Eigenvalue bounds for some classes of matrices associated with graphs

Ranjit Mehatari

Department of Mathematics
National Institute Technology Rourkela
Rourkela 769008

14/08/2020

An Observation

$$
\text { Let } A=\left[\begin{array}{cc}
-1 & 4 \\
2 & 1
\end{array}\right] \text { and } P=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] . \text { Then } 1 \text {. } \begin{aligned}
P^{-1} A P & =\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 4 \\
2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 4 \\
2 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
3 & 4 \\
0 & -3
\end{array}\right]
\end{aligned}
$$

An Observation

$$
\begin{aligned}
& \text { Let } A=\left[\begin{array}{ccc}
4 & 1 & -1 \\
-1 & 2 & 3 \\
1 & 3 & 0
\end{array}\right] \text { and } P=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] . \text { Then } \\
& \begin{aligned}
P^{-1} A P & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
4 & 1 & -1 \\
-1 & 2 & 3 \\
1 & 3 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
4 & 1 & -1 \\
0 & 1 & 4 \\
0 & 2 & 1
\end{array}\right]
\end{aligned}
\end{aligned}
$$

The general case

Let $e=\left[\begin{array}{llll}1 & 1 & \cdots & 1\end{array}\right]^{T}$ and $e^{\prime}=\left[\begin{array}{llll}1 & -1 & \cdots & -1\end{array}\right]^{T}$. We define the matrix P as

$$
P=\left[\begin{array}{lllll}
e & e_{2} & e_{3} & \ldots & e_{n}
\end{array}\right] .
$$

It is easy to verify that the matrix P is nonsingular and its inverse is equal to

$$
P^{-1}=\left[\begin{array}{lllll}
e^{\prime} & e_{2} & e_{3} & \ldots & e_{n}
\end{array}\right]
$$

The general case

Let $A=\left[a_{i j}\right]_{n \times n}$ be a matrix with constant row sum r. Then $\mathrm{P}^{-1} A P=\left[\begin{array}{cc}r & \mathbf{x}^{T} \\ o_{n-1} & A(1)\end{array}\right]$ where $\mathbf{x}^{T}=\left[\begin{array}{llll}a_{12} & a_{13} & \cdots & a_{1 n}\end{array}\right]$, and

$$
A(1)=A(1 \mid 1)-\mathbf{j}_{n-1} \mathbf{x}^{T}=A(1 \mid 1)-\left[\begin{array}{cccc}
a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{12} & a_{13} & \cdots & a_{1 n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{12} & a_{13} & \cdots & a_{1 n}
\end{array}\right]
$$

The general case

Let $P_{k}=\left[\begin{array}{llllllll}e_{2} & e_{3} & \cdots & e_{k} & e_{1} & e_{k+1} & \cdots & e_{n}\end{array}\right]$.
Therefore, the matrix A is similar to the matrix

$$
A_{k}=P_{k}^{-1} A P_{k}=\left[\begin{array}{cc}
a_{k k} & a(k)^{T} \\
y & A(k \mid k)
\end{array}\right], \forall k=1,2, \ldots, n
$$

where $a(k)^{T}=\left[\begin{array}{llllll}a_{k 1} & \cdots & a_{k, k-1} & a_{k, k+1} & \cdots & a_{k n}\end{array}\right]$ Now,

$$
P^{-1} A_{k} P=\left[\begin{array}{cc}
r & a(k)^{T} \\
0 & A(k)
\end{array}\right], \quad \text { where }
$$

$$
\begin{aligned}
A(k) & =A(k \mid k)-j_{n-1} a(k)^{T} \\
& =A(k \mid k)-\left[\begin{array}{cccccc}
a_{k 1} & \cdots & a_{k, k-1} & a_{k, k+1} & \cdots & a_{k n} \\
a_{k 1} & \cdots & a_{k, k-1} & a_{k, k+1} & \cdots & a_{k n} \\
\vdots & \vdots & \cdots & \vdots & \cdots & \vdots \\
a_{k 1} & \cdots & a_{k, k-1} & a_{k, k+1} & \cdots & a_{k n}
\end{array}\right]
\end{aligned}
$$

Applicability in Spectral graph theory

- The adjacency A matrix of simple regular graph.
- The Laplacian matrix of connected graph: $L=D-A$, where D is the diagonal matrix of vertex degrees.
- The normalized adjacency matrix of connected graph: $\mathcal{A}=D^{-1} A$.

The Perron-Frobenious theorem

Definition: A square matrix A is reducible if there is a permutation matrix P such that

$$
P^{T} A P=\left[\begin{array}{cc}
B & C \\
0_{n-r \times r} & D
\end{array}\right] \text { and } 1 \leq r \leq n-1
$$

A square matrix is irreducible if it is not reducible.

The Perron-Frobenious theorem

Theorem

Let $A_{n \times n}$ be nonnegative and irreducible. Then there is a (unique) positive real number ρ with the following properties:
(i) There is a real vector $x>0$ with $A x=\rho x$.
(ii) ρ has algebraic multiplicity 1 .
(iii) For each eigenvalue λ of A, we have $|\lambda| \leq \rho$.

The general case

Theorem

Let A be nonnegative irreducible matrix with constant row sum r. Then any eigenvalue of A other than r is also an eigenvalue of

$$
A(k)=A(k \mid k)-\boldsymbol{j}_{n-1} \boldsymbol{a}(k)^{T}, k=1,2, \ldots, n
$$

where $\boldsymbol{a}(k)^{T}=\left[\begin{array}{llllll}a_{k 1} & \cdots & a_{k, k-1} & a_{k, k+1} & \cdots & a_{k n}\end{array}\right]$ is the k-deleted row of A.

Localizing the eigenvalues

Let $A=\left[a_{i j}\right]$ be an $n \times n$ complex matrix. The i-th Geršgorin disc of A is defined by

$$
R_{i}(A)=\left\{z \in \mathbb{C}:\left|z-a_{i i}\right| \leq \sum_{j \neq i}\left|a_{i j}\right|\right\}
$$

Theorem

(Geršgorin) Let $A=\left[a_{i j}\right]$ be an $n \times n$ complex matrix. Then the eigenvalues of A lie in the region

$$
G_{A}=\bigcup_{i=1}^{n}\left\{z \in \mathbb{C}:\left|z-a_{i i}\right| \leq \sum_{j \neq i}\left|a_{i j}\right|\right\} .
$$

Example

$$
\begin{aligned}
S & =\left[\begin{array}{cccc}
0.25 & 0.25 & 0.3 & 0.2 \\
0 & 0.5 & 0.33 & 0.17 \\
0.6 & 0.4 & 0 & 0 \\
0.1 & 0.2 & 0.3 & 0.4
\end{array}\right] . \\
S(1) & =\left[\begin{array}{ccc}
0.5 & 0.33 & 0.17 \\
0.4 & 0 & 0 \\
0.2 & 0.3 & 0.4
\end{array}\right]-\left[\begin{array}{ccc}
0.25 & 0.3 & 0.2 \\
0.25 & 0.3 & 0.2 \\
0.25 & 0.3 & 0.2
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0.25 & 0.03 & -0.03 \\
0.15 & -0.3 & -0.2 \\
-0.05 & 0 & 0.2
\end{array}\right] .
\end{aligned}
$$

Example

$$
\begin{aligned}
& S(2)=\left[\begin{array}{ccc}
0.25 & -0.03 & 0.03 \\
0.6 & -0.33 & -0.17 \\
0.1 & -0.03 & 0.23
\end{array}\right], \\
& S(3)=\left[\begin{array}{ccc}
-0.35 & -0.15 & 0.2 \\
-0.6 & 0.1 & 0.17 \\
-0.5 & -0.2 & 0.4
\end{array}\right], \\
& S(4)=\left[\begin{array}{ccc}
0.15 & 0.05 & 0 \\
-0.1 & 0.3 & 0.03 \\
0.5 & 0.2 & -0.3
\end{array}\right] .
\end{aligned}
$$

Example

Figure: The regions $G_{S}(k), k=1,2,3,4$.

An eigenvalue Localization theorem

Theorem

Let $A_{n \times n}$ be a matrix with constant row sum r. Then the eigenvalues of A lie in the region

$$
\bigcap_{i=1}^{n}\left[G_{A(i)} \cup\{r\}\right],
$$

where $G_{A(i)}=\bigcup_{k \neq i}\left\{z \in \mathbb{C}:\left|z-a_{k k}+a_{i k}\right| \leq \sum_{j \neq k}\left|a_{k j}-a_{i j}\right|\right\}$.

Bounding adjacency eigenvalues of regular graphs

Let $G=(V, E)$ be a simple r-regular graph with vertex set $V=\{1,2, \ldots, n\}$ and A be the adjacency matrix of G. Then

$$
A(1)=\left[\begin{array}{cccc}
a_{22}-a_{12} & a_{23}-a_{13} & \cdots & a_{2 n}-a_{1 n} \\
a_{32}-a_{12} & a_{33}-a_{13} & \cdots & a_{3 m}-a_{1 n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{n 2}-a_{12} & a_{n 3}-a_{13} & \cdots & a_{n n}-a_{1 n}
\end{array}\right]
$$

Here,

$$
a_{j j}-a_{1 j}= \begin{cases}-1, & \text { if } j \sim 1 \\ 0, & \text { if } j \nsim 1\end{cases}
$$

Bounding adjacency eigenvalues of regular graphs

$$
a_{k j}-a_{1 j}= \begin{cases}-1, & \text { if } j \sim 1, k \nsim j \\ 1, & \text { if } j \nsim 1, k \sim j \\ 0 & \text { otherwise } .\end{cases}
$$

The Gershgorin discs for $A(1)$ are given by

$$
\begin{cases}|z+1| \leq 2 r-2 N(1, j)-2 & \text { if } j \sim 1 \\ |z| \leq 2 r-2 N(1, j) & \text { if } j \nsim 1 .\end{cases}
$$

Bounding adjacency eigenvalues of regular graphs

Theorem

Let G be a connected r-regular graph on n vertices. Then
$-2 r+\max _{i \in G}\left\{\min _{k \neq i}\left\{\alpha_{i k}\right\}, r\right\} \leq \lambda_{n} \leq \lambda_{2} \leq 2 r-\max _{i \in G}\left\{\min _{k \neq i}\left\{\beta_{i k}\right\}, r\right\}$,
where, for $k \neq i, \alpha_{i k}$ and $\beta_{i k}$ are given by

$$
\alpha_{i k}= \begin{cases}1+2 N(i, k), & \text { if } k \sim i \\ 2 N(i, k), & \text { if } k \nsim i\end{cases}
$$

and

$$
\beta_{i k}= \begin{cases}3+2 N(i, k), & \text { if } k \sim i \\ 2 N(i, k), & \text { if } k \nsim i\end{cases}
$$

The normalized adjacency matrix

Let $G=(V, E)$ be a finite, simple, connected, undirected graph with vertex set $V=\{1,2, \ldots, n\}$. The normalized adjacency matrix $\mathcal{A}=\left[a_{i j}\right]$ is defined by

$$
a_{i j}= \begin{cases}\frac{1}{d_{i}}, & \text { if } i \sim j \\ 0, & \text { otherwise }\end{cases}
$$

- \mathcal{A} is similar to symmetric matrix $D^{\frac{1}{2}} \mathcal{A} D^{-\frac{1}{2}}$. So all eigenvalues of \mathcal{A} are real.
- $\sum_{j=1}^{n} a_{i j}=1$ for all $i=1,2, \ldots, n$. So 1 is an eigenvalue of \mathcal{A}.
- All eigenvalues other than 1 lies in $[-1,1)$.
- -1 is an eigenvalue of G iff G is bipartite.

Bound for normalized adjacency eigenvalues

Theorem

Let G be a simple connected graph of order n. Then

$$
-2+\max _{i \in G}\left\{\min _{k \neq i}\left\{\alpha_{i k}\right\}, 1\right\} \leq \lambda \leq 2-\max _{i \in G}\left\{\min _{k \neq i}\left\{\beta_{i k}\right\}, 1\right\},
$$

where, for $k \neq i, \alpha_{i k}$ and $\beta_{i k}$ are given by

$$
\alpha_{i k}= \begin{cases}\frac{1}{d_{k}}+\frac{2 N(i, k)}{\max \left(d_{i}, d_{k}\right\}}, & \text { if } k \sim i \\ \frac{2 N(i, k}{\max \left\{d_{i}, d_{k}\right\}}, & \text { if } k \nsim i\end{cases}
$$

and

$$
\beta_{i k}= \begin{cases}\frac{1}{d_{k}}+\frac{2}{\left(d_{i}\right)}+\frac{2 N(i, k)}{\max \left\{d_{i}, d_{k}\right\}}, & \text { if } k \sim i \\ \frac{2 N}{\max \left\{d_{i}, d_{k}\right\}}, & \text { if } k \nsim i .\end{cases}
$$

References

1. R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge University press (2013).
2. F. Chung, Spectral Graph Theory, AMS (1997).
3. L.J. Cvetković, V. Kostić, J.M. Peña, Eigenvalue localization refinements for matrices related to positivity, SIAM J. Matrix Anal. Appl. 32 (2011) 771-784.
4. A. Banerjee, R. Mehatari, An eigenvalue localization theorem for stochastic matrices and its application to Randić matrices, Linear Algebra Appl. 505 (2016) 85-96.
5. R. Mehatari, M. Rajesh Kannan, Eigenvalue bounds for some classes of matrices associated with graphs , Czechoslovak Mathematical Journal, Accepted.

Thank You

