Distance Matrix of a Multi-block Graph: Determinant and Inverse

Sumit Mohanty

Joint Work with Joyentanuj Das
School of Mathematics
IISER Thiruvananthapuram

Notations and Definitions

Let $G=(V(G), E(G))$ be a finite, simple, connected graph with $V(G)$ as the set of vertices and $E(G) \subset V(G) \times V(G)$ as the set of edges in G.

- We simply write $G=(V, E)$ if there is no scope of confusion.
- We write $i \sim j$ to indicate that the vertices $i, j \in V$ are adjacent in G.
- The degree of the vertex i, denoted by δ_{i}, equals the number of vertices in V that are adjacent to i.

Notations and Definitions

Definition

Let G be a graph with n vertices. The adjacency matrix of G is an $n \times n$ matrix, denoted as $A(G)=\left[a_{i j}\right]$, where

$$
a_{i j}= \begin{cases}1 & \text { if } i \neq j, i \sim j \text { and } \\ 0 & \text { otherwise } .\end{cases}
$$

$$
A(G)=\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Figure: G

Notations and Definitions

Definition

Let G be a graph with n vertices. The Laplacian matrix of G is an $n \times n$ matrix, denoted as $L(G)=\left[l_{i j}\right]$, where

$$
L(G)=\delta(G)-A(G),
$$

where $\delta(G)=\operatorname{diag}\left(\delta_{1}, \delta_{2}, \cdots, \delta_{n}\right)$.

$$
L(G)=\left(\begin{array}{rrrrrr}
1 & 0 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 \\
-1 & -1 & -1 & 4 & -1 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & -1 & 1
\end{array}\right)
$$

Figure: G

Notations and Definitions

Definition

Let G be a graph with n vertices. The Laplacian matrix of G is an $n \times n$ matrix, denoted as $L(G)=\left[I_{i j}\right]$, where

$$
L(G)=\delta(G)-A(G),
$$

where $\delta(G)=\operatorname{diag}\left(\delta_{1}, \delta_{2}, \cdots, \delta_{n}\right)$.

$$
L(G)=\left(\begin{array}{rrrrrr}
1 & 0 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 \\
-1 & -1 & -1 & 4 & -1 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & -1 & 1
\end{array}\right)
$$

Figure: G
Note that, $L(G)$ is a symmetric, positive semi-definite matrix. The constant vector $\mathbf{1}$ is the eigenvector of $L(G)$ corresponding to the smallest eigenvalue 0 and hence satisfies $L(G) \mathbf{1}=\mathbf{0}$ and $\mathbf{1}^{t} L(G)=\mathbf{0}$

Notations and Definitions

A connected graph G is a metric space with respect to the metric d, where $d(i, j)$ equals the length of the shortest path between vertices i and j.

Definition

Let G be a graph with n vertices. The distance matrix of graph G is an $n \times n$ matrix, denoted by $D(G)=\left[d_{i j}\right]$, where

$$
d_{i j}= \begin{cases}d(i, j) & \text { if } i \neq j, i, j \in V \\ 0 & \text { if } i=j, i, j \in V\end{cases}
$$

$$
D(G)=\left(\begin{array}{llllll}
0 & 2 & 2 & 1 & 2 & 3 \\
2 & 0 & 2 & 1 & 2 & 3 \\
2 & 2 & 0 & 1 & 2 & 3 \\
1 & 1 & 1 & 0 & 1 & 2 \\
2 & 2 & 2 & 1 & 0 & 1 \\
3 & 3 & 3 & 2 & 1 & 0
\end{array}\right)
$$

Figure: G

Results on Distance Matrix for Tree

Theorem[Graham et. al., 1971]
Let T be a tree on n vertices. The determinant of the distance matrix of T is given by

$$
\operatorname{det} D(T)=(-1)^{n-1}(n-1) 2^{n-2} .
$$

Results on Distance Matrix for Tree

Theorem[Graham et. al., 1971]
Let T be a tree on n vertices. The determinant of the distance matrix of T is given by

$$
\operatorname{det} D(T)=(-1)^{n-1}(n-1) 2^{n-2}
$$

Theorem[Graham et. al., 1978]
Let T be a tree on n vertices and $D(T)$ be the distance matrix of T. Then the inverse of the distance matrix of T is given by

$$
D(T)^{-1}=-\frac{1}{2} L(T)+\frac{1}{2(n-1)} \tau \tau^{T}
$$

where $\tau=\left(2-\delta_{1}, 2-\delta_{2}, \ldots, 2-\delta_{n}\right)^{T}$ is a column vector.

Results on Distance Matrix for Tree

Figure: T

Cut Vertex and Block

Definition
A vertex v of a connected graph G is a cut vertex of G if $G-v$ is disconnected. A block of the graph G is a maximal connected subgraph of G that has no cut-vertex.

Few Graphs of Our Interest

Definition
A graph with n vertices is called complete, if each vertex of the graph is adjacent to every other vertex and is denoted by K_{n}.

Figure: K_{5}

Figure: $K_{3,4}$

Definition

A graph $G=(V, E)$ said to be bipartite if V can be partitioned into two subsets V_{1} and V_{2} such that $E \subset V_{1} \times V_{2}$. A bipartite graph $G=(V, E)$ with the partition V_{1} and V_{2} is said to be a complete bipartite graph, if every vertex in V_{1} is adjacent to every vertex of V_{2}. If $\left|V_{1}\right|=n_{1}$ and $\left|V_{2}\right|=n_{2}$, the complete bipartite graph is denoted by $K_{n_{1}, n_{2}}$.

Few Graphs of Our Interest

Definition

For $m \geq 2$, a graph is said to be m-partite if the vertex set can be partitioned into m subsets $V_{i}, 1 \leq i \leq m$ with $\left|V_{i}\right|=n_{i}$ and $|V|=\sum_{i=1}^{m} n_{i}$ such that $E \subset \bigcup_{\substack{i, j \\ i, j}} V_{i} \times V_{j}$. A m-partite graph is said to be a complete m-partite graph, denoted by $K_{n_{1}, n_{2}, \cdots, n_{m}}$ if every vertex in V_{i} is adjacent to every vertex of V_{j} and vice versa for $i \neq j$ and $i, j=1,2, \ldots, m$.

Existing Results and Our Aim

In literature the following graphs has been studied.

- Block graph (Bapat et. al., 2011) [each of its blocks is a complete graph].
- Cycle-clique graph (Hou et. al. 2015) [each of its blocks is either a cycle or a complete graph].
- Cactoid graph (Hou et. al. 2015) [each of its blocks is a oriented cycle].
- Bi-block graph(Hou et. al. 2016) [each of its blocks is a complete bipartite graph].
- Weighted cactoid graph (Zhou et. al. 2019) [each of its blocks is a oriented weighted cycle].

Existing Results and Our Aim

In literature the following graphs has been studied.

- Block graph (Bapat et. al., 2011) [each of its blocks is a complete graph].
- Cycle-clique graph (Hou et. al. 2015) [each of its blocks is either a cycle or a complete graph].
- Cactoid graph (Hou et. al. 2015) [each of its blocks is a oriented cycle].
- Bi-block graph(Hou et. al. 2016) [each of its blocks is a complete bipartite graph].
- Weighted cactoid graph (Zhou et. al. 2019) [each of its blocks is a oriented weighted cycle].

Our Aim: To compute the determinant and inverse of the distance matrix for graphs where each of its block is a complete m-partite graph; $m \geq 2$, we call such graphs multi-block graph.

A Rough Sketch of the Main Result

Given an $n \times n$ matrix B, we define $B(i \mid j)$ to be the matrix obtained from B by deleting the $i^{t h}$ row and $j^{t h}$ column. For $1 \leq i, j \leq n$, the cofactor $c_{i j}$ is defined as

$$
c_{i j}=(-1)^{i+j} \operatorname{det} B(i \mid j)
$$

We use the notation cof B to denote the sum of all cofactors of B, i.e.,

$$
\operatorname{cof} B=\sum_{1 \leq i, j \leq n} c_{i j}
$$

Theorem(Graham et. al., 1977)
Let G be a connected graph with blocks $G_{1}, G_{2}, \cdots, G_{b}$. Then

$$
\begin{gathered}
\operatorname{cof} D(G)=\prod_{i=1}^{b} \operatorname{cof} D\left(G_{i}\right) \\
\operatorname{det} D(G)=\sum_{i=1}^{b} \operatorname{det} D\left(G_{i}\right) \prod_{j \neq i} \operatorname{cof} D\left(G_{j}\right) .
\end{gathered}
$$

A Rough Sketch of the Main Result

Theorem[Graham et. al., 1978]
Let T be a tree on n vertices and $D(T)$ be the distance matrix of T. Then the inverse of the distance matrix of T is given by

$$
D(T)^{-1}=-\frac{1}{2} L(T)+\frac{1}{2(n-1)} \tau \tau^{T},
$$

where $\tau=\left(2-\delta_{1}, 2-\delta_{2}, \ldots, 2-\delta_{n}\right)^{T}$ is a column vector.

A Rough Sketch of the Main Result

Theorem[Graham et. al., 1978]
Let T be a tree on n vertices and $D(T)$ be the distance matrix of T. Then the inverse of the distance matrix of T is given by

$$
D(T)^{-1}=-\frac{1}{2} L(T)+\frac{1}{2(n-1)} \tau \tau^{T}
$$

where $\tau=\left(2-\delta_{1}, 2-\delta_{2}, \ldots, 2-\delta_{n}\right)^{T}$ is a column vector.

Our Aim:
Let G be a multi-block graph. Then, the inverse of the distnce matrix of G is given by

$$
D(G)^{-1}=-\mathcal{L}_{G}+\frac{1}{\lambda_{G}} \mu_{G} \mu_{G}^{t}
$$

where

- The matrix \mathcal{L} satiesfies $\mathcal{L} \mathbf{1}=\mathbf{0}$ and $\mathbf{1}^{t} \mathcal{L}_{G}=\mathbf{0}$ and is a called Laplacian-like matrix.
- μ_{G} is a column vector
- λ_{G} a suitable constant.

A Rough Sketch of the Main Result

We need to find $\mathcal{L}_{G}, \mu_{G}, \lambda_{G}$ satisfying the following.
(1) $\operatorname{det} D(G) \neq 0$ iff $\lambda_{G} \neq 0$.
(2) $D(G) \mu_{G}=\lambda_{G} 1$.
(3) $\mathcal{L}_{G} D(G)+I=\mu_{G} \mathbf{1}^{t}$

A Rough Sketch of the Main Result

We need to find $\mathcal{L}_{G}, \mu_{G}, \lambda_{G}$ satisfying the following.
(1) $\operatorname{det} D(G) \neq 0$ iff $\lambda_{G} \neq 0$.
(2) $D(G) \mu_{G}=\lambda_{G} 1$.
(3) $\mathcal{L}_{G} D(G)+I=\mu_{G} \mathbf{1}^{t}$

By (1) and (2), we have $\mu_{G} \mathbf{1}^{t}=\frac{1}{\lambda_{G}} \mu_{G} \mu_{G}^{t} D(G)$. Next by (3), we have

$$
\begin{aligned}
& \mathcal{L}_{G} D(G)+I=\frac{1}{\lambda_{G}} \mu_{G} \mu_{G}^{t} D(G) \\
\Rightarrow & \mathcal{L}_{G}+D(G)^{-1}=\frac{1}{\lambda_{G}} \mu_{G} \mu_{G}^{t} \\
\Rightarrow & D(G)^{-1}=-\mathcal{L}_{G}+\frac{1}{\lambda_{G}} \mu_{G} \mu_{G}^{t} .
\end{aligned}
$$

Given a connected graph G, we are looking for a tuple $\left(D(G), \mathcal{L}_{G}, \mu_{G}, \lambda_{G}\right)$ satisfies the above conditions.

$$
G \rightarrow\left(D(G), \mathcal{L}_{G}, \mu_{G}, \lambda_{G}\right)
$$

A Rough Sketch of the Main Result

Theorem[Zhou et. al., 2017]
Let G be a connected graph with blocks $G_{1}, G_{2}, \cdots, G_{b}$. For $1 \leq t \leq b$,, we search of

$$
G_{t} \rightarrow\left(D\left(G_{t}\right), \mathcal{L}_{G_{t}}, \mu_{G_{t}}, \lambda_{G_{t}}\right) \text { with } \mathbf{1}^{t} \mu_{G_{t}}=1 .
$$

Then

$$
G \rightarrow\left(D(G), \mathcal{L}_{G}, \mu_{G}, \lambda_{G}\right),
$$

where

$$
\begin{aligned}
& \lambda_{G}=\sum_{t=1}^{b} \lambda_{G_{t}}, \\
& \mu_{G}(v)=\sum_{t=1}^{b} \mu_{G_{t}}(v)-(k-1), \text { if vertex } v \text { belongs to } k \text { many blocks of } G . \\
& \mathcal{L}_{G}=\sum_{t=1}^{b} \mathcal{L}_{G_{t}} .
\end{aligned}
$$

$$
\left.\left[\begin{array}{cc}
\alpha_{G_{1}} & 0 \\
\hline 0 & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & \alpha_{G_{2}}
\end{array}\right] \rightarrow \right\rvert\, \begin{array}{l|l|}
& 0 \\
\hline 0
\end{array}
$$

$$
\begin{gathered}
\mu_{G_{1}}=\left(\mu_{1}^{(1)}, \ldots, \mu_{7}^{(1)}\right), \mu_{G_{2}}=\left(\mu_{1}^{(2)}, \ldots, \mu_{6}^{(2)}\right) \\
\mu_{G}=\left(\mu_{1}^{(1)}, \ldots, \mu_{6}^{(1)}, \mu_{7}^{(1)}+\mu_{1}^{(2)}-1, \mu_{2}^{(2)}, \ldots, \mu_{6}^{(2)}\right)
\end{gathered}
$$

A Rough Sketch of the Main Result

Theorem(Graham et. al., 1977)
Let G be a connected graph with blocks $G_{1}, G_{2}, \cdots, G_{b}$. Then

$$
\begin{gathered}
\operatorname{cof} D(G)=\prod_{i=1}^{b} \operatorname{cof} D\left(G_{i}\right) \\
\operatorname{det} D(G)=\sum_{i=1}^{b} \operatorname{det} D\left(G_{i}\right) \prod_{j \neq i} \operatorname{cof} D\left(G_{j}\right) .
\end{gathered}
$$

Observe that, if cof $D\left(G_{t}\right) \neq 0$ for all $t=1,2, \ldots, b$, then

$$
\operatorname{det} D(G)=\left[\sum_{t=1}^{b} \frac{\operatorname{det} D\left(G_{t}\right)}{\operatorname{cof} D\left(G_{t}\right)}\right] \prod_{t=1}^{b} \operatorname{cof} D\left(G_{t}\right)=\left[\sum_{t=1}^{b} \lambda_{G_{t}}\right] \times \operatorname{cof} D(G) .
$$

Define $\lambda_{G}=\sum_{t=1}^{b} \lambda_{G_{t}}$ with $\lambda_{G_{t}}=\frac{\operatorname{det} D\left(G_{t}\right)}{\operatorname{cof} D\left(G_{t}\right)}$.

A Rough Sketch of the Main Result

Theorem

Let $D\left(K_{n_{1}, n_{2}}, \cdots, n_{m}\right)$ be the distance matrix of complete m-partite graph $K_{n_{1}, n_{2}, \cdots, n_{m}}$ on $|V|=\sum_{i=1}^{m} n_{i}$ vertices. Then

$$
\begin{gathered}
\operatorname{det} D\left(K_{n_{1}, n_{2}, \cdots, n_{m}}\right)=(-2)^{|V|-m}\left[\sum_{i=1}^{m}\left(n_{i} \prod_{j \neq i}\left(n_{j}-2\right)\right)+\prod_{i=1}^{m}\left(n_{i}-2\right)\right] . \\
\quad \operatorname{cof} D\left(K_{n_{1}, n_{2}, \cdots, n_{m}}\right)=(-2)^{|V|-m}\left[\sum_{i=1}^{m}\left(n_{i} \prod_{j \neq i}\left(n_{j}-2\right)\right)\right] .
\end{gathered}
$$

Let $G=K_{n_{1}, n_{2}, \cdots, n_{m}}$. Then

$$
\lambda_{G}=\frac{\operatorname{det} D(G)}{\operatorname{cof} D(G)} \text {, whenever } \operatorname{cof} D(G) \neq 0 .
$$

A Rough Sketch of the Main Result

Let $n_{i} \in \mathbb{N}, 1 \leq i \leq m$ and let us denote

$$
\left\{\begin{array}{l}
\beta_{n_{1} n_{2} \cdots n_{m}}=\sum_{i=1}^{m} n_{i} \prod_{j \neq i}\left(n_{j}-2\right)+\prod_{i=1}^{m}\left(n_{i}-2\right), \\
\beta_{\widehat{n_{i}}}=\beta_{n_{1} n_{2} \cdots n_{i-1} n_{i+1} \cdots n_{m}} .
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\gamma_{n_{1} n_{2} \cdots n_{m}}=\sum_{i=1}^{m} n_{i} \prod_{j \neq i}\left(n_{j}-2\right) . \\
\gamma_{\widehat{n_{i}}}=\gamma_{n_{1} n_{2} \cdots n_{i-1} n_{i+1} \cdots n_{m}}
\end{array}\right.
$$

The inverse in $m \times m$ block form is given by $D\left(K_{n_{1}, n_{2}, \cdots, n_{m}}\right)^{-1}=\left[\widetilde{D}_{i j}\right]$, where

$$
\widetilde{D}_{i j}=\left\{\begin{array}{ll}
\left(\frac{2 \beta_{\hat{n}_{i}}-\gamma_{\hat{n}_{i}}}{2 \beta_{n_{1} n_{2} \cdots n_{m}}}\right) J_{n_{i}}-\frac{1}{2} I_{n_{i}} & \text { if } i=j ; \\
\prod_{l \neq i, j}\left(n_{1}-2\right) & \\
\beta_{n_{1} n_{2} \cdots n_{m}} & J_{n_{i} \times n_{j}}
\end{array} \quad \text { if } i \neq j . .\right.
$$

A Rough Sketch of the Main Result

Let $G=K_{n_{1}, n_{2}}, \cdots, n_{m} ; m \geq 2$. Let $V_{n_{i}} ; 1 \leq i \leq m$ denote the m-partitions of the vertex set V of G.

- We define a matrix $\mathcal{L}_{G}=\left[\mathcal{L}_{u v}\right]$, called Laplacian-like matrix of $K_{n_{1}, n_{2}, \cdots, n_{m}}$, where

$$
\mathcal{L}_{u v}= \begin{cases}\frac{\left(n_{i}-1\right) \beta_{\widehat{n}_{i}}-2 \gamma_{\widehat{n}_{i}}}{2 \gamma_{n_{1} n_{2} \cdots n_{m}}} & \text { if } u=v, u \in V_{n_{i}}, \text { for } 1 \leq i \leq m \\ -\frac{\beta_{\widehat{n_{i}}}}{2 \gamma_{n_{1} n_{2} \cdots n_{m}}} & \text { if } u \neq v, u, v \in V_{n_{i}}, \text { for } 1 \leq i \leq m ; \\ \frac{\prod_{\not \neq i, j}\left(n_{l}-2\right)}{\gamma_{n_{1} n_{2} \cdots n_{m}}} & \text { if } u \sim v, u \in V_{n_{i}}, v \in V_{n_{j}}, \text { for } 1 \leq i, j \leq m .\end{cases}
$$

- We define a $|V|$-dimensional column vector μ_{G} as follows:

$$
\mu_{G}(v)=\frac{1}{\gamma_{n_{1} n_{2} \cdots n_{m}}} \sum_{i=1}^{m} \sum_{v \in V_{n_{i}}} \prod_{j \neq i}\left(n_{j}-2\right)
$$

Other Results

Theorem

Let $D\left(K_{n_{1}, n_{2}}, \cdots, n_{m}\right)$ be the distance matrix of complete m-partite graph $K_{n_{1}, n_{2}, \cdots, n_{m}}$ on $|V|=\sum_{i=1}^{m} n_{i}$ vertices. Then

$$
\begin{gathered}
\operatorname{det} D\left(K_{n_{1}, n_{2}, \cdots, n_{m}}\right)=(-2)^{|V|-m}\left[\sum_{i=1}^{m}\left(n_{i} \prod_{j \neq i}\left(n_{j}-2\right)\right)+\prod_{i=1}^{m}\left(n_{i}-2\right)\right] \\
\quad \operatorname{cof} D\left(K_{n_{1}, n_{2}, \cdots, n_{m}}\right)=(-2)^{|V|-m}\left[\sum_{i=1}^{m}\left(n_{i} \prod_{j \neq i}\left(n_{j}-2\right)\right)\right] .
\end{gathered}
$$

Other Results

Theorem

Let $D\left(K_{n_{1}, n_{2}}, \cdots, n_{m}\right)$ be the distance matrix of complete m-partite graph $K_{n_{1}, n_{2}, \cdots, n_{m}}$ on $|V|=\sum_{i=1}^{m} n_{i}$ vertices. Then

$$
\begin{gathered}
\operatorname{det} D\left(K_{n_{1}, n_{2}, \cdots, n_{m}}\right)=(-2)^{|V|-m}\left[\sum_{i=1}^{m}\left(n_{i} \prod_{j \neq i}\left(n_{j}-2\right)\right)+\prod_{i=1}^{m}\left(n_{i}-2\right)\right] . \\
\operatorname{cof} D\left(K_{n_{1}, n_{2}, \cdots, n_{m}}\right)=(-2)^{|V|-m}\left[\sum_{i=1}^{m}\left(n_{i} \prod_{j \neq i}\left(n_{j}-2\right)\right)\right] .
\end{gathered}
$$

1. If $n_{i}>2$, for all $i=1,2, \ldots, m$, then both $\operatorname{det} D(G)$ and $\operatorname{cof} D(G) \neq 0$
2. For $1 \leq i \leq m$, if atleast two n_{i} 's are 2 , then $\operatorname{det} D(G)=\operatorname{cof} D(G)=0$.
3. For $1 \leq i \leq m$, if exactly one n_{i} is 2 , then $\operatorname{det} D(G)=\operatorname{cof} D(G) \neq 0$.
4. If $n_{i}=1$, for all $i=1,2, \ldots, m$, then $G=K_{m}$ and for $m>1$, $\operatorname{det} D(G), \operatorname{cof} D(G) \neq 0$.

Other Results

Theorem

Let $m \geq 2$ and $G=K_{n_{1}, n_{2}, \cdots, n_{m}}$. Then, $\operatorname{det} D(G)=0$ if and only if either of the following holds:
(1) at least two n_{i} 's are 2 for $1 \leq i \leq m$,
(2) there exists $I \in \mathbb{N}$ with $\frac{m+1}{2}<I \leq \frac{3 m+1}{4}$ such that $n_{i}=1$ for $1 \leq i \leq I$ and $n_{i}>2$ for $I+1 \leq i \leq m$ with

$$
2 \sum_{i=l+1}^{m} \frac{1}{n_{i}-2}=2 l-(m+1)
$$

Theorem
Let $m \geq 2$ and $G=K_{n_{1}, n_{2}, \cdots, n_{m}}$. Then, $\operatorname{cof} D(G)=0$ if and only if either of the following holds:
(1) at least two n_{i} 's are 2 for $1 \leq i \leq m$,
(2) there exists $I \in \mathbb{N}$ with $\frac{m}{2}<I \leq \frac{3 m}{4}$ such that $n_{i}=1$ for $1 \leq i \leq I$ and $n_{i}>2$ for $I+1 \leq i \leq m$ with

$$
2 \sum_{i=l+1}^{m} \frac{1}{n_{i}-2}=2 l-m .
$$

Other Results

- There are infinitely many complete multipartite graphs G with cof $D(G) \neq 0$ satisfying $\lambda_{G}<0$.
- Similar assertion is true for $\lambda_{G}>0$ and as well as for $\lambda_{G}=0$.

Other Results

Given a multi-block graph G with blocks $G_{t} ; 1 \leq t \leq b$. Recall that, if cof $D\left(G_{t}\right) \neq 0$; $1 \leq t \leq b$., then

$$
\lambda_{G}=\sum_{t=1}^{b} \lambda_{G_{t}}
$$

and

$$
\operatorname{det} D(G) \neq 0 \text { iff } \lambda_{G} \neq 0
$$

Other Results

Given a multi-block graph G with blocks $G_{t} ; 1 \leq t \leq b$. Recall that, if cof $D\left(G_{t}\right) \neq 0$; $1 \leq t \leq b$., then

$$
\lambda_{G}=\sum_{t=1}^{b} \lambda_{G_{t}}
$$

and

$$
\operatorname{det} D(G) \neq 0 \text { iff } \lambda_{G} \neq 0
$$

- We find multi-block graph G with blocks G_{t} with $\operatorname{cof} D\left(G_{t}\right) \neq 0$ and $\operatorname{det} D\left(G_{t}\right) \neq 0$; $1 \leq t \leq b$, but $\operatorname{det} D(G)=0$.

Other Results

Given a multi-block graph G with blocks $G_{t} ; 1 \leq t \leq b$. Recall that, if cof $D\left(G_{t}\right) \neq 0$; $1 \leq t \leq b$., then

$$
\lambda_{G}=\sum_{t=1}^{b} \lambda_{G_{t}}
$$

and

$$
\operatorname{det} D(G) \neq 0 \text { iff } \lambda_{G} \neq 0
$$

- We find multi-block graph G with blocks G_{t} with $\operatorname{cof} D\left(G_{t}\right) \neq 0$ and $\operatorname{det} D\left(G_{t}\right) \neq 0$; $1 \leq t \leq b$, but $\operatorname{det} D(G)=0$.
- Infinitely many such multi-block graphs can be constructed.

Other Results

Given a multi-block graph G with blocks $G_{t} ; 1 \leq t \leq b$. Recall that, if cof $D\left(G_{t}\right) \neq 0$; $1 \leq t \leq b$., then

$$
\lambda_{G}=\sum_{t=1}^{b} \lambda_{G_{t}},
$$

and

$$
\operatorname{det} D(G) \neq 0 \text { iff } \lambda_{G} \neq 0
$$

- We find multi-block graph G with blocks G_{t} with $\operatorname{cof} D\left(G_{t}\right) \neq 0$ and $\operatorname{det} D\left(G_{t}\right) \neq 0$; $1 \leq t \leq b$, but $\operatorname{det} D(G)=0$.
- Infinitely many such multi-block graphs can be constructed.
J. Das and S. Mohanty. Distance Matrix of Multi-block Graphs: Determinant and Inverse preprint: https://arxiv.org/abs/1910.01367

R．B．Bapat and S．Sivasubramanian．Inverse of the distance matrix of a block graph． Linear and Multilinear Algebra．59（12）：1393－1397， 2011.
A．Berman and N．Shaked－Monderer．Completely Positive Matrices，World Scientific Publishing， 2003.
R R．L．Graham，A．J．Hoffman and H．Hosoya．On the distance matrix of a directed graph．J．Graph Theory．1：85－88， 1977.

R．L．Graham and L．Lovász．Distance matrix polynomials of trees．Advances in Mathematics．29（1）：60－88， 1978.

Y．Hou and J．Chen．Inverse of the distance matrix of a cactoid digraph．Linear Algebra and its Applications．475：1－10， 2015.

Y．Hou，A．Fang and Y．Sun．Inverse of the distance matrix of a cycle－clique graph． Linear Algebra and its Applications．485：33－46， 2015.
Y．Hou and Y．Sun．Inverse of the distance matrix of a bi－block graph．Linear and Multilinear Algebra．64（8）：1509－1517， 2016.

H．Zhou．The inverse of the distance matrix of a distance well－defined graph．Linear Algebra and its Applications．517：11－29． 2017.

H．Zhou，Q．Ding and R．Jia．Inverse of the distance matrix of a weighted cactoid digraph．Applied Mathematics and Computation 362， 2019.

Thank You

