Adjacency matrices of complex unit gain graphs

M. Rajesh Kannan ${ }^{1}$
${ }^{1}$ Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
email: rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ac.in

August 20, 2020

Abstract

Let $G=(V, E)$ be a simple, undirected, finite graph with the vertex set $V(G)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and the edge set $E(G) \subseteq V \times V$. If two vertices v_{i} and v_{j} are adjacent, we write $v_{i} \sim v_{j}$, and the edge between them is denoted by $e_{i j}$. The adjacency matrix of G is an $n \times n$ matrix, denoted by $A(G)=\left(a_{i j}\right)$, whose rows and columns are indexed by the vertex set of the graph and the entries are defined by $$
a_{i j}= \begin{cases}1 & \text { if } v_{i} \sim v_{j}, \\ 0 & \text { otherwise }\end{cases}
$$

The adjacency matrix of a graph is one of the well studied matrix class in the field of spectral graph theory $[1,3,4]$.

The notion of gain graph was studied in [10, 11]. For a given graph G and a group \mathfrak{G}, first orient the edges of the graph G. For each oriented edge $e_{i j}$ assign a value (the gain of the edge $\left.e_{i j}\right) g$ from \mathfrak{G} and assign g^{-1} to the orientated edge $e_{j i}$. If the group is taken to be the multiplicative group of unit complex numbers \mathbb{T}, the graph is called the complex unit gain graph(or \mathbb{T}-gain graph). In [9], the author defined the notion of adjacency matrices of \mathbb{T}-gain graphs, which is a canonical extension of classical adjacency matrices. Particular cases of the adjacency matrix of \mathbb{T}-gain graphs were considered with different gains in the literature $[2,5,6,7]$.

In this talk, we shall discuss some of the properties of adjacency matrices of graphs and adjacency matrices of \mathbb{T}-gain graphs $[8]$.

References

[1] R. B. Bapat, Graphs and matrices, second ed., Universitext, Springer, London; Hindustan Book Agency, New Delhi, 2014. MR 3289036
[2] R. B. Bapat, D. Kalita, and S. Pati, On weighted directed graphs, Linear Algebra Appl. 436 (2012), no. 1, 99-111. MR 2859913
[3] Andries E. Brouwer and Willem H. Haemers, Spectra of graphs, Universitext, Springer, New York, 2012. MR 2882891
[4] Dragoš Cvetković, Peter Rowlinson, and Slobodan Simić, An introduction to the theory of graph spectra, London Mathematical Society Student Texts, vol. 75, Cambridge University Press, Cambridge, 2010. MR 2571608
[5] Krystal Guo and Bojan Mohar, Hermitian adjacency matrix of digraphs and mixed graphs, J. Graph Theory 85 (2017), no. 1, 217-248. MR 3634484
[6] Debajit Kalita and Sukanta Pati, A reciprocal eigenvalue property for unicyclic weighted directed graphs with weights from $\{ \pm 1, \pm i\}$, Linear Algebra Appl. 449 (2014), 417-434. MR 3191876
[7] Jianxi Liu and Xueliang Li, Hermitian-adjacency matrices and Hermitian energies of mixed graphs, Linear Algebra Appl. 466 (2015), 182-207. MR 3278246
[8] Ranjit Mehatari, M. Rajesh Kannan, and Aniruddha Samanta, On the adjacency matrix of a complex unit gain graph, Linear and Multilinear Algebra 0 (2020), no. 0, 1-16.
[9] Nathan Reff, Spectral properties of complex unit gain graphs, Linear Algebra Appl. 436 (2012), no. 9, 3165-3176. MR 2900705
[10] Thomas Zaslavsky, Signed graphs, Discrete Appl. Math. 4 (1982), no. 1, 47-74. MR 676405
[11] , Biased graphs. I. Bias, balance, and gains, J. Combin. Theory Ser. B 47 (1989), no. 1, 32-52. MR 1007712

