Graphs with Simply Structured Eigenvectors

Sasmita Barik

Indian Institute of Technology Bhubaneswar

October 2, 2020
IITKGP Webinar

Introduction

Let $G=(V, E)$ be a simple graph with n vertices.
Adjacency matrix: $A(G)=\left[a_{i j}\right]_{n \times n}$, where

$$
a_{i j}= \begin{cases}1, & \text { if }[i, j] \in E(G) \\ 0, & \text { otherwise }\end{cases}
$$

Laplacian matrix: $L(G)=D(G)-A(G)$, where $D(G)$ is the diagonal degree matrix of G.

Laplacian spectrum: $S(G)=\left(\lambda_{1}(G), \lambda_{2}(G), \cdots, \lambda_{n}(G)\right)$, where $\lambda_{1}(G) \leq \lambda_{2}(G) \leq \cdots \leq \lambda_{n}(G)$ are the eigenvalues of $L(G)$.

- $\lambda_{1}(G)=0$ and $\mathbb{1}$, the vector of all ones, is a corresponding eigenvector.

Introduction

Figure: $G=\operatorname{Sud}(2), \sigma(G)=\left(-3^{(4)},-1^{(5)}, 1^{(4)}, 3^{(2)}, 7^{(1)}\right)$.

Introduction

Sudoku Graph: Sudoku graph, $\operatorname{Sud}(n)$ on n^{4} vertices is obtained by taking each cell of the Sudoku as a vertex and two vertices are adjacent if and only if the corresponding cells in the Sudoku are situated in the same row, column or block.

$\mathbf{1}$	$\mathbf{2}$	3	4
3	4	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{2}$	3	4	$\mathbf{1}$
4	$\mathbf{1}$	$\mathbf{2}$	3

Theorem (Sander ${ }^{1}$): All eigenvalues of $\operatorname{Sud}(n)$ are integers. All corresponding eigenspaces admit eigenvectors with the entries from the set $\{-1,0,1\}$.
${ }^{1} \mathrm{~T}$. Sander, Sudoku graphs are integral, The Electronic Journal of Combinatorics, 16 (2009), \#N25.

Introduction

Which graph does admit a simply structured eigenspace basis (eigenvectors entries come from the set $\{-1,0,1\}$)?

For a more straightforward eigenvector analysis it is desirable to achieve an eigenspace that is structurally simple.

Introduction

Adjacency Case

- When G is regular of regularity $r, \mathbb{1}$ is an eigenvector $A(G)$ corresponding to the eigenvalue r.

Conjecture (Sander ${ }^{2}$): The null space of the adjacency matrix of every forest has a $\{-1,0,1\}$-basis.

- Partial answer was given when nullity is one.
${ }^{2}$ T. Sander, Eigenspace structure of certain graph classes, Ph.D Thesis, Technischen Universitat Clusthal (2004).

Introduction

Theorem (Akbari et. al ${ }^{3}$): For any forest F there exists a $\{-1,0,1\}$-basis for its null space. Indeed if F has n vertices with nullity s, then there exists an $n \times s\{-1,0,1\}$-matrix, $\left[\begin{array}{c}X \\ I\end{array}\right]$ whose columns form a basis for the null space of F.

Question: For which graphs is there a $\{-1,0,1\}$-basis for the null space?
${ }^{3}$ S. Akbari, A. Alipour, E. Ghorbani, G. Khosrovshahi, $\{-1,0,1\}$-Basis for the null space of a forest, Linear Algebra Appl. 414, 506-511ㅋㅋㄱ (2006).

Introduction

Cographs

Definition: A graph that can be constructed from isolated vertices by a sequence of operations of unions and complements.

Join of G and $H: G \vee H=\left(G^{c}+H^{c}\right)^{c}$.

- Let \mathcal{C} be a the class of graphs defined as follows:

1. $K_{1} \in \mathcal{C}$.
2. If $G, H \in \mathcal{C}$, then $G+H \in \mathcal{C}$, and
3. If $G, H \in \mathcal{C}$, then $G \vee H \in \mathcal{C}$.

Then \mathcal{C} is the class of cographs.

Example
-

Example

Example

Example

Example

Example

Example

-

Example

Introduction

Cograph

Theorem (Merris ${ }^{4}$): A graph is cograph if and only if it does not have an induced subgraph isomorphic to P_{4}.

Lemma (Merris): Let G be graph on $n \geq 2$ vertices. If G and G^{c} are both connected, then G has an induced subgraph isomorphic to P_{4}.

Note: If G is a connected cograph, then $G=G_{1} \vee \cdots \vee G_{k}$, where G_{1}, \ldots, G_{k} are cographs of lower order. (By induction)

Introduction

Theorem (Royle ${ }^{5}$): The rank of a cograph G is equal to the number of distinct non-zero rows of $A(G)$.
(Question: Are there any other natural classes of graphs for which this rank property holds?)

Theorem (Sander ${ }^{6}$): Every cograph admits a simply structured eigenspace basis for the eigenvalues 0 and -1 with respect to the adjacency matrix.

- Sudoku Graphs, Hamming graphs, unitary Cayley graphs, GCD-graphs

[^0]
Introduction

Laplacian Case

Theorem ${ }^{7}$: Let G be a cograph. Then there exists a basis B of eigenvectors of $L(G)$ such that each vector of B has at most two distinct nonzero entries.

Converse is not true.
Lemma: If G is connected graph on $n \geq 3$ vertices, then $G \square K_{2}$ is not a cograph.

Cartesian product of G and $H, G \square H$:
$V(G \square H)=V(G) \times V(H)$ and two vertices (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ are adjacent in $G \square H$ if either $u=u^{\prime}$ and $v \sim v^{\prime}$ in H or $u \sim u^{\prime}$ in G and $v=v^{\prime}$.

[^1]
Introduction

$$
C_{4} \square K_{2}
$$

$$
x_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right), x_{2}=\left(\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right), x_{3}=\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right), x_{4}=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right) \quad x_{i} \otimes\binom{1}{1}, x_{i} \otimes\binom{1}{-1}
$$

Introduction

Special Case: We know $\mathbb{1 1}$ is an eigenvector of $L(G)$. Let us exclude 0 to be an entry in eigenvector.

Look for characterizations of all graphs G for which there exists a basis B of eigenvectors of $L(G)$ such that each vector of B has entries either 1 or -1 .

Graph with property E: A graph G has property E if, for each eigenvalue λ of $L(G)$ there is a corresponding eigenvector with every entry equal to either 1 or -1 .

Introduction

Hadamard matrix: An $n \times n$ matrix $H=\left[h_{i j}\right]$ is a Hadamard matrix of order n if the entries of H are either +1 or -1 and such that $H H^{T}=n I$.

Normalized Hadamard matrix: It is always possible to arrange to have the first row and first column of a Hadamard matrix contain only +1 entries. A Hadamard matrix in this form is said to be normalized.

Examples:

$$
H_{1}=\left(\begin{array}{cccc}
-1 & 1 & -1 & 1 \\
1 & 1 & 1 & 1 \\
-1 & 1 & 1 & -1 \\
1 & 1 & -1 & -1
\end{array}\right), \quad H_{2}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

Introduction

The necessary condition for the existence of an $n \times n$ Hadamard matrix is that $n=1,2,4 k$ for some integer k.

Conjecture: (Hadamard) An $n \times n$ Hadamard matrix exists for $n=1, n=2$, and $n=4 k$ for any $k \in \mathbb{N}$.

Hadamard diagonalizable graphs

Definition: A graph G is said to be Hadamard diagonalizable if there is a Hadamard matrix H that diagonalizes $L(G)$.

Examples:

- K_{2}
- Empty graph of order $4, K_{2}+K_{2}, K_{2,2}$ and K_{4}.

Note: Any Hadamard diagonalizable graph has property E.

Lemma: A graph G is Hadamard diagonalizable if and only if there is a normalized Hadamard matrix that diagonalizes $L(G)$.

[^2]
Hadamard diagonalizable graphs

Observation: Let H be a normalized Hadamard matrix of order $n=4 k, k \geq 1$. Then

1. K_{n} is diagonalizable by H.
2. there is a permutation matrix P such that $K_{2 k, 2 k}$ is diagonalizable by the Hadamard matrix $P H$.

Theorem: Let G be a graph which is Hadamard diagonalizable. Then G is regular and all its Laplacian eigenvalues are even integers.

[^3]
Hadamard diagonalizable graphs

Lemma: Let G_{1} and G_{2} be two nonempty graphs. If $G_{1}+G_{2}$ is Hadamard diagonalizable, then
(i) G_{1} and G_{2} both are regular graphs of same order and same regularity,
(ii) G_{1} and G_{2} both have even eigenvalues,
(iii) G_{1} and G_{2} share the same eigenvalues.

Lemma: Let G be Hadamard diagonalizable graph. Then G^{c}, $G+G$, and $G \vee G$ are also Hadamard diagonalizable.

Lemma: Let G_{1} and G_{2} be Hadamard diagonalizable. Then $G_{1} \square G_{2}$ is Hadamard diagonalizable.

[^4]
Hadamard diagonalizable graphs

Observation:

$$
\begin{aligned}
& K_{8}^{c}, K_{2}+K_{2}+K_{2}+K_{2},\left(K_{2} \vee K_{2}\right)+\left(K_{2} \vee K_{2}\right), \\
& \left(K_{2} \vee K_{2}\right) \square K_{2}, K_{4}+K_{4}, K_{4} \square K_{2},\left(K_{4}+K_{4}\right)^{c}=K_{4,4}, \\
& \left(\left(K_{2} \vee K_{2}\right)+\left(K_{2} \vee K_{2}\right)\right)^{c},\left(K_{2}+K_{2}+K_{2}+K_{2}\right)^{c}
\end{aligned}
$$

$$
\text { and } K_{8} \text { are the all } 10 \text { graphs of order } 8 \text { which are Hadamard }
$$ diagonalizable.

Theorem: $K_{12}, K_{6,6}, K_{12}^{c}$ and $K_{6}+K_{6}$ are the only graphs of order 12, which are Hadamard diagonalizable.

[^5]
Eigenspaces for regular cographs

Proposition: Let $G=G_{1} \vee \cdots \vee G_{k}$ be a regular connected cograph with property E . Then G_{1}, \ldots, G_{k} are regular cographs with same order and the same degree of regularity. Further, the graphs G_{1}, \ldots, G_{k} all share the same eigenvalues.

Lemma: Let G_{1}, G_{2} be two connected regular cographs with property E on $n \geq 2$ vertices. If $S\left(G_{1}\right)=S\left(G_{2}\right)$, then $G_{1}=G_{2}$.

[^6]
Eigenspaces for regular cographs

Theorem: Let $S_{0}=\left\{K_{m}: m \geq 2, m\right.$ is even $\}$. For $i \in \mathbb{N}$, let $S_{i}=\left\{G^{c} \vee \ldots \vee G^{c}: G \in S_{i-1}\right.$ and the number of joined copies of G^{c} is even $\}$. Then, Γ is a regular cograph with property E on $n \geq 2$ vertices if and only if $\Gamma \in S_{i}$ for some $i=0,1,2, \ldots$.

Example: Let $G_{0}=K_{2} \in S_{0}$. Consider the graph $G_{1}=K_{2}^{c} \vee K_{2}^{c}=C_{4} \in S_{1}$. Let $G_{2}=C_{4}^{c} \vee C_{4}^{c} \vee C_{4}^{c} \vee C_{4}^{c}$. Then $G_{2} \in S_{2}$.

Theorem: Let G be a connected regular cograph. Then there is a basis of $\{1,-1\}$ eigenvectors for G if and only if $G \in S_{i}$ for some $i=0,1,2, \ldots$.

[^7]
Eigenspaces for regular cographs

Observe that if $\Gamma \in S_{i}$, then there is a unique $(i+1)$-tuple of even integers associated with Γ :

If $\Gamma \in S_{0}$, then $\Gamma=K_{m_{0}}$ for some even m_{0}. Write $\Gamma \equiv G\left(m_{0}\right)$.

If $\Gamma \in S_{i}$ for some $i \geq 1$, then $\Gamma=\Gamma_{1}^{c} \vee \cdots \vee \Gamma_{1}^{c}$ (m_{i} copies) where
$\Gamma_{1}^{c}=G\left(m_{0}, m_{1}, \ldots, m_{i-1}\right) \in S_{i-1}$. So, $\Gamma \equiv G\left(m_{0}, m_{1}, \ldots, m_{i}\right)$.

Lemma: $G\left(m_{0}, m_{1}, \ldots, m_{i}\right)$ has exactly $i+2$ distinct eigenvalues.

[^8]
Eigenspaces for regular cographs

Theorem: Label the distinct eigenvalues of $G\left(m_{0}, \ldots, m_{i}\right)$ as $0=\mu_{1}<\mu_{2}<\cdots<\mu_{i+2}$. Then
(a) The dimension of the eigenspace corresponding to $\mu_{\left\lfloor\frac{i}{2}\right\rfloor+2}$ is $m_{i} m_{i-1} \ldots m_{1}\left(m_{0}-1\right)$.
(b) For each $l=1, \ldots,\left\lfloor\frac{i}{2}\right\rfloor+1$, the dimension of the eigenspace corresponding to μ_{l} is $m_{i} m_{i-1} \ldots m_{i+4-2 l}\left(m_{i+3-2 l}-1\right)$ (here we interpret this quantity as 1 when $l=1$). Further, every $\{1,-1\}$ eigenvector corresponding to μ_{l} has the form $w \otimes \mathbb{1}_{m_{0} m_{1} \ldots m_{i+2-2 l}}$ for some $\{1,-1\}$ vector $w \in \mathbb{R}^{m_{i+3-2 l} m_{i+4-2 l} \cdots m_{i}}$.
(c) For each $l=1, \ldots, i-\left\lfloor\frac{i}{2}\right\rfloor$, the dimension of the eigenspace corresponding to μ_{i+3-l} is $m_{i} m_{i-1} \ldots m_{i+3-2 l}\left(m_{i+2-2 l}-1\right)$ (here we interpret this quantity as $m_{i}-1$ when $l=1$). Further, every $\{1,-1\}$ eigenvector corresponding to μ_{i+3-l} has the form $w \otimes \mathbb{1}_{m_{0} m_{1} \ldots m_{i+1-2 l}}$ for some $\{1,-1\}$ vector $w \in \mathbb{R}^{m_{i+2-2 l} m_{i+3-2 l} \cdots m_{i}}$.

Eigenspaces for regular cographs

Theorem: Suppose that we have even integers $m_{0}, m_{1}, \ldots, m_{i}$ such that $G\left(m_{0}, m_{1}, \ldots, m_{i}\right)$ is a Hadamard diagonalizable graph. Then for each $k=0, \ldots, i$, there exists a Hadamard matrix of order $\prod_{j=k}^{i} m_{j}$.

- We suspect that the converse of the above theorem is true. As a result, all Hadamard diagonalizable cographs would be completely described!

[^9]
Recent Developments

Theorem: If n is even and there exists a Hadamard matrix of order n, then the graphs $K_{n}, K_{\frac{n}{2}, \frac{n}{2}}, n K_{1}$ and $2 K_{\frac{n}{2}}$ are Hadamard diagonalizable.

Theorem ${ }^{8}$ Let G be a graph of order n. If $n=8 k+4$ and G is Hadamard diagonalizable, then G is either K_{n} or $K_{\frac{n}{2}, \frac{n}{2}}$ or $n K_{1}$ or $2 K_{\frac{n}{2}}$.

[^10]
Recent Developments

Table: Number of non-equivalent Hadamard matrices and number of Hadamard diagonalizable graphs

Order	Hadamard matrices	Hadamard diagonalizable graphs
4	1	4
$\mathbf{8}$	1	$\mathbf{1 0}$
12	1	4
$\mathbf{1 6}$	5	$\mathbf{5 0}$
20	3	4
$\mathbf{2 4}$	60	$\mathbf{2 6}$
28	487	4
$\mathbf{3 2}$	$13,710,027$	$\mathbf{1 0 , 1 9 6}$
36	(unknown)	$\mathbf{4}$

- Two Hadamard matrices are considered equivalent if one can be obtained from the other by negating rows or columns, or by interchanging rows or columns.

Recent Developments

- N. Johnston, S. Kirkland, S. Plosker, R. Storey and X. Zhang, Perfect quantum state transfer using Hadamard diagonalizable graphs, Linear Algebra Appl., 531: 375-398, (2017).
- A. Chan, S. Fallat, S. Kirkland, J. C.-H. Lin, S. Nasserasr, and S. Plosker, Complex Hadamard diagonalizable graphs, arXiv:2001.00251v2 [math.CO] 19 Jul, 2020.

THANK YOU

[^0]: ${ }^{5}$ G. F. Royle, The rank of a cograph, Electron. J. Combin., 10 (2003), \#N11.
 ${ }^{6}$ T. Sander, On certain eigenspaces of cographs, Electron. J. Combin., 15 (2008), \#R140.

[^1]: ${ }^{7}$ S. Barik, S. Fallat and S. Kirkland, On the Hadamard diagonalizable graphs, Linear Algebra Appl., 435:1885-1902, (2011).

[^2]: ${ }^{7}$ S. Barik, S. Fallat and S. Kirkland, On the Hadamard diagonalizable graphs, Linear Algebra Appl., 435:1885-1902, (2011).

[^3]: ${ }^{7}$ S. Barik, S. Fallat and S. Kirkland, On the Hadamard diagonalizable graphs, Linear Algebra Appl., 435:1885-1902, (2011).

[^4]: ${ }^{7}$ S. Barik, S. Fallat and S. Kirkland, On the Hadamard diagonalizable graphs, Linear Algebra Appl., 435:1885-1902, (2011).

[^5]: ${ }^{7}$ S. Barik, S. Fallat and S. Kirkland, On the Hadamard diagonalizable graphs, Linear Algebra Appl., 435:1885-1902, (2011).

[^6]: ${ }^{7}$ S. Barik, S. Fallat and S. Kirkland, On the Hadamard diagonalizable graphs, Linear Algebra Appl., 435:1885-1902, (2011).

[^7]: ${ }^{7}$ S. Barik, S. Fallat and S. Kirkland, On the Hadamard diagonalizable graphs, Linear Algebra Appl., 435:1885-1902, (2011).

[^8]: ${ }^{7}$ S. Barik, S. Fallat and S. Kirkland, On the Hadamard diagonalizable graphs, Linear Algebra Appl., 435:1885-1902, (2011).

[^9]: ${ }^{7}$ S. Barik, S. Fallat and S. Kirkland, On the Hadamard diagonalizable graphs, Linear Algebra Appl., 435:1885-1902, (2011).

[^10]: ${ }^{8}$ J. Breen, S. Butler, M. Fuentes, B. Lidický, M. Phillips, A. W. N. Riasanovsky, S.-Y. Song, R. R. Villagrán, C. Wiseman, X. Zhang, Hadamard diagonalizable graphs of order at most 36, arXiv:2007.09235v1 [math.CO], July 2020.

