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Adjacency matrix

Definition (Adjacency matrix)
The adjacency matrix of a graph G with n vertices, V (G) = {v1, . . . , vn}
is the n × n matrix, denoted by A(G) = (aij), is defined by

aij =

{
1 if vi ∼ vj ,

0 otherwise.

3/25



Example

Example
Consider the graph G

2 1

4 3

The adjacency matrix of G is

A(G) =


0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0
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Properties

Let G be a connected graph with vertices {v1, v2, . . . , vn} and let A be
the adjacency matrix of G.

Then,
1 A is symmetric.
2 Sum of the 2× 2 principal minors of A equals to −|E(G)|.
3 (i , j)th entry of the matrix Ak equals the number of walks of length

k from the vertex i to the vertex j .
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Spectrum of adjacency matrix

Let G be a graph with n vertices and with eigenvalues of its adjacency
matrices, λ1 ≥ λ2 ≥ · · · ≥ λn. We denote by ∆(G) and δ(G), the
maximum and the minimum of the vertex degrees of G, respectively.

Properties of spectrum

δ(G) ≤ λ1 ≤ ∆(G).

χ(G) ≤ 1 + λ1, where χ(G) is the chromatic number of G.

χ(G) ≥ 1− λ1
λn

.

G is bipartite if and only if the eigenvalues of A are symmetric with
respect to origin. That is, λ is an eigenvalue of A(G) if and only if
−λ is an eigenvalue of A(G).
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Irreducible matrices

An n × n matrix, n ≥ 2, is reducible its rows and columns can be
simultaneously permuted to (

B C
0 D

)
where B and D are square (not necessarily of the same order).

Otherwise, it is irreducible. For n = 1, 0 is reducible, a 6= 0 is
irreducible.

The directed graph G(A), associated with an n × n matrix has n
vertices 1, . . . ,n and an arc from i to j if and only if aij 6= 0.

Working definition: A is irreducible if and only if G(A) is strongly
connected.
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Example


1 0 1 0
0 0 0 1
0 1 0 0
1 0 0 1



1 2

4 3
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Perron-Frobenius Theorem
Theorem
If A is nonnegative and irreducible, then

a) ρ(A) > 0, where ρ(A) is the maximum of absolute value of all the
eigenvalues of A,

b) ρ(A) is an eigenvalue of A,
c) There is a positive vector such that Ax = ρ(A)x.

Theorem

Let A,B ∈ Cn×n and suppose that A is nonnegative. If A ≥ |B|, then
ρ(A) ≥ ρ(|B|) ≥ ρ(B).

Theorem

Let A,B ∈ Cn×n. Suppose A is nonnegative and irreducible, and
A ≥ |B|. Let λ = eiθρ(B) be a maximum-modulus eigenvalue of B. If
ρ(A) = ρ(B), then there is a diagonal unitary matrix D ∈ Cn×n such
that B = eiθDAD−1.
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Gain graphs

Let G be a group and, let G be a simple graph with vertex set
V (G) = {1,2, . . . ,n} and edge set E(G) = {e1, . . . ,em} .

Define ejk as a directed edge from the vertex j to the vertex k , if
there is an edge between them.

The directed edge set
−−−→
E(G) consists of the directed edges

ejk ,ekj ∈
−−−→
E(G), for each adjacent vertices j and k of G.

Assign a weight (gain) g ∈ G for each directed edge ejk ∈
−−−→
E(G),

such that the weight of ekj is g−1. Let us denote this assignment
by ϕ.
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T-gain adjacency matrix
Definition (Thomas Zaslavsky)
A G-gain graph is a graph G in which each orientation of an edge is
given a gain which is the inverse of the gain assigned to the opposite
orientation.

If G = T = {z ∈ C : |z| = 1}, then the gain graph is called T-gain
graph.

G- Inverse closed set is enough.
G = {±1,±i}[ D. Kalita and S. Pati(2014)] ,
G = {1,±i} [K. Guo and B. Mohar(2017), J. Liu and X. Li(2015)],

G = {1, 1±i
√

3
2 }. [B. Mohar(2020)]

G = {1,e±iθ}, θ ∈ R. [S. Kubota, E. Segawa and T.
Taniguchi(2019)]
G = C∗(with nonnegative imaginary part)[ R. B. Bapat, D. Kalita
and S. Pati(2012)].
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Definition ( T-gain adjacency matrix )

Let Φ = (G, ϕ) be a T- gain graph, where ϕ :
−−−→
E(G)→ T be a weight

function.

The T-gain adjacency matrix or complex unit gain
adjacency matrix A(Φ) = (aij) is defined by

aij =

{
ϕ(eij) if vi ∼ vj ,

0 otherwise.
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On T-gain adjacency matrix

Example

Figure: T-gain graph Φ and its underlying graph

A(Φ) =

 0 i ei π7

−i 0 1
e−i π7 1 0
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Definition
The gain of a cycle C = v1v2, . . . vlv1, denoted by ϕ(C), is
defined as the product of the gains of its edges, that is
ϕ(C) = ϕ(e12)ϕ(e23) . . . ϕ(e(l−1)l)ϕ(el1).

A cycle C is said to be neutral if ϕ(C) = 1, and a gain graph is
said to be balanced if all its cycles are neutral.

A function from the vertex set of G to the complex unit circle T is
called a switching function.

We say that, two gain graphs Φ1 = (G, ϕ1) and Φ2 = (G, ϕ2) are
said to be switching equivalent, written as Φ1 ∼ Φ2 , if there is a
switching function ζ : V → T such that
ϕ2(eij) = ζ(vi)

−1ϕ1(eij)ζ(vj).
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Spectrum of T-gain adjacency matrix

Theorem (Zaslavsky[14],1989)
Let Φ = (G, ϕ) be a T-gain graph. Then Φ is balanced if and only if
Φ ∼ (G,1).

Theorem (Reff[11], 2012)
Let Φ1 = (G, ϕ1) and Φ2 = (G, ϕ2) be two T-gain graph. If Φ1 ∼ Φ2,
then A(Φ1) and A(Φ2) have the same spectrum.

Converse?
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Key theorem

Theorem (R. Mehatari,M.-, A.Samanta)
Let Φ = (G, ϕ) be a T-gain (connected) graph, then ρ(A(Φ)) = ρ(A(G))
if and only if either Φ or −Φ is balanced.

Proof: If Φ or −Φ is balanced, then ρ(A(Φ)) = ρ(A(G)). Conversely,
suppose that ρ(A(Φ)) = ρ(A(G)). Let λn ≤ λn−1 ≤ · · · ≤ λ1 be the
eigenvalues of A(Φ). Since A(Φ) is Hermitian, either ρ(A(Φ)) = λ1 or
ρ(A(Φ)) = −λn.
Case 1: Suppose that ρ(A(Φ)) = λ1. Then there is a diagonal unitary
matrix D ∈ Cn×n such that A(Φ) = DA(G)D−1. Hence Φ ∼ (G,1).
Therefore, Φ is balanced.
Case 2: If ρ(A(Φ)) = −λn, then λn = eιπρ(A(Φ)). We have
A(Φ) = eιπDA(G)D−1, for some diagonal unitary matrix D ∈ Cn×n.
Thus A(−Φ) = DA(G)D−1. Hence, (−Φ) ∼ (G,1). Thus, −Φ is
balanced.
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Gains and bipartite graphs

Theorem (R. Mehatari,M.-, A.Samanta)
Let G be a connected graph. Then

(i) If G is bipartite, then whenever Φ is balanced implies −Φ is
balanced.

(ii) If Φ is balanced implies −Φ is balanced for some gain Φ, then the
graph is bipartite.

Proof.
(i) Suppose G is bipartite and Φ is balanced. Then due to the absence
of odd cycles, −Φ is balanced.
(ii) Let Φ be a balanced cycle such that −Φ is balanced. Suppose that
G is not bipartite. Then, any odd cycle in G can not be balanced with
respect to −Φ, which contradicts the assumption. Thus G must be
bipartite.
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Converse of Reff’s theorem

Theorem (R. Mehatari,M.-, A.Samanta)
Let Φ = (G, ϕ) be a T-gain(connected) graph. Then,
σ(A(Φ)) = σ(A(G)) if and only if Φ is balanced.

Proof.
If σ(A(Φ)) = σ(A(G)), then ρ(A(Φ)) = ρ(A(G)). Now, we have either Φ
or −Φ is balanced. If Φ is balanced, then we are done. Suppose that
−Φ is balanced, then −A(G) and A(Φ) have the same spectrum.
Hence σ(A(G)) = σ(−A(G)). Thus, we have G is bipartite. Therefore,
Φ is balanced.
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Characterization of bipartite graphs

Theorem (R. Mehatari,M.-, A.Samanta)
Let G be a connected graph. Then, G is bipartite if and only if
ρ(A(Φ)) = ρ(A(G)) implies σ(A(Φ)) = σ(A(G)) for every gain ϕ.

Proof.
Suppose ρ(A(Φ)) = ρ(A(G)) implies σ(A(Φ)) = σ(A(G)) for any gain
ϕ. Let Φ be balanced. We shall prove that −Φ is also balanced. We
have σ(A(Φ)) = σ(A(G)). Thus ρ(A(Φ)) = ρ(A(G)). Also
ρ(A(Φ)) = ρ(A(−Φ)) implies ρ(A(−Φ)) = ρ(A(G)). Thus
σ(A(−Φ)) = σ(A(G)), and hence−Φ is balanced. Thus G is bipartite.
Conversely, let G be a bipartite graph, and Φ be such that
ρ(A(Φ)) = ρ(A(G)). Then we have Φ is balanced. Hence
σ(A(Φ)) = σ(A(G)).
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Invariance of gain spectrum and gain spectral radius

Theorem (A.Samanta, M.-)
Let Φ = (G, ϕ) be a T-gain graph. Then G is a tree if and only if
σ(A(G)) = σ(A(Φ)) for all ϕ.

Theorem (A.Samanta, M.-)
Let Φ = (G, ϕ) be a T-gain graph. Then G is a tree if and only if
ρ(A(G)) = ρ(A(Φ)) for all ϕ.

Theorem (A.Samanta, M.-)
Let Φ = (G, ϕ) be a T-gain graph. TFAE,

1 G is tree,
2 σ(A(G)) = σ(A(Φ)) for all ϕ,
3 ρ(A(G)) = ρ(A(Φ)) for all ϕ.
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M. Cavers, S. M. Cioabă, S. Fallat, D. A. Gregory, W. H. Haemers, S. J.
Kirkland, J. J. McDonald, and M. Tsatsomeros, Skew-adjacency matrices
of graphs, Linear Algebra Appl. 436 (2012), no. 12, 4512–4529. MR
2917427

Krystal Guo and Bojan Mohar, Hermitian adjacency matrix of digraphs
and mixed graphs, J. Graph Theory 85 (2017), no. 1, 217–248. MR
3634484

Roger A. Horn and Charles R. Johnson, Matrix analysis, second ed.,
Cambridge University Press, Cambridge, 2013. MR 2978290

22/25



References II
Debajit Kalita and Sukanta Pati, A reciprocal eigenvalue property for
unicyclic weighted directed graphs with weights from {±1,±i}, Linear
Algebra Appl. 449 (2014), 417–434. MR 3191876

Jianxi Liu and Xueliang Li, Hermitian-adjacency matrices and Hermitian
energies of mixed graphs, Linear Algebra Appl. 466 (2015), 182–207.
MR 3278246

Ranjit Mehatari, M. Rajesh Kannan, and Aniruddha Samanta, On the
adjacency matrix of a complex unit gain graph, Linear and Multilinear
Algebra 0 (2020), no. 0, 1–16.

Bojan Mohar, A new kind of Hermitian matrices for digraphs, Linear
Algebra Appl. 584 (2020), 343–352. MR 4013179

Nathan Reff, Spectral properties of complex unit gain graphs, Linear
Algebra Appl. 436 (2012), no. 9, 3165–3176. MR 2900705

Aniruddha Samanta and M Rajesh Kannan, On the spectrum of complex
unit gain graph, arXiv:1908.10668 (2019).

23/25



References III

Kubota Sho, Etsuo Segawa, and Tetsuji Taniguchi, Quantum walks
defined by digraphs and generalized hermitian adjacency matrices,
arXiv:1910.12536.

Thomas Zaslavsky, Biased graphs. I. Bias, balance, and gains, J.
Combin. Theory Ser. B 47 (1989), no. 1, 32–52. MR 1007712

24/25



Thank you !

25/25


