound for the fundamental matrix eAt for the
equation (5.1) in terms of an exponential function through the inequality (5.4). Theorem
5.2.2 proved subsequently is a direct consequence of Theorem 5.2.1 . It tells us about a
necessary and sufficient conditions for the solutions of (5.1) decaying to zero as t → ∞. In
other words, it characterizes a certain asymptotic behavior of solutions of (5.1) It is quite
easy to sketch the proof and so the details are omitted.

Theorem 5.2.2. Every solution of the equation (5.1) tends to zero as t→ +∞ if and only
if the real parts of all the eigenvalues of A are negative.

Obviously, if the real part of an eigenvalue is positive and if ϕ is a solution corresponding
to this eigenvalue then,

|ϕ(t)| → +∞, ast→∞.

Stability of Nonlinear Systems
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Introduction

Presently we study the stability of stationary solutions of systems described by ordinary
differential equations. The definitions of stability stated below is due to Lyapunov . Among
the methods known today, to study the stability properties, the direct or the second method
due to Lyapunov is important and useful. This method rests on the construction of a
scalar function satisfying certain conceivable conditions. Further it does not depend on
the knowledge of solutions in a closed form. These results are known in the literature as
energy methods. Analysis plays an important role for obtaining proper estimates on energy
functions.
Stability Definitions
We again recall here that in many of the problems the main interest revolves round the
stability behavior of solutions of nonlinear differential equations which describes the problem.
Such a study turns out to be difficult due to the lack of closed form for their solutions . The
study is more or less concerned with the family of motions described through a differential
equation ( or through a systems of equation). The following notations are used:

I = [t0,∞), for ρ > 0, Sρ = {x ∈ Rn : |x| < ρ}. (5.9)

x′ = f(t, x), t ≥ t0 ≥ 0, (5.10)

where x and f are n-vectors. where f in the equation (5.32) is defined and in continuous
on I × Sρ. Let the IVP (5.32) posses a unique solution x(t; t0, x0) in Sρ passing through a
point (t0, x0) on I and let it continuously depend on (t0, x0). For simplicity, the solution
x(t; t0, x0) is denoted by x(t) or x. We are basically interested in studying the stability of
x . In the physical problems x is called an equilibrium position of an object, the motion of
which is described by the equation (5.32). tacitly we are assume the existence of a unique
solution of the IVP (5.32). The concept is stability is dealt below.

Definition 5.2.3.
(i) A solution x is said to be stable if for each ε > 0(ε < ρ) there exists a positive number
δ = δ(ε) such that any solution y ( ie y(t) = y(t, t0, y0)) of (5.32) existing on I satisfies

|y(t)− x(t)| < ε, t ≥ t0 whenever |y(t0)− x(t0) | < δ.

(ii) A solution x is said to be asymptotically stable if it is stable and if there exists a number
δ0 > 0 such that any other solution y of (5.32) existing on I is such that

|y(t)− x(t)| → 0 as t→∞ whenever |y(t0)− x(t0)| < δ0.

(iii) A solution x is said to be unstable if it is not stable.

We emphasize that in the above definitions, the existence of a solution x of (5.32) is
taken for granted. In general, there is no loss of generality if we let x to be the zero solution.
Such an assumption is at once clear if we look at the transformation

z(t) = y(t)− x(t), (5.11)

where y is any solution of (5.32). Since y satisfies (5.32), we have

y′(t) = z′(t) + x′(t) = f(t, z(t) + x(t))
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or else ,
z′(t) = f(t, z(t) + x(t))− x′(t).

By setting
f̃(t, z(t)) = f(t, z(t) + x(t))− x′(t)

we have
z′(t) = f̃(t, z(t)). (5.12)

Clearly, (5.32) implies that

f̃(t, 0) = f(t, x(t))− x′(t) ≡ 0

Thus, the resulting system (5.34) possesses a trivial solution or a zero solution. It is impor-
tant to note that the transformation (5.33) does not change the character of the stability of
a solution of (5.32). In subsequent discussions we assume that (5.32) admits a trivial or a
null solution or zero solution which i fact is a state of equilibrium.

Lecture 33

Let us go through the following examples for illustration. .

Example 5.2.4. For an arbitrary constant c y(t) = c is a solution of x′ = 0. . Let the
solution x ≡ 0 be the unperturbed state. For a given ε > 0, for stability it is necessary to
have

|y(t)− x(t)| = |y(t)− 0| = |c| < ε

for t ≥ t0 whenever |y(t0)− x(t0)| = |c− 0| = |c| < δ. By choosing δ < ε, then, the criterion
for stability is trivially satisfied. Also x ≡ 0 is not asymptotically stable.

Example 5.2.5. y(t) = ce−(t−t0) is a solution of x′ = −x. Let ε > 0 be given. For the
stability of the origin we need to verify

|y(t)− x(t)| = |ce−(t−t0)| < ε for t ≥ t0.

whenever |y(t0)− x(t0)| = |c| < δ. By choosing δ < ε. now it is obvious that x ≡ 0 is stable.
Further, for any δ0 > 0, then |c| < δ0 implies

|ce−(t−t0)| → 0 as t→∞

or in other words x ≡ 0 is asymptotically stable.

Example 5.2.6. Any solution of the equation x′ = x through (t0, η) is y(t) = η exp(t− t0).
Choose any η > 0. Clearly as t → ∞ (ie increases indefinitely) y escapes out of any
neighborhood of the origin or else the origin, in this case, is unstable. The details of a proof
is left to the readers.

EXERCISES

1. Show that the system
x′ = y, y′ = −x

is stable but not asymptotically stable.
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2. Prove that the system
x′ = −x, y′ = −y

is asymptotically stable; however, the system

x′ = x, y′ = y

is unstable.

3. Is the origin stabile in the following cases:

(i) x′′′ + 6x′′ + 11x′ + 6x = 0,

(ii) x′′′ − 6x′′ + 11x′ − 6x = 0,

(iii) x′′′ + ax′′ + bx′ + cx = 0, for all possible values of a, b and c.

4. Consider the system  x1
x2
x3

′ =
 0 2 0
−2 0 0
0 0 0

 x1
x2
x3

.

Show that no non-trivial solution of this system tends to zero as t → ∞. Is every
solution bounded ? Is every solution periodic ?

5. Prove that for 1 < α <
√

2, x′ = (sin log t+ cos log t− α)x is asymptotically stable.

6. Consider the equation
x′ = a(t)x.

Show that the origin is asymptotically stable if and only if∫ ∞
0

a(s)ds = −∞.

Under what condition the zero solution is stable ?

5.3 Stability of Linear and Quasi-linear Systems

In this section the stability of linear and a class of quasilinear systems are discussed with
more focus on linear stems.Needless to stress the importance of these topics as these have
wide applications. Many physical problems have a representing through an the (5.32) which
may be written in a more useful form

x′ = A(t)x+ f(t, x). (5.13)

The equation (5.35) simplifies the work since it is closely related with the system

x′ = A(t)x. (5.14)

The equation (5.35) is perturbed form of (5.35). Many properties of (5.36) have already
been discussed. Under some restrictions on A and f , stability properties of (5.35) are very
similar to those of (5.36). We assumed ,to proceed further,
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(i) Let us recall : I = [t0,∞), for ρ > 0, Sρ = {x ∈ Rn : |x| < ρ}.

(ii) the matrix A(t) is an n× n matrix which is continuous on I;

(iii) f : I × Sα → Rn is a continuous function with f(t, 0) ≡ 0, t ∈ I.

These two conditions guarantee the existence of local solutions of (5.35) on some interval.
The solutions may not be unique. However, for stability we assume that solutions of (5.35)
uniquely exist on I. Let Φ(t) denote a fundamental matrix of (5.36) such that Φ(t0) = E,
where E is the identity matrix. As a first step, we obtain necessary and sufficient conditions
for the stability of the linear system (5.36). Note that x ≡ 0, on I satisfies (5.36) or in other
words x ≡ 0 or the zero solution or or the null the origin is an equilibrium state of (5.36).

Theorem 5.3.1. The zero solution of equation (5.36) is stable if and only if a positive
constant k exists such that

|Φ(t)| ≤ k, t ≥ t0. (5.15)

Proof. The solution y of (5.36) which takes the value c at t0 ∈ I (or y(t0) = c) is given by

y(t) = Φ(t)c (Φ(t0) = E).

Suppose that the inequality (5.37) hold. Then, for t ∈ I

|y(t)| = |Φ(t)c| ≤ k|c| < ε

, if |c| < ε/k. The origin is thus stable.

Conversely, let

|y(t)| = |Φ(t)c| < ε, t ≥ t0, for all c such that |c| < δ.

Then, |Φ(t)| < ε/δ. By Choosing k = ε/δ the inequality (5.37) follows and hence the
proof.

The result stated below concerns about the asymptomatic stability of the zero solution
of the system ( sometimes we call it an an equation )(5.36).

Theorem 5.3.2. The null solution of the system (5.36) is asymptotically stable if and only if

|Φ(t)| → 0 as t→∞. (5.16)

Proof. Firstly we note that (5.37) is a consequence of (5.38) and so the origin is obviously
stable. Since

|Φ(t)| → 0as t→∞

in view of (5.38) we have |y(t)| → 0 as t → ∞ or in other words the zero solution is The
asymptotic stabile.

The stability of (5.36) has already been considered when A(t) = A is a constant matrix.
We have seen earlier that if the characteristic roots of the matrix A have negative real parts
then every solution of (5.36) tends to zero as t → ∞. In fact, this is asymptotic stability.
We already are familiar with the fundamental matrix Φ(t) which is given by

Φ(t) = e(t−t0)A, t0, t ∈ I. (5.17)
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When the characteristic roots of the matrix A have negative real parts then,there exist two
positive constants M and ρ such that

|e(t−t0)A| ≤Me−ρ(t−t0), t0, t ∈ I. (5.18)

Let the function f satisfy the condition

|f(t, x)| = o(|x|) (5.19)

uniformly in t for t ∈ I. This implies that for x in a sufficiently small neighborhood of the

origin,
|f(t, x)|
|x|

can be made arbitrary small. The proof of the following result depends on

the use of Gronwall’s inequality.

Theorem 5.3.3. In equation (5.35), let A(t) be a constant matrix A and let all the char-
acteristic roots of A have negative real parts. Assume further that f satisfies the condition
(5.41). Then, the origin for the system (5.35) is asymptotically stable.

Proof. By the variation of parameters formula, the solution y of the equation (5.35) passing
through (t0, y0) satisfies the integral equation

y(t) = e(t−t0)Ay0 +

∫ t

t0

e(t−s)Af(s, y(s))ds. (5.20)

The inequality (5.40) together with (5.42) yields

|y(t)| ≤M |y0|e−ρ(t−t0) +M

∫ t

t0

e−ρ(t−s)|f(s, y(s))|ds. (5.21)

which takes the form

|y(t)|eρt ≤M |y0|e ρt0 +M

∫ t

t0

e ρs|f(s, y(s))|ds.

Let |y0| < α. Then, the relation (5.42) is true in any interval [t0, t1) for which |y(t)| < α. In
view of the condition (5.41), for a given ε > 0 we can find a positive number δ such that

|f(t, x)| ≤ ε|x|, t ∈ I, for|x| < δ. (5.22)

Let us assume that |y0| < δ. Then, there exists a number T such that |y(t)| < δ for t ∈ [t0, T ].
Using (5.44) in (5.43), we obtain

e ρt|y(t)| ≤M |y0|e ρt0 +Mε

∫ t

t0

e ρs|y(s)|ds, (5.23)

for t0 ≤ t < T . an application of Gronwall’s inequality to (5.45), yields

e ρt|y(t)| ≤M |y0|e ρt0 .eM ε(t−t0) (5.24)

or for t0 ≤ t < T , we obtain

|y(t)| ≤M |y0|e(M ε−ρ)(t−t0). (5.25)

Choose Mε < ρ and y(t0) = y0. If |y0| < δ/M , then, (5.47) yields
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|y(t)| < δ, t0 ≤ t < T .

The solution y of the equation (5.35) exists locally at each point (t, y), t ≥ t0, |y| < α.
Since the function f is defined on I × Sα, we extend the solution y interval by interval by
preserving its bound by δ. So given any solution y(t) = y(t; t0, y0) with |y0| < δ/M , y exists
on t0 ≤ t < ∞ and satisfies |y(t)| < δ. In the above discussion, δ can be made arbitrarily
small. Hence, y ≡ 0 is asymptotically stable when Mε < ρ.

When the matrix A is a function of t still the stability properties solutions of (5.35) and
(5.36) are shared but now the fundamental matrix needs to satisfy some stronger conditions.
Let the function f be continuous and satisfy the inequality

|f(t, x)| ≤ r(t)|x|, (t, x) ∈ I × Sα, (5.26)

where r is a non-negative continuous function such that∫ ∞
t0

r(s)ds < +∞.

The condition (5.48) guarantees the existence of a null solution of (5.35). Now the following
is a result on asymptotic stability of the zero solution of (5.35).

Theorem 5.3.4. Let the fundamental matrix Φ(t) satisfy the condition

|Φ(t)Φ−1(s)| ≤ K, (5.27)

where K is a positive constant and t0 ≤ s ≤ t < ∞. Let f satisfy the hypotheses given by
(5.48). Then, a positive constant M can be found such that if t1 ≥ t0, any solution y of
(5.35) is defined and satisfies

|y(t)| ≤M |y(t1)|, t ≥ t1 whenever |y(t1)| < α/M.

Moreover, if |Φ(t)| → 0 as t→∞ then

|y(t)| → 0 as t→∞.

Proof. Let t1 ≥ t0 and y be any solution of (5.35) such that |y(t1)| < α. Then y satisfies the
integral equation

y(t) = Φ(t)Φ−1(t1)y(t1) +

∫ t

t1

Φ(t)Φ−1(s)f(s, y(s))ds. (5.28)

for t1 ≤ t < T , where |y(t)| < α for t1 ≤ t < T . By hypotheses (5.48) and (5.49) we obtain

|y(t)| ≤ K|y(t1)|+K

∫ t

t1

r(s)|y(s)|ds

The Gronwall’s inequality now yields

|y(t)| ≤ K|y(t1)| exp
(
K

∫ t

t1

r(s)ds
)
. (5.29)

154



By the condition (5.48) the integral on the right side is bounded. Let

M = K exp
(
K

∫ ∞
t1

r(s)ds
)
.

Then,
|y(t)| ≤M |y(t1)|. (5.30)

Clearly this inequality holds if |y(t1)| < α/M . By following the lines of proof of in Theorem
we extend the solution for all t ≥ t1. Hence, the inequality (5.52) holds for t ≥ t1.

The general solution y(t) of (5.35) also satisfies the integral equation

y(t) = Φ(t)Φ−1(t0)y(t0) +

∫ t

t0

Φ(t)Φ−1(s)f(s, y(s))ds

= Φ(t)y(t0) +

∫ t1

t0

Φ(t)Φ−1(s)f(s, y(s))ds+

∫ t

t1

Φ(t)Φ−1(s)f(s, y(s))ds.

Note that Φ(t0) = E. By using the conditions (5.48), (5.49) and (5.52), we obtain

|y(t)| ≤ |Φ(t)||y(t0)|+ |Φ(t)|
∫ t1

t0

|Φ−1(s)||f(s, y(s))|ds+K

∫ ∞
t1

r(s)|y(s)|ds

≤ |Φ(t)||y(t0)|+ |Φ(t)|
∫ t1

t0

|Φ−1(s)||f(s, y(s))|ds+KM |y(t1)|
∫ ∞
t1

r(s)ds. (5.31)

The last term of the right side of the inequality (5.53) can be made less than (arbitrary) ε/2
by choosing t1 sufficiently large. By hypotheses Φ(t)→ 0 as t→∞. The first two terms on
the right side contain the term |Φ(t)|. Hence, their sum together can be made arbitrarily
small by choosing t large enough, say less than ε/2. Thus, |y(t)| < ε for large t. This proves
that |y(t)| → 0 as t→∞.

The inequality (5.52) shows that the origin is stable for t ≥ t1. But note that t1 ≥ t0 is any
arbitrary number. Here, condition (5.52) holds for any t1 ≥ t0. Thus, we have established
a stronger than the stability of the origin .In literature such a property is called uniform
stability. We do not propose to go into the detailed study of such types of stability behaviors.

EXERCISES

1. Prove that all solutions of the system (5.36) are stable if and only if they are bounded.

2. Let b : I → Rn be a continuous function. Prove that a solution x of linear nonhomo-
geneous system

x′A(t)x+ b(t)

is stable, asymptotically stable, unstable, if the same holds for the null solution of the
corresponding homogeneous system (5.36).

3. Prove that if the characteristic polynomial of the matrix A is stable, the matrix C(t)
is continuous on 0 ≤ t <∞ and

∫∞
0 |C(t)|dt <∞, then all solutions of

x′ = (A+ C(t))x

are asymptotically stable.
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4. Prove that the system (5.36) is unstable if

Re
(∫ t

t0

tr A(s)ds
)
→∞, as t→∞.

5. Define the norm of a matrix A(t) by µ(A(t)) = lim
h→0

|E + hA(t)| − 1

h
, where E is the

n× n identity matrix.

(i) Prove that µ is a continuous function of t.

(ii) For any solution y of (5.36) prove that

|y(t0)| exp
(
−
∫ t

t0

µ(−A(s))ds
)
≤ |y(t)| ≤ |y(t0)| exp

∫ t

t0

µ(A(s))ds.

[
Hint : Let r(t) = |y(t)|. Then

r′+(t) = lim
h→0+

|y(t) + hy′(t)| − |y(t)|
h

.

Show that r′+(t) ≤ µ(A(t))r(t).
]

(iii) When A(t) = A a constant matrix, show that | exp(tA)| ≤ exp[tµ(A)].

(iv) Prove that the trivial solution is stable if lim sup
t→∞

∫ t

t0

µ(A(s))ds <∞.

(v) Show that the trivial solution is asymptotically stable if∫ t

t0

µ(A(s))ds→ −∞ as t→∞.

(vi) Establish that the solution is unstable if lim inf
t→∞

∫ t

t0

µ(−A(s))ds = −∞.
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Lecture 35

5.4 Stability of Autonomous Systems

Many a times the time (variable) t does not appear explicitly in he equations which describes
the physical problem . For example, the equation

x′ = k x

(where k is a constant) represents a simple model for the growth of population where t does
not appear explicitly. Let us recall : In general such equations assumes a form

x′ = g(x) (5.32)

where g : Rn → Rn.Let us assume that the function g together with its first partial derivatives
with respect to x1, x2, · · · , xn are continuous in Sρ. A system described by (5.54) is called
an autonomous system. Let g(0) = 0 so that (5.54) admits the trivial or the zero solution.
Presently,our aim is to study the stability of the zero of solution of (5.54) on I.

Lyapunov’s direct method revolves round the construction of a scalar function satisfying
certain properties which has close resemblance to he energy function. In fact, this method
is the generalization of the energy method in classical mechanics. It is well known that
a mechanical system is stable if its energy(kinetic energy+ potential energy) continuously
decreases. The energy is always positive quantities and is zero when the system is com-
pletely at rest. Lyapunov generalized energy function which is known in the literature as
the ’Lyapunov function’. This function is generally denoted by V . A function

V : Sρ → R

is said to be positive definite if the following conditions hold:

(i) V and ∂V
∂xj

(j = 1, 2, · · · , n) be continuous on Sρ.

(ii) V (0) = 0.

(iii) V is positive for all x ∈ Sρ and x 6= 0.

V is called negative definite −V is positive definite. The function V attains the minimum
value at the origin. Further the origin is the only point in Sρ at which the minimum value is
attained. Since V has continuous first order partial derivatives, the chain rule may be used
to obtain dV (x)

dt as

dV (x)

dt
= V (x) =

∂V (x)

∂x1

dx1
dt

+
∂V (x)

∂x2

dx2
dt

+ · · ·+ ∂V (x)

∂xn

dxn
dt

=
n∑
j=1

∂V (x)

∂xj
x′j = grad V (x).g(x).

along a solution x of (5.54). The last step is a consequence of (5.54). We also that the
derivative of V with respect to t along a solution of (5.54) is now known to us, although we
do not have the explicit form of a solution. The conditions on the V function are not very
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stringent and it is not difficult to construct several functions which satisfy these conditions.
For instance

V (x) = x2, (x ∈ R) or V (x1, x2) = x41 + x42, (x1, x2) ∈ R2

are some simple examples of positive definite functions while is not a positive definite function
,since V (0) = 1 6= 0. The function

V (x1, x2) = x21 − x22, (x1, x2) ∈ R2

is not a positive definite since V (x, x) = 0 even if x 6= 0. In general, let A be a n×n positive
definite real matrix then V defined by

V (x) = xTA x, where x ∈ Rn

is a positive definite function. Let us assume that a scalar function V : Rn → R given by

V (x) = V (x1, x2, · · · , xn)

is positive definite. Geometrically,when n = 3, we may visualize V in three dimensional
space. For example let us consider a simple function

V (x1, x2) = x21 + x22;

clearly all the conditions (i),(ii) and (iii) hold. Let

z = x21 + x22.

Since z ≥ 0 for all (x1, x2) the surface will always lie in the upper part of the plane OX1X2.
Further z = 0 when x1 = x2 = 0. Thus, the surface passes through the origin. Such a
surface is like a parabolic mirror pointing upwards.

Now consider a section of this cup-like surface by a plane parallel to the plane OX1X2.
This section is a curve

x21 + x22 = k, z = k.

Its projection on the X1X2 plane is

x21 + x22 = k, z = 0.

Clearly these are circles with radius k, and the center at the origin. In a general , instead of
circles, we have closed curves around the origin . The geometrical picture for any Lyapunov
function in three dimensional, in a small neighborhood of the origin, is more or less is of this
character. In higher dimensions larger than three, the above discussion helps us to visualize
of such functions.

We state below 3 results concerning the stability behavior of the zero solution of the
system (5.54). The geometrical explanation given below for these results shows a line of the
proof. But they are not proofs in a strict mathematical sense. The detailed mathematical
proofs are given in the next section We also Note that these are only sufficient.

Theorem 5.4.1. Let there exists a positive definite function V defined on such that V̇ ≤ 0
then, the origin of the equation/system (5.54) is stable.

Theorem 5.4.2. If in Sρ there exists a positive definite function V such that −V̇ is also
positive definite, then, the origin of the equation (5.54) is asymptotically stable.
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Theorem 5.4.3. [(Cetav)] Let V be given function and N a region in Sρ such that

(i) V has continuous first partial derivatives on N ;

(ii) at the boundary points of N(inside Sρ), V (x) = 0;

(iii) the origin is on the boundary of N ;

(iv) V and V̇ are positive on N .

Then, the origin of (5.54) is unstable.

Example 5.4.4. Consider the system

x′1 = −x2, x′2 = x1.

The system is autonomous and possesses a trivial solution. The function V defined by

V (x1, x2) = x21 + x22.

is positive definite. The derivative V̇ along the solution is

V̇ (x1, x2) = 2[x1(−x2) + x2(x1)] = 0.

So the hypotheses of Theorem 5.6.1 holds and hence the zero solution or origin is stable.

Example 5.4.5. Consider the system

x′1 = (x1 − bx2)(αx21 + βx22 − 1)
x′2 = (ax1 + x2)(αx

2
1 + βx22 − 1).

Let
V (x1, x2) = ax21 + bx22.

When a > 0, b > 0, V (x1, x2) is positive definite. Also

V̇ (x1, x2) = 2(ax21 + bx22)(αx
2
1 + βx22 − 1).

Let α > 0, β > 0. If αx21 + βx22 < 1 then, V̇ (x1, x2) is negative definite and by Theorem
5.6.2 the trivial solution is asymptotically stable .

Example 5.4.6. Consider the system

x′1 = x2 − x1f(x1, x2)
x′2 = −x1 − x2f(x1, x2),

where f is represented by a convergent power series in x1, x2 and f(0, 0) = 0. By letting

V =
1

2
(x21 + x22)

we have
V̇ (x1, x2) = −(x21 + x22)f(x1, x2).

Obviously, if f(x1, x2) ≥ 0 arbitrarily near the origin, the origin is stable. If f is positive
definite in some neighborhood of the origin, the origin is asymptotically stable. If f(x1, x2) <
0 arbitrarily near the origin, the origin is unstable.
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Some more examples:

1. We claim that the zero solution of a scalar equation

x′ = x(x− 1)

is asymptotically stable. For
V (x) = x2, |x| < 1

is positive definite and its derivative V̇ along the solution is negative definite.

2. again we claim that the zero solution of a scalar equation

x′ = x(1− x)

is unstable. For
V (x) = x2, |x| < 1

is positive definite and its derivative V̇ along the solution is positive.

EXERCISES

1. Determine whether the following functions are positive definite or negative definite:

(i) 4x21 + 3x1x2 + 2x22,

(ii) −3x21 − 4x1x2 − x22,
(iii) 10x21 + 6x1x2 + 9x22,

(iv) −x21 − 4x1x2 − 10x22.

2. Prove that
ax21 + bx1x2 + cx22

is positive definite if a < 0 and b2 − 4ac < 0 and negative definite if a < 0 and
b2 − 4ac > 0.

3. Consider the quadratic form Q = xTRx where x is a n-column-vector and R = [rij ] is
an n× n symmetric real matrix. Prove that Q is positive definite if and only if

r11 > 0, r11r22 − r21r12 > 0, and det[rij ] > 0, i = 1, 2, · · · ;m = 3, 4, · · · , n.

4. Find a condition on a, b, c under which the following matrices are positive definite:

(i) 1
ab−c

 ac c 0
c a2 + b a
0 a 1


(ii) 1

9−a

 6a+27
a a+ 2a 9− a

9 + 2a a(a+ 3) 3a
9− a 3a 3a

.

5. Let

V (x1, x2) =
1

2
x22 +

∫ x1

0
f(s)ds

where f is such that f(0) = 0, and xf(x) > 0 for x 6= 0. Show that V is positive
definite.
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6. Show that the trivial solution of the equation

x′′ + f(x) = 0,

where f is a continuous function on |x| < ρ, f(0) = 0 and xf(x) > 0 is stable.

7. Show that the following systems are asymptotically stable:

(i) x′1 = −x2 − x31, x′2 = x1 − x32.
(ii) x′1 = −x31 − x1x32, x′2 = x41 − x32.
(iii) x′1 = −x31 − 3x2, x′2 = 3x1 − 5x32.

8. Show that the zero solution or origin for the system

x′1 = −x1 + 2x1(x1 + x2)
2

x′2 = −x32 + 2x32(x1 + x2)
2

is asymptotically stable if |x1|+ |x2| < 1/
√

2.
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Lecture 37

5.5 Stability of Non-autonomous Systems

The study of the stability properties of non-autonomous systems have some inherent difficul-
ties. Systems of this kind are given by (5.32). For this purpose a Lyapunov function V (t, x)
is needed which depends on t and x. Let f in (5.32) be such that f(t, 0) ≡ 0, t ∈ I. Let f
together with its first partial derivative be continuous on I × Sρ. This condition guarantees
the existence and the uniqueness of solutions. For stability it is assumed that solutions of
(5.32) exist on the entire time interval I and that the trivial solution is the equilibrium or
the steady state.

Definition 5.5.1. A real valued function φ is said to belong to the class K if

(i) φ is defined and continuous on 0 ≤ r <∞,

(ii) φ is strictly increasing on 0 ≤ r <∞,

(iii) φ(0) = 0 and φ(r)→∞ as r →∞.

Example: The function φ(r) = αr2, α > 0, is of class K .

Definition 5.5.2. A real valued function V defined on I × Sρ is said to be positive definite
if V (t, 0) ≡ 0 and there exists a function φ ∈ K such that

V (t, x) ≥ φ(|x|), (t, x) ∈ I × Sρ.

It is negative definite if
V (t, x) ≤ −φ(|x|), t, x) ∈ I × Sρ.

Many times real valued positive definite function V is also known as energy function or
Lyapunov function. Example: The function

V (t, x) := (t2 + 1)x4

is positive definite since V (t, 0) ≡ 0 and there exists a φ ∈ K such that V (t, x) ≥ φ(|x|).

Definition 5.5.3. A real valued function V defined on I × Sρ is said to be decrescent if
there exists a function ψ ∈ K such that in a neighborhood of the origin and for all

t ≥ t0, V (t, x) ≤ ψ(|x|).

Examples : The function

V (t, x1, x2) =
1

t2 + 1
(x21 + x22), (t, x) ∈ I × R2,

is decrescent. In this case, we may choose Ψ(r) = r2. The function

V (t, x1, x2) = (1 + e−t)(x21 + x22)

is both positive definite and decrescent since

x21 + x22 ≤ (1 + e−t)(x21 + x22) ≤ 2(x21 + x22)

162



for the choice

φ(r) = r2, ψ(r) = 2r2.

We are now set to prove the fundamental theorems on the stability of the equilibrium of the

system (5.32). We need the energy function in these results. In order to avoid repetitions
,we need the following hypotheses (H*) :

(H*) Let V : I×Sρ → R be a bounded C1 function such that V (t, 0) ≡ 0 and with bounded
first order partial derivatives.

By using the chain rule the derivative V̇ (t, x) is

V̇ (t, x) =
dV (t, x)

dt
=
∂V (t, x)

∂t
+

n∑
i=1

∂V

∂xi

dxi
dt
.

Our interest is in the derivative of V along a solution x of the system (5.32). Indeed, we
have

V̇ (t, x(t)) =
∂V (t, x(t))

∂t
+

n∑
i=1

∂V (t, x(t))

∂xi
fi(t, x(t)).

Theorem 5.5.4. Let V be a positive definite function satisfying the hypotheses (H*) such
that V̇ (t, x) ≤ 0; then the zero solution of the system (5.32) is stable.

Proof. The positive definiteness of V tells us that there exists a function φ ∈ K such that

0 ≤ φ(|x|) ≤ V (t, x), |x| < ρ, t ∈ I. (5.33)

Let x(t) = x(t; t0, x0) be a solution of (5.32). Since V̇ (t, x) ≤ 0, we have

V (t, x(t; t0, x0)) ≤ V (t0, x0), t ∈ I. (5.34)

By the continuity of V , given ε > 0, there exists a δ = δ(ε) > 0 so that

V (t0, x0) < φ(ε), (5.35)

whenever |x0| < δ. Now the inequalities (5.55) and (5.56) yield

0 ≤ φ(|x(t; t0, x0)|) ≤ V (t, x(t; t0, x0)) ≤ V (t0, x0) < φ(ε).

Hence,

|x(t; t0, x0)| < ε, for t ∈ I

whenever |x0| < δ which shows that the origin or the zero solution is stable.

The ensuing result provides us sufficient conditions for the asymptotic stability of the
origin.

Theorem 5.5.5. Let V be a positive definite decrescent function satisfying the hypotheses
(H*) such that V̇ (t, x) ≤ 0 and , and V̇ is negative definite. Then, the zero solution of the
system (5.32) is asymptotically stable.
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Proof. Let x(t; t0, x0) be a solution of (5.32). Since the hypotheses of Theorem 5.7.7 the
null or the zero solution of (5.32) is stable. In other words, given ε > 0 there exists |x0| < δ
such that

0 < |x(t; t0, x0)| < ε, t ≥ t0, whenever |x0| < δ.

Let δ0 = δ(ε). Suppose that for some λ > 0

V (x(t; t0, x0)) ≥ λ > 0, for t ≥ t0.

By hypotheses, since V̇ is negative definite,so there exists a function σ ∈ K such that

V̇ (t, x(t; t0, x0)) ≤ −σ(|x(t; t0, x0)|). (5.36)

In the light of (5.58) we have a number γ > 0 such that

V̇ (t, x(t; t0, x0)) ≤ −γ < 0, t ≥ t0.

Integrating both sides of this inequality, we get

V (t, x(t; t0, x0)) ≤ V (t0, x0)− γ(t− t0). (5.37)

For large value of t the right side of (5.59) becomes negative which contradicts the fact that
V is positive definite. So the assumption that that for some λ > 0

V (x(tn; t0, x0)) ≥ λ > 0, for t ≥ t0.

is false. No such λ exists. Since V is a positive definite and decrescent function,

V (t, x(t; t0, x0))→ 0 as t→∞

and therefore it follows that

|x(t; t0, x0)| → 0 as t→∞.

Thus, the origin or the zero solution is asymptotically stable.

In some cases ρ may be infinite. Thus it is possible that the system is asymptotically
stable for any choice of x0. The following theorem is stated without proof which provides
sufficient conditions for the asymptotic stability in the large.

Theorem 5.5.6. The equilibrium state of (5.32) is asymptotically stable in the large if
there exists, a positive definite function V (t, x) which is decrescent everywhere and such that
V (t, x)→∞ as |x| → ∞ for each t ∈ I and such that V̇ is negative definite.

Example 5.5.7. Consider the system x′ = A(t)x, where A(t) = (aij), aij = −aji, i 6= j
and aij ≤ 0, for all values of t ∈ I and i, j = 1, 2, · · · , n. Let V (x) = x21 + x22 + · · · + x2n.
Obviously V (x) > 0 for x 6= 0 and V (0) = 0. Further

V̇ (x(t)) = 2

n∑
i=1

xi(t)x
′
i(t) = 2

n∑
i=1

xi(t)
[ n∑
j=1

aijxj(t)
]

= 2

n∑
i=1

n∑
j=1

aijxi(t)xj(t) = 2

n∑
i=1

aiix
2
i (t) ≤ 0.

The last step is obtained by using the assumption for the matrix A(t). Now the conditions
of the Theorem hold and so the origin is stable. If aii < 0 for all values of t then it is seen
that V̇ (x(t)) < 0 which implies asymptotic stability of the origin of the given system.
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EXERCISES

1. (i) Show that
V (t, x1, x2) = t(x21 + x22)− 2x1x2 cos t

is positive definite for n = 2 and t > 2.

(ii) Prove that
x21(1 + sin2 t) + x22(1 + cos2 t)

is positive definite for all values of (t, x1, x2).

2. Show that

(i) (x21 + x22) sin2 t is decrescent.

(ii) x21 + (1 + t)x22 is positive definite but not decrescent.

(iii) x21 + ( 1
1+t2

)x22 is decrescent but not positive definite.

(iv) x21 + e−2t x22 is decrescent.

(v) (1 + e−2t) ((x21 + x22)) is positive definite and decrescent.

3. Prove that a function V which has bounded partial derivatives ∂V
∂xi

(i = 1, 2, · · · , n) on
I × Sρ for t ≥ t0 ≥ 0 is decrescent.

4. Consider the equation x′ = −x − x
t (1 − x

2t2). For y = tx it becomes y′ = y(y2 − 1).
Prove that the trivial solution is stable when, for a fixed t0, |x0| ≤ 1

t0
.

5. For the system

x′1 = etx2 − (t2 + 1)x1(x
2
1 + x22)

x′2 = −etx1 − (t2 + 1)x2(x
2
1 + x22),

show that the origin is asymptotically stable.

6. Prove that the trivial solution of the system

x′1 = a(t)x2 + b(t)x1(x
2
1 + x22)

x′1 = −a(t)x1 + b(t)x2(x
2
1 + x22)

is stable if b ≤ 0, asymptotically stable if b ≤ q < 0 and unstable if b > 0.
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Lecture 38

5.6 A Particular Lyapunov Function

The results stated earlier depends on the existence of an energy or a Lyapunov function.
Let us study such a construction method for a linear equation and we also exploit it for
studying stability of zero solution of a nonlinear systems close enough to the corresponding
linear system.At the moment let us consider a linear system

x′ = Ax, x ∈ Rn, (5.38)

where A = (aij) is an n × n constant matrix. The aim is to study the stability of the zero
solution of (5.60) by Lyapunov’s direct method. The stability is determined by the nature
of the characteristic roots of the matrix A. Let V represent a quadratic form

V (x) = xTRx, (5.39)

where R = (rij) is an n×n constant, positive definite, symmetric matrix. The time derivative
of V along the solution of (5.60) is given by

V̇ (x) = x′TRx+ xTRx′ = xTATRx+ xTRAx

= xT (ATR+RA)x = −xTQx,

where

(ATR+RA) = −Q. (5.40)

Here Q = (qij) is n×n constant symmetric matrix. For the asymptotic stability of (5.60) we
need the negative definiteness of the time derivative of V .On the overhand if we start with an
arbitrary matrix R then, the matrix Q may not be positive definite. probably one way out
is to choose Q ( an arbitrary ) positive definite matrix and try to solve the equation (5.62)
for R. We again stress that the positive definiteness of the matrices R and Q is a sufficient
condition for the asymptotic stability of the zero solution of the linear system (5.60). The
sufficiency is obvious since V is positive definite and V̇ is negative definite by the Theorem
5.6.2 the zero solution of of the system (5.60) is asymptotically stable. So let us assume the
matrix Q to be positive definite and solve the equation (5.62) R. The question is :

We again stress that the positive definiteness of the matrices R and Q is a sufficient
condition for the asymptotic stability of the zero solution of the linear system (5.60).

Under what conditions the equation (5.62) gives rise to a unique solution? The answer
lies in the following result whose proof is given here. A square matrix R is called a Stable
matrix if all the eigen values of R have stich negative real parts.

Proposition: Let A be a real matrix. Then, the equation (5.62) namely,

(ATR+RA) = −Q

has a positive definite solution R for every for every positive definite matrix Q if and only if
A is a stable matrix.

A consequence :
In the light of the above proposition we again repeat that that the positive definiteness of
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the matrices R and Q is a necessary and sufficient condition for the asymptotic stability of
the zero solution of the linear system (5.60).

Remark: The stability properties of zero solution of the equation (5.62). unaffected if
the system (5.60) is transformed by the relation x = Py, where P is a non-singular constant
matrix. The system (5.60) is then transforms to

y′ = (P−1AP )y.

Now choose the matrix P such that
P−1AP

is a triangular matrix. Such a transformation is always possible by Jordan normal form. So
there is no loss of generality by assuming in (5.60) that, the matrix A is such that its main
diagonal consists of eigenvalues of A and for i < j, aij = 0. In other words the matrix A is
of the following form:

A =


λ1 0 0 · · · 0
a21 λ2 0 · · · 0
a31 a32 λ3 · · · 0
...

...
...

. . .
...

an1 an2 an3 · · · λn

.

The equation (5.62) is
λ1 a21 a31 · · · an1
0 λ2 a32 · · · an2
...

...
...

. . .
...

0 0 0 · · · λn



r11 r12 r13 · · · r1n
r21 r22 r23 · · · r2n
...

...
...

. . .
...

rn1 rn2 rn3 · · · rnn



+


r11 r12 r13 · · · r1n
r21 r22 r23 · · · r2n
...

...
...

. . .
...

rn1 rn2 rn3 · · · rnn



λ1 0 0 · · · 0
a21 λ2 0 · · · 0
...

...
...

. . .
...

an1 an2 an3 · · · λn



= −


q11 q12 q13 · · · q1n
q21 q22 q23 · · · q2n
...

...
...

. . .
...

qn1 qn2 qn3 · · · qnn

.

Equating the corresponding terms on both sides results in the following system of equations

(λj + λk)rjk = −qjk + δjk(· · · , rhk, · · · ),

where δjk is a linear form in rhk, h+ k > j+ k, with coefficients in ars. Hopefully the above
system determines rjk. The solution of the linear system is unique if the determinant of the
coefficients is non-zero. Obviously the determinant is the product of the coefficients of the
form

λj + λk.

In such a case the matrix R is uniquely determined if none of the characteristic roots λi
is zero and further the sum of any two different roots is not zero. The following example
illustrates the procedure for the determination of R.
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Example 5.6.1. Let us construct a Lyapunov function for the system

x′1 = −3x1 + kx2, x′2 = −2x1 − 4x2

to find values of k which ensures the asymptotic stability of the zero solution. In this case

A =

[
−3 k
−2 4

]
. Let Q be an arbitrary positive definite matrix, say

Q =

[
2 0
0 2

]
.

Now Eq. (5.62) is[
−3 −2
k −4

] [
r11 r12
r21 r22

]
+

[
r11 r12
r21 r22

] [
−3 k
−2 4

]
=

[
−2 0
0 −2

]
.

Consequently (equating the terms on both sides solving the system of equations) we have

r11 =
16 + k

7(k + 6)
, r12 = r21 =

−3 + 2k

7(k + 6)
, r22 =

21 + 2k + k2

14(k + 6)

orelse

R =
1

14(k + 6)

[
32 + 2k −6 + 4k
−6 + 4k 21 + 2k + k2

]
.

Now R is positive definite if

(i)
32 + 2k

14(k + 6)
> 0,

(ii)
(32 + 2k)(21 + 2k + k2)− (4k − 6)2

14(k + 6)
> 0.

Consequently, it is true if k > −6 or k < −16. So for any k between (−16,−6) the matrix
R which is positive definite and therefore, the zero solution of the system is asymptotically
stable.
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Lecture 39

Let g : Sρ → Rn be a smooth function . Let us consider the following system of equation (
in a vector form)

x′ = g(x), (5.41)

where g(0) = 0. Let us denote ∂gi
∂xj

by aij . Then, equation (5.63) may be written as

x′ = Ax+ f(x), (5.42)

where f contains terms of order two or more in (x)and A = [aij ]. Now we study the stability
of the zero solution of the system (5.64). The system (5.60) namely,

x′ = Ax, x ∈ Rn,

is called the homogeneous part of the system (5.63) ( which sometimes is also called the
linearized part of the system (5.64).We know that the zero solution of the system (5.60) is
asymptotically stable when A is a stable matrix. We now make use of the Lyapunov function
given by (5.61) to study the stability behavior of certain nonlinear systems which are related
to the linearized system (5.60). Let the Lyapunov function be

V (x) = xTRx,

where R is the unique solution of the equation (5.62). We have already discussed a method
for the determination of a matrix R.

For the asymptotic stability of the zero solution system (5.64), the function f naturally
has a role to play. We expect that if f is small then, the zero solution of the system (5.64)
is asymptotically stable. With this short introduction let us employ the same Lyapunov
function (5.61) to determine the stability of the origin of (5.64). Now the time derivative of
V along a solution of (5.64) is

V̇ (x) = x′TRx+ xTRx′ = (xTAT + fT )Rx+ xTR(Ax+ f)

= xT (ATR+RA)x+ fTRx+ xTRf = −xTQx+ 2xTRf, (5.43)

because of (5.62) and (5.64). The second term on the right side of (5.65) contains terms
of degree three or higher in x. The first one contains a term of degree two in x. The first
term is negative whereas the sign of the second term depends on f . Whatever the second
term is, at least a small region containing the origin can definitely be found such that the
first term predominates the second term and thus, in this small region the sign of V̇ remains
negative. This implies that the zero solution of nonlinear equation (5.64) is asymptotically
stable. Obviously the negative definiteness of V̇ is only in a small region around origin.

Definition 5.6.2. The region of stability for a differential equation (5.64) is the set of all
initial points x0 such that

lim
t→∞

x(t, t0, x0) = 0.

If the stability region is the whole of Rn then the we say the zero solution is asymp-
totic stability in the large or globally asymptotically stabile. We give below a method of
determining the stability region for the system (5.64).

Consider below a surface {x : V (x) = k} (where k is a constant to be determined) lying
entirely inside the region {x : V̇ (x) ≤ 0}. Now find k such that V (x) = k is tangential to
the surface V̇ (x) = 0. Then, stability region for the system (5.64) is the set {x : V (x) ≤ k}.

Example 5.8.3 given below illustrates a procedure for finding the region of stability.
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Example 5.6.3. Consider a nonlinear system[
x1
x2

]′
=

[
−1 3
−3 −1

] [
x1
x2

]
+

[
0
x22

]
.

Let V (x) = xTRx, where R is the solution of the equation[
−1 −3
3 −1

]
R+R

[
−1 3
−3 −1

]
= Q

Choose Q =

[
4 0
0 4

]
, so that R =

[
2 0
0 2

]
. Thus

V (x1, x2) = 2(x21 + x22)

V̇ (x1, x2) = 4(x1x
′
1 + x2x

′
2) = 4[−x21 − x22(1− x2)]

with respect to the given system. To find the region of asymptotic stability consider the
surface

(x1, x2) : V̇ (x1, x2) = 4[−x21 − x22(1− x2)] = 0.

When
x2 < 1, V̇ (x1, x2) < 0 for all x1.

Hence,
(x1, x2) : V (x) = 2(x21 + x22) ≤ 1

is the region which lies in the region

V̇ (x1, x2) < 0.

The size of the stability region thus obtained depends on the choice of a matrix Q.

EXERCISES

1. Prove that the stability properties of solutions the equation (5.62) remains unaffected
by a transformation x = Py, where P is a non-singular matrix.

2. If R is a solution of the equation (5.62) then, prove that so is RT and hence, RT = R.

3. The matrices A and Q are given below. Find a matrix R satisfying the equation (5.62)
for each of the following cases.

(i) A =

[
0 1
−2 −3

]
, Q =

[
2 0
0 2

]
;

(ii) A =

[
−1 3
−3 −1

]
, Q =

[
4 0
0 4

]
; and

(iii) A =

[
−3 −5
−2 −4

]
, Q =

[
2 0
0 2

]
.

4. For the system  x1
x2
x3

′ =
 0 p 0

0 −2 1
−1 −1 −1

 x1
x2
x3

.
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Choose

Q =

 2 0 0
0 0 0
0 0 0

.

Determine the value/vaues of p for which the matrix R is positive definite.

5. For the system
x′1 = −x1 + 2x2, x

′
2 = −2x1 + x2 + x22

find the region of the asymptotic stability.

6. Prove that the zero solution of the system

(x1, x2)
′ = (−x1 + 3x2,−3x1 − x2 − x32)

is asymptotically stable.
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