Adjacency algebra of a graph

A. Satyanarayana Reddy (Shiv Nadar University, Dadri, India, satya8118@gmail.com)

Let $M_n(\mathbb{F})$ denote the set all $n \times n$ matrices with coefficients from the field \mathbb{F} . If $A \in M_n(\mathbb{F})$, then $\mathbb{F}[A]$ denote the set of all polynomials in A with coefficients from \mathbb{F} is a subalgebra of $\mathbb{M}_n(\mathbb{F})$.

If A is the adjacency matrix of a graph X, then we write $\mathbb{C}[A]$ as $\mathcal{A}(X)$ and is called the *adjacency algebra* of X. Many properties of the graph X can be known from $\mathcal{A}(X)$. Many graphs are defined by using the properties of $\mathcal{A}(X)$. In this seminar, we will discuss various families of graphs like distance transitive, distance regular, strongly regular, walk regular, distance polynomial graphs etc in terms of their adjacency algebras.

References

- [1] R. B. Bapat, Graphs and Matrices, Springer, (2010).
- [2] Robert A. Beezer, Orbit polynomial graphs of prime order, Discrete Mathematics 67 139-147(1987).
- [3] N. L. Biggs, Algebraic Graph Theory (second edition), Cambridge University Press, Cambridge, (1993).
- [4] R. C. Bose, D. M. Mesner, On linear associative algebras corresponding to association schemes of partially balanced designs, Annals of Mathematical Statistics 30 (1): 21-38(1959).
- [5] Chris D. Godsil & Gordon Royle, Algebraic Graph Theory, Springer-Verlag, (2001).