
Lecture

3.4 Non-homogeneous linear Systems

Assume in this section that A(t) is an n× n matrix that is continuous on I. The system

x′ = A(t)x+ b(t), t ∈ I, (3.24)

is called a non-homogeneous linear system of order n. Here b is a continuous function defined
on I and taking values in R

n. An inspection shows that if b(t) ≡ 0, then (3.24) reduces to
(3.14). The term b(t) in (3.24) often goes by the name “forcing term” or “perturbation”
for the system (3.14). The system (3.24) is a perturbed state of (3.14). The nature of the
solution of (3.24) is quite closely connected with the solution of (3.14) and to some extent
it is brought out in this section. Before proceeding further, it may be remarked here that
the continuity of A and b ensures the existence and uniqueness of a solution for IVP on I
for the system (3.24). The proof is postponed for the present and is dealt with in Module 4.

To express the solution (3.24) in term of (3.14) it becomes necessary to resort to the
method of variation of parameters. Let Φ(t) be a fundamental matrix for the system (3.14)
on I. Let Ψ(t) be a solution of (3.24) such that for some t0 ∈ I, ψ(t0) = 0. Now let it be
assumed that ψ(t) is given by

ψ(t) = Φ(t)u(t), t ∈ I, (3.25)

where u(t) is an unknown vector function mapping I into R
n such that u(t) is differentiable

and u(t0) = 0. The solution ψ is determined by finding u(t) in terms of known quantities
Φ(t) and b(t). Substituting (3.25) in (3.24) notice that for t ∈ I,

ψ′(t) = Φ′(t)u(t) + Φ(t)u′(t) = A(t)Φ(t)u(t) + Φ(t)u′(t).

It is also seen that

ψ′(t) = A(t)ψ(t) + b(t) = A(t)Φ(t)u(t) + b(t).

Equating the two expressions for ψ′(t) it is concluded that Φ(t)u′(t) = b(t). Note that Φ(t),
being a fundamental matrix, is non-singular on I and so

u′(t) = Φ−1(t).b(t)

or u(t) = 0 +

∫ t

t0

Φ−1(s)b(s)ds, t, t0 ∈ I (3.26)

Substituting the value of u(t) in (3.25), we get,

ψ(t) = Φ(t)

∫ t

t0

Φ−1(s)b(s)ds, t ∈ I (3.27)

It can easily be verified that (3.27) is indeed a solution of (3.24). This discussion so far is
now summed up in Theorem 3.4.1.

Theorem 3.4.1. Let Φ(t) be a fundamental matrix for the system (3.14) for t ∈ I. Then
ψ, defined by (3.27), is a solution of the IVP

x′ = A(t)x+ b(t), x(t0) = 0. (3.28)
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Now let us assume that xh(t) is the solution of the IVP

x′ = A(t)x, x(t0) = c, t, t0 ∈ I. (3.29)

Then, a consequence of Theorem 3.4.1 is that

ψ(t) = xh(t) + Φ(t)

∫ t

t0

Φ−1(s)b(s)ds, t ∈ I (3.30)

is a solution of
x′ = A(t)x+ b(t); x(t0) = c.

Thus with a prior knowledge of the solution of (3.29), the solution of (3.28) is computable
from (3.30).

EXERCISES

1. Prove that the equation (3.27) can also be written as

(i) Ψ(t) = Φ(t)
∫ t
t0
ΨT (s)b(s)ds, t ∈ I provided ΨT (t)Φ(t) = E;

(ii) Ψ(t) = (Ψ−1)T
∫ t
t0
ΨT (s)b(s)ds, t ∈ I, where Ψ is a fundamental matrix for the

adjoint system x′ = −AT (t)x. Assume that A(t) is a real matrix.

2. Consider the system x′ = Ax+ b(t), where

A =

[
3 2
0 3

]
and b(t) =

[
et

e−t

]
.

Show that

Φ(t) =

[
e3t 2te3t

0 e3t

]

is a fundamental matrix of x′ = Ax. Compute the solution y(t) of the non-homogeneous

system for which y(0) =

[
1
1

]
.

3. Consider the system x′ = Ax given that x =

[
x1
x2

]
and A(t) =

[
1 0
0 2

]
.Show that

a fundamental matrix is Φ(t) =

[
et 0
0 e2t

]
. Let b(t) =

[
sin at
cos bt

]
. Find the solution

Ψ(t) of the non-homogeneous equation x′ = Ax+ b(t) for which Ψ(0) =

[
0
1

]
.
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Lecture 17

3.5 Linear Systems with Constant Coefficients

In previous sections, the existence and uniqueness of solutions of linear systems of the type

x′ = A(t)x, x(t0) = x0, t, t0 ∈ I, (3.31)

has been proved. However, when trying to find the solution of such systems in an explicit
form several difficulties are encountered. In fact, there are very few situation when the
solution can be found explicitly. The aim of this article is to develop a method to find the
solution of (3.31) with the assumption that A(t) is a constant matrix. The method involves
first finding the characteristic values of the matrix A. If the characteristic values of the
matrix A are known then, in general, a solution can be obtained in an explicit form. Note
that when the matrix A(t) is variable, it is usually difficult to find solutions.

Before proceeding further, recall the definition of the exponential of a given-matrix A.
It is defined as follows:

expA = E +

∞∑
p=1

Ap

p!

Also, if A and B are two matrices which commute then,

exp(A+B) =expA.expB

For the present assume the proofs of the convergence of the sum through which expA is
defined and the result stated above. So by definition

exp(tA) = E +
∞∑
p=1

tpAp

p!
, t ∈ I

Here it is noted that the infinite series for exp(tA) converges uniformly on every compact
interval of I.

Now consider a linear homogeneous system with a constant matrix, namely,

x′ = Ax, t ∈ I, (3.32)

where I is an interval in R. From Module 1 recall that the solution of (3.32), when A and x
are scalars, is x(t) = cetA for an arbitrary constant c. A similar situation prevails when we
deal with (3.32). This leads to Theorem 3.5.1.

Theorem 3.5.1. The general solution of the system (3.32) is x(t) = etAc, where c is an
arbitrary constant column matrix. Further, the solution of (3.32) with the initial condition
x(t0) = x0, t0 ∈ I, is

x(t) = e(t−t0)Ax0, t ∈ I (3.33)

Proof. Let x(t) be any solution of (3.32). Define a vector u(t) by, u(t) = e−tAx(t), t ∈ I.
Then, it follows that

u′(t) = e−tA(−Ax(t) + x′(t)), t ∈ I.
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Since x is a solution of (3.32) it is easy to observe that u′(t) ≡ 0, which means that u(t) =
c, t ∈ I, where c is some constant vector. Substituting the value c for u(t), it is seen that
x(t) = etAc. Clearly c = e−t0Ax0, and so we have x(t) = etAe−t0Ax0, t ∈ I. Since A
commutes with itself, it is seen that etAe−t0A = e(t−t0)A, and thus, (3.33) follows. This
completes the proof.

In particular, let us choose t0 = 0 and n linearly independent vectors ej , j = 1, 2, · · · , n,
the vector ej being the vector with 1 at the jth component and zero elsewhere. In this case,
we get n linearly independent solutions corresponding to the set of n vectors (e1, e2, · · · , en).
Thus a fundamental matrix for (3.32) is

Φ(t) = etAE = etA, t ∈ I, (3.34)

since the matrix with columns represented by e1, e2, · · · , en is the identity matrix E. Thus
etA solves the matrix differential equation

X ′ = AX, x(0) = E; t ∈ I. (3.35)

Example 3.5.2. Find a fundamental matrix for the system x′ = Ax, where

A =

⎡
⎣α1 0 0
0 α2 0
0 0 α3

⎤
⎦

where α1,α2 and α3 are scalars.
The fundamental matrix is etA. It is very easy to verify that

Ak =

⎡
⎣α

k
1 0 0
0 αk

2 0
0 0 αk

3

⎤
⎦

Hence,

etA =

⎡
⎣expα1t 0 0

0 expα2t 0
0 0 expα3t

⎤
⎦ .

Example 3.5.3. Consider a similar example to determine a fundamental matrix for x′ = Ax,

where A =

[
3 −2
−2 3

]
. Notice that

A =

[
3 0
0 3

]
+

[
0 −2
−2 0

]
.

By the remark which followed Theorem 3.5.1, it is known that the fundamental matrix in
this case is given by

exp(tA) =

[
3 0
0 3

]
t. exp

[
0 −2
−2 0

]
t,

since

[
3 0
0 3

]
and

[
0 −2
−2 0

]
commute. But

exp

[
3 0
0 3

]
t = exp

[
3t 0
0 3t

]
=

[
e3t 0
0 e3t

]
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It is left as an exercise to the readers to verify that

exp

[
0 −2
−2 0

]
t = 1

2

[
e2t + e−2t e−2t − e2t
e−2t − e2t e2t + e−2t

]
.

Thus etA = 1
2

[
e5t + et et − e5t
et − e5t e5t + et

]
.

From Theorem 3.5.1 we know that the general solution of the system (3.32) is etAc but
we have still not computed etA. Once etA determined, the solution of (3.32) is completely
determined.

In order to be able to do this the procedure given below is followed. Choose a solution
of (3.32) in the form

x(t) = eλtc, (3.36)

where c is a constant vector and λ is a scalar. x is determined if λ and c are known.
Substituting (3.36) in (3.32), we get

(λE −A)c = 0. (3.37)

which is a system of algebraic homogeneous linear equations for the unknown c. The system
(3.37) has a non-trivial solution c if and only if λ satisfies det(λE −A) = 0. Let

P (λ) = det(λE −A).

Actually P (λ) is a polynomial of degree n normally called the “characteristic polynomial”
of the matrix A and the equation

P (λ) = 0 (3.38)

is called the “characteristic equation” for A. Since (3.38) is an algebraic equation, it admits
n roots which may be distinct, repeated or complex. The roots of (3.38) are called the
“eigenvalues” or the “characteristic values” of A. Let λ1 be an eigenvalue of A and corre-
sponding to this eigen value, let c1 be the non-trivial solution of (3.37). The vector c1 is
called an “eigenvector” of A corresponding to the eigenvalue λ1. Note that any nonzero con-
stant multiple of c1 is also an eigenvector corresponding to λ1. Thus, if c1 is an eigenvector
corresponding to an eigenvalue λ1 of the matrix A then,

x1(t) = eλ1tc1

is a solution of the system (3.32). Let the eigenvalues of A be λ1, λ2, · · · , λn(not neces-
sarily distinct) and let c1, c2, · · · , cn be linearly independent eigenvectors corresponding to
λ1, λ2, · · · , λn, respectively. Then, it is clear that

xk(t) = eλktck(k = 1, 2, · · · , n),

are n linearly independent solutions of the system (3.32). Here we stress that the eigenvectors
corresponding to the eigenvalues are linearly independent. Thus, {xk}, k = 1, 2, · · · , n is a
set of n linearly independent solutions of (3.32). So by the principle of superposition the
general solution of the linear system is

x(t) =

n∑
k=1

eλktck. (3.39)
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Now let Φ be a matrix whose columns are the vectors

eλ1tc1, e
λ2tc2, · · · , eλntcn

So by construction Φ has n linearly independent columns which are solutions of (3.32) and
hence, Φ is a fundamental matrix. Since etA is also a fundamental matrix, from Theorem
3.4, we therefore have

etA = Φ(t)D,

where D is some non-singular constant matrix. A word of caution is warranted namely that
the above discussion is based on the assumption that the eigenvectors corresponding to the
eigenvalues λ1, λ2, · · · , λn are linearly independent.

Example 3.5.4. Let

x′ =

⎡
⎣0 1 0
0 0 1
6 −11 6

⎤
⎦x.

The characteristic equation is given by

λ3 − 6λ2 + 11λ− 6 = 0.

whose roots are
λ1 = 1, λ2 = 2, λ3 = 3.

Also the corresponding eigenvectors are

⎡
⎣ 1

1
1

⎤
⎦ ,

⎡
⎣ 2

4
8

⎤
⎦ and

⎡
⎣ 1

3
9

⎤
⎦,

respectively. Thus, the general solution of the system is

x(t) = α1

⎡
⎣ 1

1
1

⎤
⎦ et + α2

⎡
⎣ 2

4
8

⎤
⎦ e2t + α3

⎡
⎣ 1

3
9

⎤
⎦ e3t

where α1, α2 and α3 are arbitrary constants. Also a fundamental matrix is

⎡
⎣α1e

t 2α2e
2t α3e

3t

α1e
t 4α2e

2t 3α3e
3t

α1e
t 8α2e

2t 9α3e
3t

⎤
⎦ .

Lecture 18

When the eigenvalues of A are not distinct, the problem of finding a fundamental matrix
is not that easy. The next step is to find the nature of the fundamental matrix in the case
of repeated eigenvalues of A. Let λ1, λ2, · · · , λn(m < n) be the distinct eigenvalues of A
with multiplicities n1, n2, · · · , nm, respectively, where n1 + n2 + · · ·+ nm = n. Consider the
system of equations, for an eigenvalue λi with multiplicity ni,

(λiE −A)nix = 0, i = 1, 2, · · · ,m. (3.40)
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Let Xi be the subspace of R
n generated by the solutions of the system (3.40) for each

λi, i = 1, 2, · · · ,m. From linear algebra it is known that for any x ∈ R
n, there exist unique

vectors y1, y2, · · · , ym, where yi ∈ Xi, (i = 1, 2, · · · ,m), such that

x = y1 + y2 + · · ·+ ym. (3.41)

It is common in linear algebra to speak of Rn as a “direct sum” of the subspacesX1, X2, · · · , Xm.
Consider the problem of determining etA discussed earlier. Let x be a solution of (3.32)

with x(0) = α. By the result which was quoted, unique vectors α1, α2, · · · , αm are obtained,
such that

α = α1 + α2 + · · ·+ αm.

It is also known from Theorem 3.5.1 that the solution x(t) of (3.32) with x(0) = α is

x(t) = etAα =

m∑
i=1

etAαi

But,
etAαi = exp(λit) exp[t(A− λiE)]αi

By the definition of the exponential function, we get

etAαi = exp(λit)[E + t(A− λiE) + · · ·+ tni−1

(ni − 1)!
(A− λiE)ni−1 + · · · ]αi.

It is to be noted here that the terms of form

(A− λiE)kαi = 0 if k ≥ ni,

because recall that the subspace Xi is generated by the vectors, which are solutions of
(A− λiE)nix = 0, and that αi ∈ Xi, i = 1, 2, · · · ,m. Thus,

x(t) = etA
m∑
i=1

αi =

m∑
i=1

exp(λit)
[ ni−1∑

j=0

tj

j!
(A− λjE)j

]
αj , t ∈ I. (3.42)

Indeed one might wonder whether (3.42) is the desired solution. To start with we were
aiming at exp(tA) but all we have in (3.42) is exp(tA).α, where α is an arbitrary vector. But
a simple consequence of (3.42) is the deduction of exp(tA) which is done as follows. Note
that

exp(tA) = exp(tA)E

= [exp(tA)e1, exp(tA)e2, · · · , exp(tA)en].
exp(tA)ei can be obtained from (3.42), i = 1, 2, · · · , n and hence exp(tA) is determined. It
is important to note that (3.42) is useful provided all the eigenvalues are known along with
their multiplicities.

Example 3.5.5. Let x′ = Ax where

A =

⎡
⎣0 0 0
1 0 0
0 1 0

⎤
⎦ .
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The characteristic equation is given by

λ3 = 0.

whose roots are
λ1 = λ2 = λ3 = 0.

Since the rank of the co-efficient matrix A is 2, there is only one eigenvector namely

⎡
⎣ 0

0
1

⎤
⎦ .

The other two generalized eigenvectors are determined by the solution of

A2x = 0 and A3x = 0.

The other two generalized eigenvectors are
⎡
⎣ 0

1
0

⎤
⎦ and

⎡
⎣ 1

0
0

⎤
⎦

Since
A3 = 0,

eAt = I +At+
A2t2

2
or

eAt =

⎡
⎣1 0 0
t 1 0
t2 t 0

⎤
⎦ .

We leave it as exercice to find the eAt given

A =

⎡
⎣−1 0 0

1 −1 0
0 1 −1

⎤
⎦ .
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Lecture 20

Phase Portraits in R
2

In this part, we undertake an elementary study of the Phase Portraits in R
2 for a

system of two linear ordinary differential equations, viz,

ẋ = Ax (3.49)

Here A is a 2×2 real matrix (i.e. an element ofM2(R)) and x ∈ R
2 is a column vector.

The tuple (x1(t), x2(t)) for t ∈ R
2 represents a curve C in R

2 in a parametric form;
the curve C is called the phase portrait of . It is easier to draw the curve when A is in
its canonical form. However, in its original form (i.e. when A is not in the canonical
form) these portraits have similar (but distorted) diagrams. The following example
clarifies the same ideas.

Example : Let A =

[−1 0
1 −2

]
. The canonical form B is

[−1 0
0 −2

]
, i.e.,

A = P−1BP . The equation (3.49) with y = Px, is

y′ = By (3.50)

Equation (3.50) is sometimes is referred to (3.49), when A is in its canonical form. The
phase Portrait for (3.50) is (fig2) Figure 3.2:
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