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An Observation

Let A =
[
−1 4
2 1

]
and P =

[
1 0
1 1

]
. Then

P−1AP =
[

1 0
−1 1

] [
−1 4
2 1

] [
1 0
1 1

]

=
[

1 0
−1 1

] [
−1 4
2 1

]

=
[
3 4
0 −3

]
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An Observation

Let A =

 4 1 −1
−1 2 3
1 3 0

 and P =

 1 0 0
1 1 0
1 0 1

 . Then

P−1AP =

 1 0 0
−1 1 0
−1 0 1


 4 1 −1
−1 2 3
1 3 0


 1 0 0
1 1 0
1 0 1



=

 4 1 −1
0 1 4
0 2 1
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The general case

Let e =
[
1 1 · · · 1

]T
and e ′ =

[
1 −1 · · · −1

]T
.

We define the matrix P as

P =
[
e e2 e3 . . . en

]
.

It is easy to verify that the matrix P is nonsingular and its
inverse is equal to

P−1 =
[
e ′ e2 e3 . . . en

]
.
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The general case

Let A = [aij ]n×n be a matrix with constant row sum r . Then

P−1AP =
[

r xT

on−1 A(1)

]
where xT =

[
a12 a13 · · · a1n

]
,

and

A(1) = A(1|1)− jn−1xT = A(1|1)−


a12 a13 · · · a1n
a12 a13 · · · a1n
... ... · · · ...
a12 a13 · · · a1n
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The general case
Let Pk =

[
e2 e3 · · · ek e1 ek+1 · · · en

]
.

Therefore, the matrix A is similar to the matrix

Ak = P−1
k APk =

[
akk a(k)T

y A(k|k)

]
, ∀k = 1, 2, . . . , n,

where a(k)T =
[
ak1 · · · ak,k−1 ak,k+1 · · · akn

]
Now,

P−1AkP =
[
r a(k)T

0 A(k)

]
, where

A(k) = A(k|k)− jn−1a(k)T

= A(k|k)−


ak1 · · · ak,k−1 ak,k+1 · · · akn
ak1 · · · ak,k−1 ak,k+1 · · · akn
... ... · · · ... · · · ...

ak1 · · · ak,k−1 ak,k+1 · · · akn
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Applicability in Spectral graph theory

The adjacency A matrix of simple regular graph.
The Laplacian matrix of connected graph: L = D − A,
where D is the diagonal matrix of vertex degrees.
The normalized adjacency matrix of connected graph:
A = D−1A.
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The Perron-Frobenious theorem

Definition: A square matrix A is reducible if there is a
permutation matrix P such that

PTAP =
[

B C
0n−r×r D

]
and 1 ≤ r ≤ n − 1.

A square matrix is irreducible if it is not reducible.

Ranjit Mehatari Eigenvalue bounds for some classes of matrices associated with graphs



The Perron-Frobenious theorem

Theorem
Let An×n be nonnegative and irreducible. Then there is a
(unique) positive real number ρ with the following properties:
(i) There is a real vector x > 0 with Ax = ρx.
(ii) ρ has algebraic multiplicity 1.
(iii) For each eigenvalue λ of A, we have |λ| ≤ ρ.
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The general case

Theorem
Let A be nonnegative irreducible matrix with constant row
sum r. Then any eigenvalue of A other than r is also an
eigenvalue of

A(k) = A(k|k)− jn−1a(k)T , k = 1, 2, . . . , n

where a(k)T =
[
ak1 · · · ak,k−1 ak,k+1 · · · akn

]
is the

k-deleted row of A.
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Localizing the eigenvalues

Let A = [aij ] be an n × n complex matrix. The i-th Geršgorin
disc of A is defined by

Ri(A) = {z ∈ C : |z − aii | ≤
∑
j 6=i
|aij |}.

Theorem
(Geršgorin) Let A = [aij ] be an n × n complex matrix. Then
the eigenvalues of A lie in the region

GA =
n⋃

i=1

{
z ∈ C : |z − aii | ≤

∑
j 6=i
|aij |

}
.
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Example

S =


0.25 0.25 0.3 0.2
0 0.5 0.33 0.17
0.6 0.4 0 0
0.1 0.2 0.3 0.4

 .

S(1) =

 0.5 0.33 0.17
0.4 0 0
0.2 0.3 0.4

−
 0.25 0.3 0.2
0.25 0.3 0.2
0.25 0.3 0.2



=

 0.25 0.03 −0.03
0.15 −0.3 −0.2
−0.05 0 0.2

 .
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Example

S(2) =

 0.25 −0.03 0.03
0.6 −0.33 −0.17
0.1 −0.03 0.23

 ,

S(3) =

 −0.35 −0.15 0.2
−0.6 0.1 0.17
−0.5 −0.2 0.4

 ,

S(4) =

 0.15 0.05 0
−0.1 0.3 0.03
0.5 0.2 −0.3

 .
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Example
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Figure: The regions GS(k), k = 1, 2, 3, 4.
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An eigenvalue Localization theorem

Theorem

Let An×n be a matrix with constant row sum r. Then the
eigenvalues of A lie in the region

n⋂
i=1

[
GA(i) ∪ {r}

]
,

where GA(i) = ⋃
k 6=i{z ∈ C : |z − akk + aik | ≤

∑
j 6=k |akj − aij |}.
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Bounding adjacency eigenvalues of regular graphs

Let G = (V ,E ) be a simple r -regular graph with vertex set
V = {1, 2, . . . , n} and A be the adjacency matrix of G . Then

A(1) =


a22 − a12 a23 − a13 · · · a2n − a1n
a32 − a12 a33 − a13 · · · a3m − a1n

... ... · · · ...
an2 − a12 an3 − a13 · · · ann − a1n


Here,

ajj − a1j =

−1, if j ∼ 1,
0, if j � 1.
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Bounding adjacency eigenvalues of regular graphs

akj − a1j =


−1, if j ∼ 1, k � j
1, if j � 1, k ∼ j
0 otherwise.

The Gershgorin discs for A(1) are given by|z + 1| ≤ 2r − 2N(1, j)− 2 if j ∼ 1
|z | ≤ 2r − 2N(1, j) if j � 1.
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Bounding adjacency eigenvalues of regular graphs

Theorem
Let G be a connected r -regular graph on n vertices. Then

−2r + max
i∈G
{min

k 6=i
{αik}, r} ≤ λn ≤ λ2 ≤ 2r −max

i∈G
{min

k 6=i
{βik}, r},

where, for k 6= i , αik and βik are given by

αik =

1 + 2N(i , k), if k ∼ i
2N(i , k), if k � i

and

βik =

3 + 2N(i , k), if k ∼ i
2N(i , k), if k � i .
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The normalized adjacency matrix

Let G = (V ,E ) be a finite, simple, connected, undirected
graph with vertex set V = {1, 2, . . . , n}. The normalized
adjacency matrix A = [aij ] is defined by

aij =


1
di
, if i ∼ j ,

0, otherwise.

A is similar to symmetric matrix D 1
2AD− 1

2 . So all
eigenvalues of A are real.∑n

j=1 aij = 1 for all i = 1, 2, . . . , n. So 1 is an eigenvalue
of A.
All eigenvalues other than 1 lies in [−1, 1).
−1 is an eigenvalue of G iff G is bipartite.
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Bound for normalized adjacency eigenvalues

Theorem
Let G be a simple connected graph of order n. Then

−2 + max
i∈G
{min

k 6=i
{αik}, 1} ≤ λ ≤ 2−max

i∈G
{min

k 6=i
{βik}, 1},

where, for k 6= i , αik and βik are given by

αik =


1
dk

+ 2N(i ,k)
max{di ,dk}

, if k ∼ i
2N(i ,k)

max{di ,dk}
, if k � i

and

βik =


1
dk

+ 2
di

+ 2N(i ,k)
max{di ,dk}

, if k ∼ i
2N(i ,k)

max{di ,dk}
, if k � i .
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Thank You
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