GRAPHS WITH SIMPLY STRUCTURED EIGENVECTORS

Sasmita Barik

Indian Institute of Technology Bhubaneswar

October 2, 2020 IITKGP Webinar

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let G = (V, E) be a simple graph with n vertices.

Adjacency matrix: $A(G) = [a_{ij}]_{n \times n}$, where

$$a_{ij} = \begin{cases} 1, & \text{if } [i,j] \in E(G), \\ 0, & \text{otherwise.} \end{cases}$$

Laplacian matrix: L(G) = D(G) - A(G), where D(G) is the diagonal degree matrix of G.

Laplacian spectrum: $S(G) = (\lambda_1(G), \lambda_2(G), \dots, \lambda_n(G))$, where $\lambda_1(G) \le \lambda_2(G) \le \dots \le \lambda_n(G)$ are the eigenvalues of L(G).

• $\lambda_1(G) = 0$ and $\mathbbm{1}$, the vector of all ones, is a corresponding eigenvector.

Figure: G = Sud(2), $\sigma(G) = (-3^{(4)}, -1^{(5)}, 1^{(4)}, 3^{(2)}, 7^{(1)})$.

Sudoku Graph: Sudoku graph, Sud(n) on n^4 vertices is obtained by taking each cell of the Sudoku as a vertex and two vertices are adjacent if and only if the corresponding cells in the Sudoku are situated in the same row, column or block.

1	2	3	4
3	4	1	2
2	3	4	1
4	1	2	3

Theorem (Sander¹): All eigenvalues of Sud(n) are integers. All corresponding eigenspaces admit eigenvectors with the entries from the set $\{-1, 0, 1\}$.

¹T. Sander, Sudoku graphs are integral, *The Electronic Journal of Combinatorics*, 16 (2009),#N25.

Which graph does admit a simply structured eigenspace basis (eigenvectors entries come from the set $\{-1, 0, 1\}$)?

 \downarrow

For a more straightforward eigenvector analysis it is desirable to achieve an eigenspace that is structurally simple.

Adjacency Case

• When G is regular of regularity r, 1 is an eigenvector A(G) corresponding to the eigenvalue r.

Conjecture (Sander ²): The null space of the adjacency matrix of every forest has a $\{-1, 0, 1\}$ -basis.

• Partial answer was given when nullity is one.

Theorem (Akbari et. al ³): For any forest F there exists a $\{-1, 0, 1\}$ -basis for its null space. Indeed if F has n vertices with nullity s, then there exists an $n \times s$ $\{-1, 0, 1\}$ -matrix, $\begin{bmatrix} X \\ I \end{bmatrix}$ whose columns form a basis for the null space of F.

Question: For which graphs is there a $\{-1, 0, 1\}$ -basis for the null space?

³S. Akbari, A. Alipour, E. Ghorbani, G. Khosrovshahi, $\{-1, 0, 1\}$ -Basis for the null space of a forest, *Linear Algebra Appl.* 414, 506–511; (2006).

Cographs

Definition: A graph that can be constructed from isolated vertices by a sequence of operations of unions and complements.

Join of G and H: $G \lor H = (G^c + H^c)^c$.

• Let \mathcal{C} be a the class of graphs defined as follows:

1. $K_1 \in C$. 2. If $G, H \in C$, then $G + H \in C$, and 3. If $G, H \in C$, then $G \lor H \in C$.

Then C is the class of cographs.

•

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

۲

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Cograph

Theorem (Merris⁴): A graph is cograph if and only if it does not have an induced subgraph isomorphic to P_4 .

Lemma (Merris): Let G be graph on $n \ge 2$ vertices. If G and G^c are both connected, then G has an induced subgraph isomorphic to P_4 .

Note: If G is a connected cograph, then $G = G_1 \lor \cdots \lor G_k$, where G_1, \ldots, G_k are cographs of lower order. (By induction)

Theorem (Royle⁵): The rank of a cograph G is equal to the number of distinct non-zero rows of A(G).

(Question: Are there any other natural classes of graphs for which this rank property holds?)

Theorem (Sander⁶): Every cograph admits a simply structured eigenspace basis for the eigenvalues 0 and -1 with respect to the adjacency matrix.

• Sudoku Graphs, Hamming graphs, unitary Cayley graphs, GCD-graphs

 5 G. F. Royle, The rank of a cograph, *Electron. J. Combin.*, 10 (2003), #N11.

Laplacian Case

Theorem⁷: Let G be a cograph. Then there exists a basis B of eigenvectors of L(G) such that each vector of B has **at most two** distinct nonzero entries.

Converse is not true.

Lemma: If G is connected graph on $n \ge 3$ vertices, then $G \Box K_2$ is not a cograph.

Cartesian product of G and H, $G \Box H$:

 $V(G\Box H) = V(G) \times V(H)$ and two vertices (u, v) and (u', v') are adjacent in $G\Box H$ if either u = u' and $v \sim v'$ in H or $u \sim u'$ in G and v = v'.

⁷S. Barik, S. Fallat and S. Kirkland, On the Hadamard diagonalizable graphs, *Linear Algebra Appl.*, 435:1885–1902, (2011).

▲□▶▲□▶▲□▶▲□▶ = ● ● ●

Special Case: We know 1 is an eigenvector of L(G). Let us exclude 0 to be an entry in eigenvector.

Look for characterizations of all graphs G for which there exists a basis B of eigenvectors of L(G) such that each vector of B has entries either 1 or -1.

Graph with property E: A graph G has property E if, for each eigenvalue λ of L(G) there is a corresponding eigenvector with every entry equal to either 1 or -1.

Hadamard matrix: An $n \times n$ matrix $H = [h_{ij}]$ is a Hadamard matrix of order n if the entries of H are either +1 or -1 and such that $HH^T = nI$.

Normalized Hadamard matrix: It is always possible to arrange to have the first row and first column of a Hadamard matrix contain only +1 entries. A Hadamard matrix in this form is said to be normalized.

Examples:

The necessary condition for the existence of an $n \times n$ Hadamard matrix is that n = 1, 2, 4k for some integer k.

Conjecture: (Hadamard) An $n \times n$ Hadamard matrix exists for n = 1, n = 2, and n = 4k for any $k \in \mathbb{N}$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Definition: A graph G is said to be **Hadamard diagonalizable** if there is a Hadamard matrix H that diagonalizes L(G).

Examples:

 \blacktriangleright K_2

Empty graph of order 4, $K_2 + K_2$, $K_{2,2}$ and K_4 .

Note: Any Hadamard diagonalizable graph has property E.

Lemma: A graph G is Hadamard diagonalizable if and only if there is a normalized Hadamard matrix that diagonalizes L(G).

Observation: Let H be a normalized Hadamard matrix of order $n=4k, k\geq 1.$ Then

- 1. K_n is diagonalizable by H.
- 2. there is a permutation matrix P such that $K_{2k,2k}$ is diagonalizable by the Hadamard matrix PH.

Theorem: Let G be a graph which is Hadamard diagonalizable. Then G is regular and all its Laplacian eigenvalues are even integers.

Lemma: Let G_1 and G_2 be two nonempty graphs. If $G_1 + G_2$ is Hadamard diagonalizable, then

(i) G_1 and G_2 both are regular graphs of same order and same regularity,

(ii) G_1 and G_2 both have even eigenvalues,

(iii) G_1 and G_2 share the same eigenvalues.

Lemma: Let G be Hadamard diagonalizable graph. Then G^c , G + G, and $G \vee G$ are also Hadamard diagonalizable.

Lemma: Let G_1 and G_2 be Hadamard diagonalizable. Then $G_1 \square G_2$ is Hadamard diagonalizable.

Observation:

$$\begin{split} &K_8^c, K_2 + K_2 + K_2 + K_2, (K_2 \vee K_2) + (K_2 \vee K_2), \\ &(K_2 \vee K_2) \Box K_2, K_4 + K_4, K_4 \Box K_2, (K_4 + K_4)^c = K_{4,4}, \\ &((K_2 \vee K_2) + (K_2 \vee K_2))^c, (K_2 + K_2 + K_2 + K_2)^c \\ &\text{and } K_8 \text{ are the all } 10 \text{ graphs of order } 8 \text{ which are Hadamard diagonalizable.} \end{split}$$

Theorem: K_{12} , $K_{6,6}$, K_{12}^c and $K_6 + K_6$ are the only graphs of order 12, which are Hadamard diagonalizable.

Proposition: Let $G = G_1 \lor \cdots \lor G_k$ be a regular connected cograph with property E. Then G_1, \ldots, G_k are regular cographs with same order and the same degree of regularity. Further, the graphs G_1, \ldots, G_k all share the same eigenvalues.

Lemma: Let G_1, G_2 be two connected regular cographs with property E on $n \ge 2$ vertices. If $S(G_1) = S(G_2)$, then $G_1 = G_2$.

Eigenspaces for regular cographs

Theorem: Let $S_0 = \{K_m : m \ge 2, m \text{ is even}\}$. For $i \in \mathbb{N}$, let $S_i = \{G^c \lor \ldots \lor G^c : G \in S_{i-1} \text{ and the number of joined copies of } G^c \text{ is even}\}$. Then, Γ is a regular cograph with property E on $n \ge 2$ vertices if and only if $\Gamma \in S_i$ for some $i = 0, 1, 2, \ldots$

Example: Let $G_0 = K_2 \in S_0$. Consider the graph $G_1 = K_2^c \lor K_2^c = C_4 \in S_1$. Let $G_2 = C_4^c \lor C_4^c \lor C_4^c \lor C_4^c$. Then $G_2 \in S_2$.

Theorem: Let G be a connected regular cograph. Then there is a basis of $\{1, -1\}$ eigenvectors for G if and only if $G \in S_i$ for some i = 0, 1, 2, ...

Eigenspaces for regular cographs

Observe that if $\Gamma \in S_i$, then there is a unique (i + 1)-tuple of even integers associated with Γ :

If $\Gamma \in S_0$, then $\Gamma = K_{m_0}$ for some even m_0 . Write $\Gamma \equiv G(m_0)$.

If $\Gamma \in S_i$ for some $i \ge 1$, then $\Gamma = \Gamma_1^c \lor \cdots \lor \Gamma_1^c$ $(m_i \text{ copies})$ where $\Gamma_1^c = G(m_0, m_1, \dots, m_{i-1}) \in S_{i-1}$. So, $\Gamma \equiv G(m_0, m_1, \dots, m_i)$.

Lemma: $G(m_0, m_1, \ldots, m_i)$ has exactly i + 2 distinct eigenvalues.

Eigenspaces for regular cographs

Theorem: Label the distinct eigenvalues of $G(m_0, \ldots, m_i)$ as $0 = \mu_1 < \mu_2 < \cdots < \mu_{i+2}$. Then

(a) The dimension of the eigenspace corresponding to $\mu_{\lfloor \frac{i}{2} \rfloor + 2}$ is $m_i m_{i-1} \dots m_1 (m_0 - 1)$.

(b) For each $l = 1, \ldots, \lfloor \frac{i}{2} \rfloor + 1$, the dimension of the eigenspace corresponding to μ_l is $m_i m_{i-1} \ldots m_{i+4-2l} (m_{i+3-2l} - 1)$ (here we interpret this quantity as 1 when l = 1). Further, every $\{1, -1\}$ eigenvector corresponding to μ_l has the form $w \otimes \mathbb{1}_{m_0 m_1 \ldots m_{i+2-2l}}$ for some $\{1, -1\}$ vector $w \in \mathbb{R}^{m_{i+3-2l} m_{i+4-2l} \cdots m_i}$.

(c) For each $l = 1, \ldots, i - \lfloor \frac{i}{2} \rfloor$, the dimension of the eigenspace corresponding to μ_{i+3-l} is $m_i m_{i-1} \ldots m_{i+3-2l} (m_{i+2-2l} - 1)$ (here we interpret this quantity as $m_i - 1$ when l = 1). Further, every $\{1, -1\}$ eigenvector corresponding to μ_{i+3-l} has the form $w \otimes 1\!\!1_{m_0 m_1 \ldots m_{i+1-2l}}$ for some $\{1, -1\}$ vector $w \in \mathbb{R}^{m_{i+2-2l} m_{i+3-2l} \cdots m_i}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● のへぐ

Theorem: Suppose that we have even integers m_0, m_1, \ldots, m_i such that $G(m_0, m_1, \ldots, m_i)$ is a Hadamard diagonalizable graph. Then for each $k = 0, \ldots, i$, there exists a Hadamard matrix of order $\prod_{j=k}^{i} m_j$.

We suspect that the converse of the above theorem is true. As a result, all Hadamard diagonalizable cographs would be completely described!

Theorem: If n is even and there exists a Hadamard matrix of order n, then the graphs $K_n, K_{\frac{n}{2}, \frac{n}{2}}, nK_1$ and $2K_{\frac{n}{2}}$ are Hadamard diagonalizable.

Theorem ⁸ Let G be a graph of order n. If n = 8k + 4 and G is Hadamard diagonalizable, then G is either K_n or $K_{\frac{n}{2},\frac{n}{2}}$ or nK_1 or $2K_{\frac{n}{2}}$.

⁸J. Breen, S. Butler, M. Fuentes, B. Lidický, M. Phillips, A. W. N. Riasanovsky, S.-Y. Song, R. R. Villagrán, C. Wiseman, X. Zhang, Hadamard diagonalizable graphs of order at most 36, arXiv:2007.09235v1 [math.CO], July 2020.

Recent Developments

 Table: Number of non-equivalent Hadamard matrices and number

 of Hadamard diagonalizable graphs

Order	Hadamard matrices	Hadamard diagonalizable graphs
4	1	4
8	1	10
12	1	4
16	5	50
20	3	4
24	60	26
28	487	4
32	13,710,027	10,196
36	(unknown)	4

• Two Hadamard matrices are considered equivalent if one can be obtained from the other by negating rows or columns, or by interchanging rows or columns.

• N. Johnston, S. Kirkland, S. Plosker, R. Storey and X. Zhang, Perfect quantum state transfer using Hadamard diagonalizable graphs, *Linear Algebra Appl.*, 531: 375–398, (2017).

• A. Chan, S. Fallat, S. Kirkland, J. C.-H. Lin, S. Nasserasr, and S. Plosker, Complex Hadamard diagonalizable graphs, arXiv:2001.00251v2 [math.CO] 19 Jul, 2020.

THANK YOU

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●