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Adjacency Matrix of a graph

Let X be a graph on n vertices and let us fix a labeling of the vertices of X .

Then, the
adjacency matrix of X , denoted A(X ) = [aij ] (or A), is an n × n matrix with aij = 1,
if the i-th vertex is adjacent to the j-th vertex and 0, otherwise.
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Adjacency Matrix of a graph is symmetric

Note that another labeling of the vertices of X gives rise to another matrix B
such that B = P−1AP, for some permutation matrix P (for a permutation matrix,
recall that Pt = P−1). Hence, we talk of the adjacency matrix of a graph X and
we do not worry about the labeling of the vertices of X .

Clearly, the adjacency matrix A is a real symmetric matrix. Hence, A has n real
eigenvalues, A is diagonalizable, and the eigenvectors can be chosen to form an
orthonormal basis of Rn.

The eigenvalues, eigenvectors, the minimal polynomial and the characteristic
polynomial of a graph X are defined to be that of its adjacency matrix.
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Adjacency algebra of a graph

If A is the adjacency matrix of a graph X , then C[A], the set of all polynomials in A
with coefficients from C forms subalgebra of Mn(C) we denote it by A(X ) and is
called the adjacency algebra of X .

Graph Adjacency characteristic minimal A(X )
matrix (A) polynomial polynomial

1 2

3

K3

0 1 1
1 0 1
1 1 0

 (x + 1)2(x − 2) (x + 1)(x − 2) {αI + βA|α, β ∈ C}

A(X ) = C[A] ∼= C[x ]/〈mA(x)〉.

Hence dimA(X ) = dim (C[x ]/〈mA(x)〉) = number of distinct eigenvalues of A.
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A known result on F[A]

Theorem

Let mA(x) be the minimal polynomial of A ∈Mn(F). If q(x) is a non-constant factor
of mA(x) in F[x ] then F[A]/〈q(A)〉 ∼= F[x ]/〈q(x)〉.

In particular, if q(x) is irreducible
and q(α) = 0 for some α ∈ C then

F[A]/〈q(A)〉 ∼= F[x ]/〈q(x)〉 ∼= F[α].

That is, F[A]/〈q(A)〉 is a field.

In this case we say that (A, q(A)) or simply A represents the field F(α).

A represents the field F[α]⇔ α is an eigenvalue of A .

A.Satyanarayana Reddy, Shashank K Mehta and A.K.Lal, Representation of Cyclotomic
Fields and their Subfields, Indian J. Pure Appl. Math., 44(2)(2013),203–230.
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Number of walks of length k from vertex vi to vertex vj

Lemma (Biggs [2])

Let X be a graph with adjacency matrix A. Then, for every positive integer k, (Ak)ij
equals the number of walks of length k from the vertex vi to the vertex vj .
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Proof

Proof.

Proof by induction on k .

Base Step: If k = 1, by definition Aij =

{
1, if vi , vj areadjacent

0, otherwise.

Assume the result is true for k = L and let us consider the matrix AL+1. Then,

(AL+1)ij =
n∑

h=1

(AL)ih.(A)hj .

Therefore, (AL+1)ij equals the number of walks of length L from vi to vh and then a
walk of length one (adjacency) from vh to vj , for all vertices vh ∈ V (X ). Thus,
(AL+1)ij equals the number of walks of length L + 1 from vi to vj .
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d + 1 ≤ dim(A(X )) ≤ n.

Lemma (Biggs [2])

Let X be a connected simple graph on n vertices. If d = dia(X ) is the diameter of X ,
then d + 1 ≤ dim(A(X )) ≤ n.

Proof.

Since d is the diameter of X , there exists x , y ∈ V with d(x , y) = d . Suppose
x = w0,w1, . . . ,wd = y is a path of length d in X .
Then, from Lemma 2, for each i ∈ {1, 2, . . . , d}, there is at least one path of length i
from w0 to wi , but no shorter walk. Consequently, Ai has a non-zero entry in a
position where the corresponding entries of I ,A,A2, . . . ,Ai−1 are zero. So
{I ,A,A2, . . . ,Ai−1,Ai} is a linearly independent set. Thus {I ,A,A2, . . . ,Ad−1,Ad} is
a linearly independent set and hence d + 1 ≤ dim(A(X )). Further, the upper bound is
achieved by the well known Cayley-Hamilton theorem. Hence, the result follows.
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d + 1 distinct eigenvalues

The above result has a nice consequence. In particular, it relates the number of
distinct eigenvalues of a simple connected graph with the diameter of the graph. We
state it next.

Corollary

A connected simple graph X with diameter d has at least d + 1 distinct eigenvalues.

Proof.

Since the adjacency matrix is a real symmetric matrix, its minimal polynomial is the
product of distinct linear polynomials. Hence, dim(A(X )) also equals the number of
distinct eigenvalues of A. Thus, if the graph X has diameter d , then it has at least
d + 1 distinct eigenvalues.
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The above corollary is not true for directed graphs.

For example, the following directed
path has diameter 2, whereas its adjacency matrix has only 0’s as eigenvalues. Note
that its adjacency matrix is a nilpotent matrix.

Directed path graph its adjacency matrix

1 2 3

0 1 0
0 0 1
0 0 0


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Few applications of Corollary 1

A path graph on n vertices has n distinct eigenvalues.

If all eigenvalues of a simple graph are equal, then its diameter is zero. Thus, a
simple graph has only one distinct eigenvalue if and only if it is a null graph.

Let X be a connected graph. Then, it has exactly two distinct eigenvalues if and
only if it is complete graph (as diameter of the complete graph is one).

Let X be a graph with two distinct eigenvalues. Then, X is a regular graph.

Proof.

Let X be a graph with two distinct eigenvalues, then dimA(X ) = 2. Hence, I and A
form a basis of A(X ). Consequently A2 = aI + bA, for some a, b ∈ N. Thus,
(A2)ii = a for all i .
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Lemma (Biggs [2])

Let X be a connected graph on n vertices. If A is it’s adjacency matrix, then every
entry of (I + A)n−1 is positive.

Proof.

From Lemma 2, we know that the ij-th entry of I + A + A2 + A3 + . . .+ An−1 equals
the total number of walks of length less than or equal to n − 1. As X is a connected
graph on n vertices, d(X ) ≤ n− 1. Hence, each entry in I + A + A2 + A3 + . . .+ An−1

is positive. Thus, the required result follows as
(I + A)n−1 ≥ I + A + A2 + A3 + · · ·+ An−1.
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k-th distance matrix of a graph

Definition

Let X = (V ,E ) be a connected graph with diameter d . Then, for 0 ≤ k ≤ d , the k-th
distance matrix of X , denoted Ak , is defined as

(Ak)rs =

{
1, if d(vr , vs) = k
0, otherwise.

(A.Satyanarayana Reddy) satya8118@gmail.com Adjacency algebra of a graph
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From the above definition, it is clear that

A0 is the identity matrix and A1 is the adjacency matrix of X .

A0 + A1 + · · ·+ Ad = J, where J is the matrix of all 1′s.

Ak , for 0 ≤ k ≤ d is a symmetric matrix.

the set {A0,A1, . . . ,Ad} is a linearly independent set in Mn(R).
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Distance polynomial Graph

Definition (Paul M. Weichsel [2])

Let X be a connected graph with diameter d and let Ak(X ), for 0 ≤ k ≤ d , be the
k-th distance matrix of X . Then, X is said to be a distance polynomial graph if
Ak(X ) ∈ A(X ), for 0 ≤ k ≤ d .

The complete graph Kn, Cycle graph Cn, Complete bipartite graph Kn,n and Petersen
graph are few examples of distance polynomial graphs.
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Eigenvalues of regular graphs

Lemma (Biggs [2])

Let X be a k-regular graph. Then,

1 k is an eigenvalue of X .

2 if X is connected, then the multiplicity of k is one.

3 for any eigenvalue λ of X , |λ| ≤ k.
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Proof of Part 1

Proof.

Let e = [1, 1, . . . , 1]T . Then Ae = ke. Consequently, k is an eigenvalue with
corresponding eigenvector e.
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Proof of Part 2

Proof.

Let a = [a1, a2, . . . , an]T be an eigenvector of A corresponding to the eigenvalue k .

Suppose aj is an entry of a having the largest absolute value. Without loss of
generality, we also assume that aj is positive as one can take −a in place of a as an
eigenvector of k . So,

kaj = (Aa)j
∑

{vi ,vj}∈E

ai ≤ kaj

as is vertex of X is adjacent to exactly k vertices and aj ≥ ai , for all i = 1, . . . , n.
Hence, ai = aj for all vertices that are adjacent to the vertex vj . Further, the condition
that X is connected implies that we can recursively obtain ai = aj for all i and j .
Consequently, a is multiple of e.
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Proof of Part 3

Proof.

Let Ab = λb. As above, let bj be an entry of b having the largest absolute value.

We
again assume bj is positive. Then

|λ|bj = |(λb)j | = |(Ab)j | = |
∑

{vi ,vj}∈E

bi | ≤
∑

{vi ,vj}∈E

|bi | ≤ k |bj |.

Thus, |λ| ≤ k
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J ∈ A(X )

Lemma 7 implies that if X is a connected k-regular graph then the minimal polynomial
of X will have the form (x − k)q(x) for some polynomial q(x) with integer entries and
q(k) 6= 0, as k is an eigenvalue of multiplicity 1. We use this idea in the next result.

Lemma (Hoffman [3])

Let X be a connected k-regular graph on n vertices. Then, the matrix J, consisting of

all 1’s, equals
n

q(k)
q(A), i.e., J ∈ A(X ).
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Proof

As X is a k-regular graph, its adjacency matrix A satisfies Ae = ke. Let
(x − k)q(x) ∈ Z[x ] be the minimal polynomial of X . Hence,

JA = AJ = kJ and q(A)e = q(k)e. (1)

Let

{
1√
n

e, x2, . . . , xn

}
be an orthonormal basis of Rn consisting of eigenvectors of A

with corresponding eigenvalues k , λ2, . . . , λn. Thus, xTi e = 0, for 2 ≤ i ≤ n. Hence,
Jxi = 0.
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Continuation of Proof

Now, Equation (1) gives

J
1√
n

e =
n√
n

e =
( n

q(k)
q(k)

) 1√
n

e =
n

q(k)
q(A)

1√
n

e. (2)

As (x − k)q(x) is the minimal polynomial of X , q(λi ) = 0. So, q(A)xi = q(λi )xi = 0,

i.e.,
n

q(k)
q(A)xi = 0.

Thus, we see that the image of the two matrices J and

n

q(k)
q(A) on the basis

{
1√
n

e, x2, . . . , xn

}
of Rn are same. Hence, the two matrices

are equal. Therefore, J =
n

q(k)
q(A).
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Lemma

Let X be a graph on n vertices. If J ∈ A(X ), then X is a connected, regular graph.

Proof
Let A be the adjacency matrix of A. Then, J ∈ A(X ) implies that

J = a0I + a1A + · · ·+ arA
r , (3)

for some positive integer r and ai ∈ R, 0 ≤ i ≤ r . As each entry of J is non-zero, for
each pair i , j , there exists the smallest power of A, say t ≤ r , which has a non-zero
entry. Hence, by definition there is a walk of length t from the vertex vi to the vertex
vj . Thus, X is connected. By Equation (3), we see that AJ = JA.
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So, if di equals deg(vi ), for 1 ≤ i ≤ n, then
d1 d2 · · · dn
d1 d2 · · · dn
...

...
. . .

...
d1 d2 · · · dn

 = JA = AJ =


d1 d1 · · · d1

d2 d2 · · · d2
...

...
. . .

...
dn dn · · · dn

 .
Thus, di = dj , for all i and j and hence X is a regular graph. Hence the proof.
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This following observation gives the polynomial q(x) explicitly.

Observation

Let X be a connected regular graph and let k = λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn be the

eigenvalues of X . Define, h(x) = n
n∏

i=2

x−λi
k−λi . Then, the eigenvalues of h(A) are

{h(k), h(λ2), . . . , h(λn)} = {n, 0}. Consequently, h(A)− J vanish at all eigenvectors of

A or equivalently h(A) = J =
n

q(k)
q(A).
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The eigenvalues of X c , where X is regular.

Corollary

Let X be a connected k-regular graph on n vertices with eigenvalues
k = λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn. Then, the eigenvalues of X c are
n − k − 1,−1− λ2, . . . ,−1− λn.
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Proof

Proof.

Let A be the adjacency matrix of X . Then, A(X c) = J− I − A, the adjacency matrix
of X c . Now, using Lemma 29, the matrices I , J and A have the same set of
eigenvectors.

So, let U be an orthogonal matrix formed using the eigenvectors of A as
columns. Then, UAUT = diag(k, λ2, λ3, . . . , λn) and

UAcUT = U(J− I − A)UT = UJUT − UIUT − UAUT

= diag(n, 0, 0, . . . , 0)− diag(1, 1, . . . , 1)− diag(k , λ2, λ3, . . . , λn)

= diag(n − k − 1,−1− λ2, . . . ,−1− λn).
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Corollary

Let X be a connected regular graph. Then X c is connected if and only if
A(X ) = A(X c).

Proof.

As J ∈ A(X ), A(X c) = J− I − A ∈ A(X ) and hence A(X c) ⊂ A(X ).
As X c is a (n − k − 1)-regular connected graph, J ∈ A(X c). Hence,
A = J− I − A(X c) ∈ A(X c). Thus, A(X c) ⊂ A(X ), Thus, the two sets are equal.
Now, suppose that the two sets are equal. Then, J ∈ A(X ) = A(X c). Thus, by
Lemma 9, the graph X c is connected and regular. Hence, the required result
follows.
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Corollary

Let X be a distance polynomial graph. Then X is a connected regular graph.

Proof.

As X is a distance polynomial graph, by definition, X is already connected. If X has
diameter d , then by definition, Ak(X ) ∈ A(X ), for 0 ≤ k ≤ d . Consequently,

J =
d∑

k=0

Ak(X ) ∈ A(X ) and hence using Lemma 29, the result follows.
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Strongly regular graph

Definition

A k-regular graph X on n vertices is said to be a strongly regular graph, with
parameters (n, k, a, c) if

1 X is neither the complete graph nor the null graph,

2 any two adjacent vertices, say u and v , have exactly a common neighbors, and

3 any two non-adjacent vertices, say s and t, have exactly c common neighbors.

(A.Satyanarayana Reddy) satya8118@gmail.com Adjacency algebra of a graph



Patten Polynomial Graphs
References

Strongly regular graph

Definition

A k-regular graph X on n vertices is said to be a strongly regular graph, with
parameters (n, k, a, c) if

1 X is neither the complete graph nor the null graph,

2 any two adjacent vertices, say u and v , have exactly a common neighbors, and

3 any two non-adjacent vertices, say s and t, have exactly c common neighbors.

(A.Satyanarayana Reddy) satya8118@gmail.com Adjacency algebra of a graph



Patten Polynomial Graphs
References

Strongly regular graph

Definition

A k-regular graph X on n vertices is said to be a strongly regular graph, with
parameters (n, k, a, c) if

1 X is neither the complete graph nor the null graph,

2 any two adjacent vertices, say u and v , have exactly a common neighbors, and

3 any two non-adjacent vertices, say s and t, have exactly c common neighbors.

(A.Satyanarayana Reddy) satya8118@gmail.com Adjacency algebra of a graph



Patten Polynomial Graphs
References

Strongly regular graph

Definition

A k-regular graph X on n vertices is said to be a strongly regular graph, with
parameters (n, k, a, c) if

1 X is neither the complete graph nor the null graph,

2 any two adjacent vertices, say u and v , have exactly a common neighbors, and

3 any two non-adjacent vertices, say s and t, have exactly c common neighbors.

(A.Satyanarayana Reddy) satya8118@gmail.com Adjacency algebra of a graph



Patten Polynomial Graphs
References

Examples of Strongly regular graphs

For example, C5 is a (5, 2, 0, 1) strongly regular graph.

Petersen graph is a strongly regular with parameters (10, 3, 0, 1).

The Payley graph on q = 4t + 1 vertices is a strongly regular with parameters
(4t + 1, 2t, t − 1, t).

Recall that the triangular graphs, denote lg(Kn), were the line graphs of the
complete graphs and it can be easily verified that they are strongly regular graphs
with parameters (n(n−1)

2 , 2(n − 2), n − 2, 4).

The line graphs of the complete bipartite graphs, lg(Kn,n) are strongly regular
with parameters (n2, 2(n − 1), n − 2, 2).
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There is relationship among the parameters. That is if we know three of them, then it
is possible to find fourth parameter.

Let X be strongly regular graph with parameters
(n, k, a, c). Let x ∈ V (X ). Then x has k neighbors and n − k − 1 non-neighbors. We
will count the total number of edges between neighbors and non-neighbors of x in two
ways. Let v1, v2, . . . , vk be neighbors of x , then the number of common neighbors of x
and vi is a. Hence number of edges between neighbors of x , non common neighbors of
x are k(k − a− 1). On the other hand there are n − k − 1 vertices not adjacent to x ,
each of which adjacent to c neighbors of x . Hence total number of edges between
neighbors of x , non common neighbors of x are c(n − k − 1). Hence we have
k(k − a− 1) = c(n − k − 1).
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Theorem (Godsil and Royle [3])

Let A be the adjacency matrix of an (n, k, a, c)-strongly regular graph X . Then,

1 A2 = kI + aA + c(J− I − A).

2 the eigenvalues of X are k and roots of equation x2 − (a− c)x − (k − c) = 0.
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Proof of first part

Proof.

To prove the first part, note that he (i , j)th entry of A2 is the number of walks of
length of 2 from the vertex i to the vertex j . Moreover, this number determined only
by whether the vertices i and j are adjacent, non-adjacent or same.

Thus, by definition
of the graph X , we have

(A2)ij =


k whenever i = j ,

a if i 6= j but i and j are adjacent,

c if i 6= j but i and j are not adjacent.

Or equivalently, A2 = kI + aA + cAc = kI + aA + c(J− I − A).
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Proof of second part

Proof.

For the second part, note that k is indeed an eigenvalue of X with eigenvector e. Now,
let λ be an eigenvalue of X with corresponding eigenvector x. Then, eTx = 0. Hence,
using the first part

a(λx) = a(Ax) =
(
A2 − kI − c(J− I − A)

)
x = λ2x−kx−c(0−1−λ)x = (λ2+cλ−(k−c))x.

As x 6= 0, we must have λ2 − (a− c)λ− (k − c) = 0. That is, λ satisfies the required
equation.
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Shrikhande: one of Euler’s Spoiler

The following result characterizes connected regular graphs with three distinct
eigenvalues. The proof is easy and is left as an exercise.

Theorem (Shrikhande and Bhagwandas)

Let X be a connected regular graph which is not a complete graph. Then,

1 X is a strongly regular if and only if A2 is linear combination of the matrices I , J
and A.

2 X is a strongly regular if and only if it has exactly three distinct eigenvalues.

Euler conjectured that no orthogonal Latin squares existed for oddly even numbers
(even numbers not divisible by 4.).
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This conjecture by Euler was in 1782. In 1901, a French mathematician named Gaston
Tarry (1843− 1913) proved that n = 6 was indeed impossible by laboriously checking
all possible cases. But Eulers conjecture that orthogonality was impossible for all oddly
even numbers remained to be resolved. Until 1959, when R.C. Bose, Shrikhande and
E.T. Parker disproved the conjecture.
Once Shrikhande said:
“had the rare privilege of seeing our works reported on the front page of the Sunday
Edition of the New York Times of April 26, 1959.”
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A(X ) of SRG

If X is a connected strongly regular graph, then dim(A(X )) = 3 and

{I ,A,Ac} = {A0,A1,A2}

forms a basis for A(X ).

A connected graph X is said to be a distance regular graph if for any two vertices
u, v of X , the number of vertices at distance i from u and distance j from v depends
only on i , j and d(u, v), the distance between u and v .

Theorem (Damerell [2])

Let X be a distance regular graph of diameter d. Then the set of distance matrices of
X , {A0(X ),A1(X ), . . . ,Ad(X )}, forms a basis of the adjacency algebra A(X ).

A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance regular Graphs,
Springer-Verlag,(1989).
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Adjacency matrix of a directed cycle

Let Wn be the adjacency matrix of a directed cycle with n vertices.

Then Wn, equals

Wn =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

. . .
...

...
0 0 0 . . . 0 1
1 0 0 . . . 0 0

 .

The minimal polynomial of Wn is xn − 1. Hence eigenvalues of Wn are the nth roots
of unity.
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Circulant Matrix

A matrix A ∈Mn(F) is said to be a circulant matrix if aij = a1j−i+1( (mod n)). That
is, for each i ≥ 2, the elements of the i-th row of A are obtained by cyclically shifting
the elements of the (i − 1)-th row of A, one position to the right. So, it is sufficient to
specify its first row.

It is easy to see that Wn is a circulant matrix of order n with its
first row as [0 1 0 . . . 0]. Then, the following result is stated without proof.
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Every circulant matrix is a polynomial in Wn

Lemma

Let A ∈ Mn(F). Then A is a circulant matrix if and only if it is a polynomial in Wn.
That is, the set of circulant matrices in Mn(F) forms a commutative algebra. Note

that as a vector space, its basis is {I = W 0
n ,W

1
n ,W

2
n , . . . ,W

(n−1)
n }.
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Representer polynomial

Let A ∈ Mn(Z) be a circulant matrix. Then, from Lemma 14, there exists a unique
polynomial γA(x) ∈ Z[x ] of degree ≤ n − 1, called the representer polynomial of A
such that A = γA(Wn).

Further, one can see that if A ∈ Mn(Z) is a circulant matrix,
then [a0 a1 . . . an−1] is the first row of A if and only if
γA(x) = a0 + a1x + · · ·+ an−1x

n−1. Consequently, there is a one-to-one
correspondence between the set of circulant matrices over C and the set of polynomials
over C of degree ≤ n − 1. In particular, there is a one-to-one correspondence between
the set of 0, 1 circulant matrices and the set of 0, 1-polynomials of degree ≤ n − 1.

(A.Satyanarayana Reddy) satya8118@gmail.com Adjacency algebra of a graph



Patten Polynomial Graphs
References

Representer polynomial

Let A ∈ Mn(Z) be a circulant matrix. Then, from Lemma 14, there exists a unique
polynomial γA(x) ∈ Z[x ] of degree ≤ n − 1, called the representer polynomial of A
such that A = γA(Wn). Further, one can see that if A ∈ Mn(Z) is a circulant matrix,
then [a0 a1 . . . an−1] is the first row of A if and only if
γA(x) = a0 + a1x + · · ·+ an−1x

n−1.

Consequently, there is a one-to-one
correspondence between the set of circulant matrices over C and the set of polynomials
over C of degree ≤ n − 1. In particular, there is a one-to-one correspondence between
the set of 0, 1 circulant matrices and the set of 0, 1-polynomials of degree ≤ n − 1.

(A.Satyanarayana Reddy) satya8118@gmail.com Adjacency algebra of a graph



Patten Polynomial Graphs
References

Representer polynomial

Let A ∈ Mn(Z) be a circulant matrix. Then, from Lemma 14, there exists a unique
polynomial γA(x) ∈ Z[x ] of degree ≤ n − 1, called the representer polynomial of A
such that A = γA(Wn). Further, one can see that if A ∈ Mn(Z) is a circulant matrix,
then [a0 a1 . . . an−1] is the first row of A if and only if
γA(x) = a0 + a1x + · · ·+ an−1x

n−1. Consequently, there is a one-to-one
correspondence between the set of circulant matrices over C and the set of polynomials
over C of degree ≤ n − 1.

In particular, there is a one-to-one correspondence between
the set of 0, 1 circulant matrices and the set of 0, 1-polynomials of degree ≤ n − 1.

(A.Satyanarayana Reddy) satya8118@gmail.com Adjacency algebra of a graph



Patten Polynomial Graphs
References

Representer polynomial

Let A ∈ Mn(Z) be a circulant matrix. Then, from Lemma 14, there exists a unique
polynomial γA(x) ∈ Z[x ] of degree ≤ n − 1, called the representer polynomial of A
such that A = γA(Wn). Further, one can see that if A ∈ Mn(Z) is a circulant matrix,
then [a0 a1 . . . an−1] is the first row of A if and only if
γA(x) = a0 + a1x + · · ·+ an−1x

n−1. Consequently, there is a one-to-one
correspondence between the set of circulant matrices over C and the set of polynomials
over C of degree ≤ n − 1. In particular, there is a one-to-one correspondence between
the set of 0, 1 circulant matrices and the set of 0, 1-polynomials of degree ≤ n − 1.

(A.Satyanarayana Reddy) satya8118@gmail.com Adjacency algebra of a graph



Patten Polynomial Graphs
References

Eigenvalues of circulant graphs

Let ζn be the primitive nth root of unity, i.e., ζnn = 1 but ζkn 6= 1, for 1 ≤ k ≤ n − 1.

Hence, verify that Wn


1
ζn
...

ζn−1
n

 = ζn


1
ζn
...

ζn−1
n

 . Thus, one has the following result.

Lemma

Let A be a circulant matrix with representer polynomial γA(x). Then, A is
diagonalizable with γA(ζkn ), for 0 ≤ i ≤ n − 1, as its eigenvalues.
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Let A be the adjacency matrix of the cycle graph Cn.

Then, γA(x) = x + xn−1 is its
representer polynomial and its eigenvalues are given by λr = 2 cos( 2πr

n ), for
r = 0, 1, . . . , n − 1. It is easy to see that λr = λn−r for r = 1, . . . , n − 1. As, the
diameter of Cn is bn2c, we see that Cn has bn2c+ 1 distinct eigenvalues and
dim(A(Cn)) = bn2c+ 1. The following result shows that the cycle graph is a distance
polynomial graph, i.e., its distance matrices belong to its adjacency algebra. In fact
they form a basis of the adjacency algebra.
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Theorem

The Cycle graph is a distance polynomial graph.

Proof.

It is easy to check that for the cycle graph Cn, the distance matrices are
Ai = W i

n + W n−i
n , for 1 ≤ i < bn2c. For τ = bn2c,

Aτ =

{
W τ

n , if n is even,

W τ
n + W n−τ

n , if n is odd .

The identity (xk + x−k) = (x + x−1)(xk−1 + x1−k)− (xk−2 + x2−k) enables us to
establish readily by mathematical induction that xk + x−k is a monic polynomial in
x + x−1 of degree k with integral coefficients. Consequently, Ai ’s for 1 ≤ i ≤ τ are
polynomials of degree ≤ i in A1 over Q. Hence {A0,A1, . . . ,Aτ} is a basis for
A(Cn).
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The following result shows that every symmetric circulant matrix is a polynomial in the
cycle graph. Hence, the eigenvalues of every circulant graph can be computed using
the eigenvalues of Cn.

Theorem

Let B ∈ Mn(Q). Then B is symmetric circulant matrix if and only if B ∈ A(Cn).

Proof.
By the definition of the adjacency algebra of a graph, every element in A(Cn) is a symmetric circulant matrix. We now show that if B is a symmetric
circulant matrix, then B ∈ A(Cn).

Let B be a symmetric circulant matrix with the representer polynomial γB (x) =
∑n−1

i=0 bi x
i . Then B =

∑n−1
i=0 biW

i
n and BT =

∑n−1
i=0 biW

n−i
n .

Consequently bi = bn−i , for 1 ≤ i ≤ n − 1. Thus, B =
∑b n2 c

i=0 biAi and hence, the required result follows.

A.K.Lal and A.Satyanarayana Reddy, Non-singular circulant graphs and digraphs,
Electronic Journal of Linear Algebra, Volume 26,(2013), 248–257.
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Automorphism group of a graph X

The collection of all automorphisms of a graph X , denoted Aut(X ), forms a group
under composition of two maps.

If X is graph on n vertices then, Aut(X ) is a
subgroup of Sn, the symmetric group on n symbols. Under this correspondence, the
maps in Aut(X ) consist of n × n permutation matrices. Also, for each g ∈ Aut(X ) the
corresponding permutation matrix is be denoted by Pg . Now, we state two results, one
of which gives a method to check whether a given permutation matrix is an element of
Aut(X ) or not and the other gives information about a few eigenvalues of X .
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g ∈ Aut(X ) if and only if PgA = APg

Lemma

Let A be the adjacency matrix of a graph X . Then g ∈ Aut(X ) if and only if
PgA = APg .
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Proof

Proof.

Let g be a permutation of V (X ) = {v1, v2, . . . , vn}, and g(vi ) = vh, g(vj) = vk .

As
each row of Pg has only one non-zero entry, namely 1, one has

(PgA)ik =
n∑

t=1
(Pg )itAtk = (Pg )ihAhk = Ahk

(APg )ik =
n∑

t=1

Ait(Pg )tk = Aij(Pg )jk = Aij .

PgA = APg ⇔ Ahk = Aij ⇔ {vh, vk} ∈ E if and only if {vi , vj} ∈ E

⇔ g is an automorphism of X .
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Aut(X ) = Aut(X c)

Now we will see few applications of above lemma (PgA = APg ).

Corollary

Let X be a graph. Then Aut(X ) = Aut(X c)

Proof.

First note that a matrix B commutes with J if its every row sum is equal to its every
column sum. Consequently every permutation matrix commutes with J. Hence

PgA = APg ⇔ Pg (J− I − A) = (J− I − A)Pg .
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Vertex transitive graphs

A graph X = (V ,E ) is said to be a vertex transitive (edge transitive) graph if
Aut(X ) acts transitively on V (E ).

That is, for any two vertices x , y ∈ V , x 6= y there
exists g ∈ Aut(X ) such that g(x) = y . For example, Aut(Kn) ∼= Sn and
Aut(Cn) ∼= Dn, hence the graphs Kn and Cn are vertex transitive.

Lemma

Let X = (V ,E ) be a k-regular vertex transitive graph. If λ is a simple eigenvalue of X
then, λ equals k if |V | is odd, and is contained in {−k ,−k + 2, . . . , k − 2, k}, if |V | is
even.
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Cayley graph is vertex transitive

Theorem

Every Cayley graph is vertex transitive.

Proof.

Let X = Cay(G ,S) be a Cayley graph. Then, for every g ∈ G

{x , y} ∈ E (X )⇔ xy−1 ∈ S ⇔ (xg)(yg)−1 ∈ S ⇔ {xg , yg} ∈ E (X ).

Thus, G ⊆ Aut(X ). Hence, if a, b ∈ V = G then, the group element a−1b takes a to
b.
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Circulant digraph

We also recall that a digraph is called a circulant digraph if its adjacency matrix is a
circulant matrix.

Lemma

Let Zn denote the cyclic group of order n. Then, every Cayley digraph Cay(Zn,S) is a
circulant digraph. Conversely, every circulant digraph is Cay(Zn,S) for some
non-empty subset S of Zn.

Hence every circulant graph is vertex transitive. Every vertex transitive graph is not a
Cayley graph. But vertex transitive graph of prime order is circulant graph.
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non-empty subset S of Zn.

Hence every circulant graph is vertex transitive. Every vertex transitive graph is not a
Cayley graph. But vertex transitive graph of prime order is circulant graph.
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Petersen graph is a vertex transitive but is not a Cayley graph

Example

Show that the Petersen graph is a vertex transitive but is not a Cayley graph.

Solution:The proof of the vertex transitivity is left as an exercise (use the first
construction of the Petersen graph given in these notes). It is known that up to
isomorphism there are only two groups of order 10, namely, the Cyclic group and the
Dihedral group. It is easy to verify that none of the cubic Cayley graphs obtained from
these groups is isomorphic to the Petersen graph.
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Distance Transitive Graphs

Definition

A graph X is said to be distance transitive if for all vertices u, v , x , y of X with
d(u, v) = d(x , y), there is a g ∈ Aut(X ) satisfying g(u) = x and g(v) = y .

The distance transitive graphs are both vertex and edge transitive. Complete graphs
Kn, cycle graphs Cn and complete bipartite graphs Km,n with m = n are a few
examples of distance transitive graphs. There are a few class of graphs which attain
the lower bound in the inequality d + 1 ≤ dim(A(X )) ≤ n. The class of distance
transitive graphs are one among them.

Theorem

Let X be a distance transitive graph with diameter d. Then dim(A(X )) = d + 1.
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Orbital Matrices

In fact, in case of distance transitive graphs something more is true and to state it, we
need the following definition.

Definition

Let G be a group acting on a non-empty set V . Then G also acts on V × V , by
g(x , y) = (g(x), g(y)). For each fixed element (u, v) ∈ V × V , the set
Orb(u, v) = {g(u, v) : g ∈ G} is called the orbit of (u, v), under the action of G . The
distinct orbits of V × V under the action of G are called orbitals.
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In the context of a graph X = (V ,E ), the orbitals of X are the distinct orbits of
E ⊂ V × V under the action of Aut(X ). That is, the orbitals are the orbits of the
arcs/non-arcs of the graph X .

The number of orbitals is called the rank of X . Note
that, for each fixed (u, v) ∈ V × V , we can associate a 0, 1-matrix, say M = [mij ],
where mij equals 1, if (i , j) ∈ Orb(u, v) and 0, otherwise. The matrices obtained by
the above method are called orbital matrices. Also, note that for any orbital matrix all
its non-zero entries either appear on the main diagonal or they appear on off-diagonal
as g(v , v) = (g(v), g(v)), for all v ∈ V and g ∈ Aut(X ). The orbitals containing 1’s
on the diagonal will be called diagonal orbitals.
If X is a distance transitive graph then orbital matrices and the distance matrices
defined earlier will coincide. Moreover, they form a basis for adjacency algebra A(X ).
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Decomposition of Kp as isomorphic copies of circulant digraphs

Lemma

Let p be a prime number and let k be any factor of p − 1. Then, the edge set of
Kp = (Zp,E ), the complete graph on p vertices, can be partitioned into k subsets
E1,E2, . . . ,Ek such that the digraphs Xi = (V ,Ei ), for 1 ≤ i ≤ k are r -regular
circulant digraphs, where r = p−1

k . Moreover, the digraphs Xi and Xj for
1 ≤ i < j ≤ k are isomorphic.
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Proof of first part

Proof.

Let α be a generator of Z∗p. Then H = 〈αk〉 = {1, αk , . . . , αk(r−1)} is a subgroup of

Z∗p having r elements and let Hj = αjH for j = 0, 1, . . . , k − 1 be the cosets of H in Z∗p
with H0 = H.

It is important to note that Hj , as a subset of Zp, generates Zp for each
j = 0, 1, . . . , k − 1. Now, define Aj =

∑
h∈Hj

W h
p for 0 ≤ j ≤ k − 1. Then Aj is a 0-1

circulant matrix. Let us now define a digraph Xj by taking Zp as its vertex set and for
x , y ∈ Zp, (x , y) is an edge in Xj if and only if y − x ∈ Hj . Then it is easy to verify
that Xj is the Cayley digraph, Cay(Zp,Hj).
Since the cosets Hj , for 0 ≤ j ≤ k − 1, are disjoint, one has obtained k disjoint
digraphs that are r -regular and this completes the proof of the first part.
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Proof of second part

Proof.

We now need to show that the k digraphs, Xj , for 0 ≤ j ≤ k − 1, are mutually
isomorphic. We will do so by proving that the digraphs X0 and Xj are isomorphic, for
1 ≤ j ≤ k − 1.

Let us define a map ψ : V (X0)→ V (Xj) by ψ(s) = αjs for each
s ∈ V (X0). Then, it can be easily verified that ψ is one-one and onto. Thus, we just
need to show that ψ

(
(x , y)

)
is an edge in Xj if and only if (x , y) is an edge in X0. Or

equivalently, we need to show that ψ(x)− ψ(y) ∈ Hj if and only if x − y ∈ H. And
this holds true as

x − y ∈ H ⇔ αj(x − y) ∈ Hj ⇔ (αjx − αjy) ∈ Hj ⇔ ψ(x)− ψ(y) ∈ Hj .

This completes the proof of the lemma.
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Pattern Polynomial graphs
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Hadamard Product

Let A,B ∈Mn(C). Then the Hadamard product of A = [aij ] and B = [bij ],
denoted A� B, is defined as (A� B)ij = aijbij , for 1 ≤ i , j ≤ n.

Two matrices A,B ∈Mn(C) are said to be disjoint if their Hadamard product is
the zero matrix.
Let S be a non-empty subset of Mn(C). Then S is said to be closed under
conjugate transposition if A∗ ∈ S , for all A ∈ Sand is said to be closed under
Hadamard product if A� B ∈ S , whenever A,B ∈ S . We denote the matrices
with entries either 0 or 1 as 0, 1-matrices.

Theorem (Higman [2], Brouwer, Cohen & Neumaier [4])

Let M be a vector subspace of symmetric n × n matrices. Then M has a basis of
mutually disjoint 0, 1-matrices if and only if M is closed under Hadamard
multiplication.
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Definition

A subalgebra of Mn(C) containing the matrices I (Identity matrix) and J (matrix with
all entries being 1) is called a coherent algebra if it is closed under
conjugate-transposition and Hadamard product.

Mn(C) is the largest coherent algebra.

The minimal polynomial of J is pJ(x) = x(x − n).

Hence dim(C[J]) = 2. Also, the set {I , J− I} is the mutually disjoint 0, 1-matrix
basis for C[J].
Thus, from Theorem 26, C[J] is a coherent algebra.
As any coherent algebra contains both I and J, it is clear that C[J] is the smallest
coherent algebra.

Note that C[J] = C[J− I ] which is same as A(Kn).
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Let P( 6= I ) be a permutation matrix. Then it is easy to check that the set of all
matrices which commute with P is a non-trivial example of a coherent algebra.

For
example, let

Wn =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0

 .

The minimal polynomial of Wn is xn − 1 =
∏
d |n

Φd(x) and

{In = W 0
n ,W

1
n ,W

2
n , . . . ,W

n−1
n } forms a basis of F[Wn].

We already observed that Wn is the adjacency matrix of a directed cycle.
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Coherent closure of A

Let A ∈ Mn(C), then coherent closure of A, denoted by 〈〈A〉〉 or CC(A), is the
smallest coherent algebra containing A.

If A is the adjacency matrix of a graph X and C[A] = CC(A), then X will be
called a pattern polynomial graph.
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Pattern matrices of A

Let ` be the degree of the minimal polynomial of A. Then {I ,A, . . . ,A`−1} is a basis
of C[A].

Let y = (y0, y1, . . . , y`−1) ∈ C` be a vector in the indeterminates y0, y1, . . . , y`−1 and
let B(y) = y0I + y1A + · · ·+ yl−1A

`−1 =
p11(y) p12(y) . . . p1n(y)
p21(y) p22(y) . . . p2n(y)

...
...

. . .
...

pn1(y) pn2(y) . . . pnn(y)

 ,
where pij(y) =

∑
k

yk(Ak)ij can be viewed as a linear polynomial in ` indeterminates

y0, y1, . . . , y`−1.
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L(A)

Let us assume that S = {q1(y), q2(y), . . . , qr (y)} is the set of distinct polynomials
appearing as elements in the matrix B(y). We now use the set S to define r matrices,
P1,P2, . . . ,Pr , called the pattern matrices of A, by

(Pj)s,t =

{
1, if B(y)s,t = pst(y) = qj(y),

0, otherwise.

Then, we define L(A) as the linear subspace L(P1,P2, . . . ,Pr ) of Mn(C).
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Observation

Let the pattern matrices P1,P2, . . . ,Pr be as defined above. Then

1 Pi � Pj = 0, for 1 ≤ i 6= j ≤ r and Pi � Pi = Pi , for 1 ≤ i ≤ r . Also, by

definition, I ∈ L(A) and since
r∑

i=1
Pi = J, J ∈ L(A).

2 Let M,N ∈ L(A). Then M =
r∑

i=1
aiPi and N =

r∑
i=1

biPi , for some ai , bi ∈ C,

1 ≤ i ≤ r . Therefore, by definition, M � N =
r∑

i=1
aibiPi ∈ L(A)). Thus, L(A) is

closed under Hadamard product.

(A.Satyanarayana Reddy) satya8118@gmail.com Adjacency algebra of a graph



Patten Polynomial Graphs
References

Observation

1 L(A) is the smallest subspace of Mn(C) closed under Hadamard product and
contains all powers of A. Consequently, C[A] ⊆ L(A) ⊆ CC(A) and l ≤ r .

2 Let PT
i ∈ {P1,P2, . . . ,Pr} for all i , 1 ≤ i ≤ r . Then L(A) is also closed under

conjugate transposition. In particular, if A is symmetric, then all pattern matrices
are symmetric and L(A) is closed under conjugate transposition.

Theorem

Let A ∈ Mn(C) be a symmetric matrix. Then C[A] = CC(A) if and only if ` = r .
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Recall the following result stated earlier.

Lemma (Hoffman [3])

A graph X is connected and k-regular if and only if J ∈ A(X ). Moreover, in this

case, J =
n

q(k)
q(A), where (x − k)q(x) is the minimal polynomial of A.
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Properties of pattern polynomial graphs

If X is a Pattern Polynomial graph then X is a

Connected regular graph.

Distance polynomial graph.

Walk regular graph.

Every pattern polynomial graph except K2 has at least one multiple eigenvalue.In
particular, if X is a pattern polynomial graph with odd number of vertices, then
we show that dim(A(X )) ≤ n+1

2 .
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Some graph classes which are pattern polynomial

We proved that the following classes of graphs are pattern polynomial graphs.

Orbit polynomial graphs.

Distance regular graphs hence distance transitive graphs.

Connected compact regular graphs.
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A graph Y is said to be a polynomial in a graph X if A(Y ) ∈ A(X ).

For an arbitrary
graph X it seems difficult to find whether a given graph is polynomial in X or not. But
the problem is tractable in case when X is a pattern polynomial graph.The following
result gives a necessary and sufficient condition for a given graph to be a polynomial in
a pattern polynomial graph.Which is also an extension of the results stated in [Robert
A.Beezer [6]] and [Paul M.Weichsel [2]] on the polynomial of a graph.
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Theorem

Let X be a pattern polynomial graph and let {P1,P2, . . . ,Pr} where P1 = I be the
standard basis of A(X ). Then a graph Y is a polynomial in X if and only if
A(Y ) =

∑r−1
i=2 aiPi where ai ∈ {0, 1}.

Corollary

There are 2r−1 graphs in the adjacency algebra of a pattern polynomial graph X ,
where r is the degree of the minimal polynomial of A(X ).
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Lemma

Let a graph Y be a polynomial in a pattern polynomial graph X , then CC(Y ) ⊆ CC(X ).

If a graph Y is a polynomial in a pattern polynomial graph X , then CC(Y ) is a
symmetric (every matrix in CC(Y ) is symmetric) commutative algebra. Hence

Y is a walk regular graph.

Y is a strongly distance-balanced graph.

Y has a multiple eigenvalue, whenever Y 6= K2.

dim(CC(Y )) ≤ n, . Further if the number of vertices in Y is odd, then
dim(CC(Y )) ≤ n+1

2 .
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From the design theory point of view, a graph is a pattern polynomial graph, if its
adjacency algebra is a Bose-Mesner algebra see the definition of Bose-Mesner algebra
in the book by Brouwer, Cohen & Neumaier [4] or in the original paper by Bose &
Mesner [3]. Consequently pattern polynomial graphs can be used to construct
partially balanced incomplete block designs , for the definition of partially balanced

incomplete block designs refer the book by Raghavarao [4].
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In the above Figure 1, the sets a, b, c, . . . , h represent connected regular graphs,
distance polynomial graphs, pattern polynomial graphs, . . . , coherent graphs,
respectively.

Recall the cycle graph C4 on four vertices and the matrix W4, the companion
matrix of x4 − 1. Then {I ,W 2

4 , J − I −W 2
4 = W4 + W 3

4 } is the standard basis of
CC(C4) = CC(C c

4 ). Hence, C c
4 is an example of a coherent graph that is not

connected. Also, it can be easily checked that C c
4 is neither a distance polynomial

graph nor a pattern polynomial graph. Similarly, one can verify that C c
6 is an

example of a pattern polynomial graph that is not a coherent graph.
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Let X be a connected circulant graph of prime order. Then X is an orbit
polynomial graph (see Beezer [4]). But X need not be a compact graph (see
Lemma 2.2 in [1]). Similarly all connected circulant graphs of prime order are not
distance transitive (see Theorem 1.2 in [4]).

Let X be a compact graph. Then using the fact that Aut(X ) = Aut(X c) it is easy
to verify that X is compact if and only if X c is compact. Thus, C c

6 is an example
of a compact connected regular graph that is not a distance transitive graph.

Let X be the line graph of the complete graph Kn, for n ≥ 7. Then X is a
distance transitive graph but not a compact graph for details refer Godsil [1].
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Let X be a distance transitive graph. Then it is easy to see that X is a distance
regular graph. But, the well known Shrikhande graph (see Figure 3) is a distance
regular graph that is not an orbit polynomial graph. Hence, the Shrikhande graph
is also not a distance transitive graph. In fact, there are many distance regular
graphs whose automorphism group is trivial (see Spence [3] or Weisfeiler [4]).

The truncated tetrahedron graph (see Figure 82) is an example of a connected
regular graph that is not a distance polynomial graph (for details, see
Weichsel [2]). But, if we assume that X is a k-regular connected graph with
diameter 2 then X is clearly a distance polynomial graph (A2(X ) = J− I − A).
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Let X be the truncated tetrahedron graph (see Figure 82). Then observe that X c

is a connected regular graph of diameter 2. Hence, X c is an example of a distance
polynomial graph, that is not a pattern polynomial graph.

Let X be a distance regular graph of diameter ≥ 3 having trivial automorphism
group (for examples of such graphs, see Spence [3] or Weisfeiler [4]). Also
assume that X c is connected. Then, using X c is a pattern polynomial graph. But
then the diameter of X is ≥ 3 implies that X c is not a coherent graph and thus
X c is not a distance regular graph. Also, X c is not an orbit polynomial graph as
automorphism group of X is trivial. Consequently, X c is an example of a pattern
polynomial graph that is neither a distance regular graph nor an orbit polynomial
graph.
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Figure: Truncated Tetrahedron Graph

(A.Satyanarayana Reddy) satya8118@gmail.com Adjacency algebra of a graph



Patten Polynomial Graphs
References

1 2

9

10

5 6

13 14 15 16

8 7

11

12

4 3

Figure: Shrikhande Graph
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Now it is interesting to answer the following question: If Y is a graph such that CC(Y )
is symmetric commutative algebra, then “does there exist a pattern polynomial graph
X such that Y is a polynomial in X?”. For example, if Y is a circulant graph (Cayley
graph on cyclic group) with n vertices, then clearly CC(Y ) is symmetric commutative
algebra and it is also known that Y is a polynomial in cycle graph Cn, which is a
pattern polynomial graph.
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Let X = (V ,E ) be a graph on n vertices and let A be its adjacency matrix.

1 Coherent Graph: A graph X is said to be a coherent graph if its adjacency matrix
is a member of the standard basis of CC(X ).

2 Compact Graph: A graph X is said to be a compact graph if every doubly
stochastic matrix that commutes with A is a convex combination of matrices from
Aut(X ).

3 Distance Polynomial Graph: Let X be a connected graph with diameter d and let
Ak(X ), for 0 ≤ k ≤ d , be the k-th distance matrix of X . Then X is said to be a
distance polynomial graph if Ak(X ) ∈ A(X ), for 0 ≤ k ≤ d .
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1 Distance Regular Graph: A connected graph X is said to be a distance regular
graph if for any two vertices u, v of X , the number of vertices at distance i from u
and distance j from v depends only on i , j and d(u, v), the distance between u
and v .

2 Distance Transitive Graph: A graph X is said to be a distance transitive graph if
for any four vertices u, v , x and y of X with d(u, v) = d(x , y), there exists an
element g ∈ Aut(X ), such that g(u) = x and g(v) = y .

3 Edge Regular Graph: A graph X is said to be an edge-regular graph if every pair
of adjacent vertices of X have the same number of common neighbors.
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1 Orbit Polynomial Graph: A graph X is said to be an orbit polynomial graph if
each orbital matrix is a member of A(X ).

2 Pattern Polynomial Graph: A graph X is said to be a pattern polynomial graph if
A(X ) = CC(X ).

3 Walk Regular Graph: A graph X is said to be a walk-regular graph if for each s,
the number of closed walks of length s, starting at a vertex v , is independent of
the choice of v .
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