Adjacency matrices of complex unit gain graphs

M. Rajesh Kannan

Department of Mathematics, Indian Institute of Technology Kharagpur, email: rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ac.in

August 21, 2020

Outline

- Adjacency matrices of graphs
- Spectral properties
- Perron-Frobenius theorem
- Adjacency matrices of complex unit gain graphs

A E > A E >

• Characterization of bipartite graphs and trees

2/25

Adjacency matrix

Definition (Adjacency matrix)

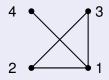
The adjacency matrix of a graph *G* with *n* vertices, $V(G) = \{v_1, ..., v_n\}$ is the $n \times n$ matrix, denoted by $A(G) = (a_{ij})$, is defined by

$$\mathbf{a}_{ij} = egin{cases} 1 & \textit{if } \mathbf{v}_i \sim \mathbf{v}_j, \ 0 & \textit{otherwise.} \end{cases}$$

(人間) くほう くほう

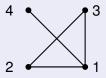
Example

Consider the graph G



Example

Consider the graph G



The adjacency matrix of G is

$$A(G) = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Let *G* be a connected graph with vertices $\{v_1, v_2, ..., v_n\}$ and let *A* be the adjacency matrix of *G*.

Let *G* be a connected graph with vertices $\{v_1, v_2, ..., v_n\}$ and let *A* be the adjacency matrix of *G*. Then,

A is symmetric.

Let *G* be a connected graph with vertices $\{v_1, v_2, ..., v_n\}$ and let *A* be the adjacency matrix of *G*. Then,

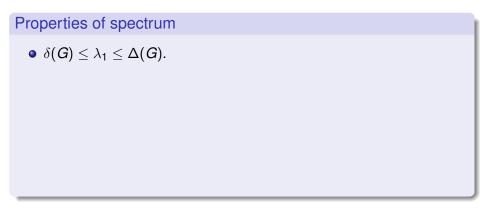
- A is symmetric.
- Sum of the 2 \times 2 principal minors of A equals to -|E(G)|.

Let *G* be a connected graph with vertices $\{v_1, v_2, ..., v_n\}$ and let *A* be the adjacency matrix of *G*. Then,

- A is symmetric.
- Sum of the 2 \times 2 principal minors of A equals to -|E(G)|.
- (*i*, *j*)th entry of the matrix A^k equals the number of walks of length k from the vertex *i* to the vertex *j*.

Let *G* be a graph with *n* vertices and with eigenvalues of its adjacency matrices, $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. We denote by $\Delta(G)$ and $\delta(G)$, the maximum and the minimum of the vertex degrees of *G*, respectively.

Let *G* be a graph with *n* vertices and with eigenvalues of its adjacency matrices, $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. We denote by $\Delta(G)$ and $\delta(G)$, the maximum and the minimum of the vertex degrees of *G*, respectively.



Let *G* be a graph with *n* vertices and with eigenvalues of its adjacency matrices, $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. We denote by $\Delta(G)$ and $\delta(G)$, the maximum and the minimum of the vertex degrees of *G*, respectively.

- $\delta(G) \leq \lambda_1 \leq \Delta(G)$.
- $\chi(G) \leq 1 + \lambda_1$, where $\chi(G)$ is the chromatic number of *G*.

Let *G* be a graph with *n* vertices and with eigenvalues of its adjacency matrices, $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. We denote by $\Delta(G)$ and $\delta(G)$, the maximum and the minimum of the vertex degrees of *G*, respectively.

- $\delta(G) \leq \lambda_1 \leq \Delta(G)$.
- $\chi(G) \leq 1 + \lambda_1$, where $\chi(G)$ is the chromatic number of *G*.

•
$$\chi(G) \geq 1 - \frac{\lambda_1}{\lambda_n}$$

Let *G* be a graph with *n* vertices and with eigenvalues of its adjacency matrices, $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. We denote by $\Delta(G)$ and $\delta(G)$, the maximum and the minimum of the vertex degrees of *G*, respectively.

- $\delta(G) \leq \lambda_1 \leq \Delta(G)$.
- $\chi(G) \leq 1 + \lambda_1$, where $\chi(G)$ is the chromatic number of *G*.
- $\chi(G) \geq 1 \frac{\lambda_1}{\lambda_n}$.
- *G* is bipartite if and only if the eigenvalues of *A* are symmetric with respect to origin.

Let *G* be a graph with *n* vertices and with eigenvalues of its adjacency matrices, $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. We denote by $\Delta(G)$ and $\delta(G)$, the maximum and the minimum of the vertex degrees of *G*, respectively.

- $\delta(G) \leq \lambda_1 \leq \Delta(G)$.
- $\chi(G) \leq 1 + \lambda_1$, where $\chi(G)$ is the chromatic number of *G*.
- $\chi(G) \geq 1 \frac{\lambda_1}{\lambda_n}$.
- G is bipartite if and only if the eigenvalues of A are symmetric with respect to origin. That is, λ is an eigenvalue of A(G) if and only if -λ is an eigenvalue of A(G).

An $n \times n$ matrix, $n \ge 2$, is *reducible* its rows and columns can be simultaneously permuted to

$$\left(\begin{array}{cc}B&C\\0&D\end{array}\right)$$

where *B* and *D* are square (not necessarily of the same order).

An $n \times n$ matrix, $n \ge 2$, is *reducible* its rows and columns can be simultaneously permuted to

$$\left(\begin{array}{cc}B&C\\0&D\end{array}\right)$$

where *B* and *D* are square (not necessarily of the same order). Otherwise, it is *irreducible*. For n = 1, 0 is reducible, $a \neq 0$ is irreducible.

An $n \times n$ matrix, $n \ge 2$, is *reducible* its rows and columns can be simultaneously permuted to

$$\left(\begin{array}{cc}B&C\\0&D\end{array}\right)$$

where *B* and *D* are square (not necessarily of the same order). Otherwise, it is *irreducible*. For n = 1, 0 is reducible, $a \neq 0$ is irreducible.

The *directed graph G(A)*, associated with an $n \times n$ matrix has n vertices $1, \ldots, n$ and an arc from i to j if and only if $a_{ij} \neq 0$.

An $n \times n$ matrix, $n \ge 2$, is *reducible* its rows and columns can be simultaneously permuted to

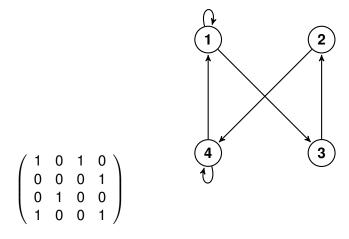
$$\left(\begin{array}{cc}B&C\\0&D\end{array}\right)$$

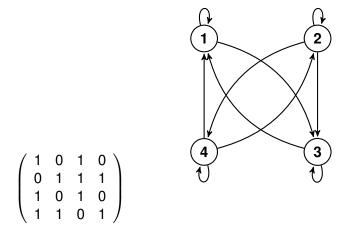
where *B* and *D* are square (not necessarily of the same order). Otherwise, it is *irreducible*. For n = 1, 0 is reducible, $a \neq 0$ is irreducible.

The *directed graph G(A)*, associated with an $n \times n$ matrix has n vertices $1, \ldots, n$ and an arc from i to j if and only if $a_{ij} \neq 0$.

Working definition: *A* is irreducible if and only if G(A) is strongly connected.

$\left(\begin{array}{rrrrr}1 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\\ 0 & 1 & 0 & 0\\ 1 & 0 & 0 & 1\end{array}\right)$





Theorem

If A is nonnegative and irreducible, then

a) ρ(A) > 0, where ρ(A) is the maximum of absolute value of all the eigenvalues of A,

A E > A E >

- b) $\rho(A)$ is an eigenvalue of A,
- c) There is a positive vector such that $Ax = \rho(A)x$.

Theorem

If A is nonnegative and irreducible, then

- a) ρ(A) > 0, where ρ(A) is the maximum of absolute value of all the eigenvalues of A,
- b) $\rho(A)$ is an eigenvalue of A,
- c) There is a positive vector such that $Ax = \rho(A)x$.

Theorem

Let $A, B \in \mathbb{C}^{n \times n}$ and suppose that A is nonnegative. If $A \ge |B|$, then $\rho(A) \ge \rho(|B|) \ge \rho(B)$.

▲掃♪ ▲ヨ♪ ▲ヨ♪ 三日

Theorem

If A is nonnegative and irreducible, then

- a) ρ(A) > 0, where ρ(A) is the maximum of absolute value of all the eigenvalues of A,
- b) $\rho(A)$ is an eigenvalue of A,
- c) There is a positive vector such that $Ax = \rho(A)x$.

Theorem

Let $A, B \in \mathbb{C}^{n \times n}$ and suppose that A is nonnegative. If $A \ge |B|$, then $\rho(A) \ge \rho(|B|) \ge \rho(B)$.

Theorem

Let $A, B \in \mathbb{C}^{n \times n}$. Suppose A is nonnegative and irreducible, and $A \ge |B|$. Let $\lambda = e^{i\theta}\rho(B)$ be a maximum-modulus eigenvalue of B.

Theorem

If A is nonnegative and irreducible, then

- a) ρ(A) > 0, where ρ(A) is the maximum of absolute value of all the eigenvalues of A,
- b) $\rho(A)$ is an eigenvalue of A,
- c) There is a positive vector such that $Ax = \rho(A)x$.

Theorem

Let $A, B \in \mathbb{C}^{n \times n}$ and suppose that A is nonnegative. If $A \ge |B|$, then $\rho(A) \ge \rho(|B|) \ge \rho(B)$.

Theorem

Let $A, B \in \mathbb{C}^{n \times n}$. Suppose A is nonnegative and irreducible, and $A \ge |B|$. Let $\lambda = e^{i\theta}\rho(B)$ be a maximum-modulus eigenvalue of B. If $\rho(A) = \rho(B)$, then there is a diagonal unitary matrix $D \in \mathbb{C}^{n \times n}$ such that $B = e^{i\theta} DAD^{-1}$.

• Let \mathfrak{G} be a group and, let G be a simple graph with vertex set $V(G) = \{1, 2, ..., n\}$ and edge set $E(G) = \{e_1, ..., e_m\}$.

- Let \mathfrak{G} be a group and, let G be a simple graph with vertex set $V(G) = \{1, 2, ..., n\}$ and edge set $E(G) = \{e_1, ..., e_m\}$.
- Define *e_{jk}* as a directed edge from the vertex *j* to the vertex *k*, if there is an edge between them.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Let \mathfrak{G} be a group and, let G be a simple graph with vertex set $V(G) = \{1, 2, ..., n\}$ and edge set $E(G) = \{e_1, ..., e_m\}$.
- Define *e_{jk}* as a directed edge from the vertex *j* to the vertex *k*, if there is an edge between them.

• The directed edge set $\overrightarrow{E(G)}$ consists of the directed edges $e_{jk}, e_{kj} \in \overrightarrow{E(G)}$, for each adjacent vertices *j* and *k* of *G*.

11/25

- Let \mathfrak{G} be a group and, let G be a simple graph with vertex set $V(G) = \{1, 2, ..., n\}$ and edge set $E(G) = \{e_1, ..., e_m\}$.
- Define *e_{jk}* as a directed edge from the vertex *j* to the vertex *k*, if there is an edge between them.
- The directed edge set $\overrightarrow{E(G)}$ consists of the directed edges $e_{jk}, e_{kj} \in \overrightarrow{E(G)}$, for each adjacent vertices *j* and *k* of *G*.
- Assign a weight (gain) g ∈ 𝔅 for each directed edge e_{jk} ∈ *E*(*G*), such that the weight of e_{kj} is g⁻¹. Let us denote this assignment by φ.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$\mathbb{T}\text{-}\mathsf{gain}$ adjacency matrix

Definition (Thomas Zaslavsky)

A \mathfrak{G} -gain graph is a graph *G* in which each orientation of an edge is given a gain which is the inverse of the gain assigned to the opposite orientation.

$\mathbb{T}\text{-}\mathsf{gain}$ adjacency matrix

Definition (Thomas Zaslavsky)

A \mathfrak{G} -gain graph is a graph *G* in which each orientation of an edge is given a gain which is the inverse of the gain assigned to the opposite orientation.

If $\mathfrak{G} = \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$, then the gain graph is called \mathbb{T} -gain graph.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

$\mathbb{T}\text{-}\mathsf{gain}$ adjacency matrix

Definition (Thomas Zaslavsky)

A \mathfrak{G} -gain graph is a graph *G* in which each orientation of an edge is given a gain which is the inverse of the gain assigned to the opposite orientation.

If $\mathfrak{G} = \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$, then the gain graph is called \mathbb{T} -gain graph.

G- Inverse closed set is enough.

$\mathbb{T}\text{-}\textsc{gain}$ adjacency matrix

Definition (Thomas Zaslavsky)

A \mathfrak{G} -gain graph is a graph *G* in which each orientation of an edge is given a gain which is the inverse of the gain assigned to the opposite orientation.

If $\mathfrak{G} = \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$, then the gain graph is called \mathbb{T} -gain graph.

$\mathfrak{G}\text{-}$ Inverse closed set is enough.

- $\mathfrak{G} = \{\pm 1, \pm i\}$ [D. Kalita and S. Pati(2014)],
- $\mathfrak{G} = \{1, \pm i\}$ [K. Guo and B. Mohar(2017), J. Liu and X. Li(2015)],
- $\mathfrak{G} = \{1, \frac{1 \pm i\sqrt{3}}{2}\}$. [B. Mohar(2020)]
- $\mathfrak{G} = \{1, e^{\pm i\theta}\}, \theta \in \mathbb{R}$. [S. Kubota, E. Segawa and T. Taniguchi(2019)]
- 𝔅 = ℂ*(with nonnegative imaginary part)[R. B. Bapat, D. Kalita and S. Pati(2012)].

Definition (\mathbb{T} -gain adjacency matrix)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} - gain graph, where $\varphi : \overrightarrow{E(G)} \to \mathbb{T}$ be a weight function.

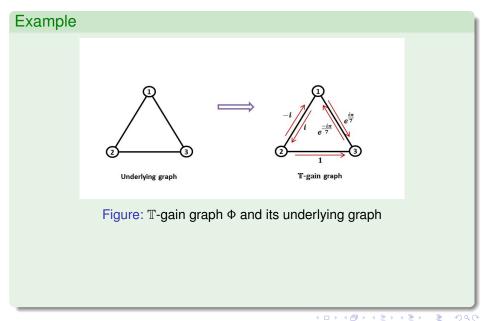
Definition (T-gain adjacency matrix)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} - gain graph, where $\varphi : \overrightarrow{E(G)} \to \mathbb{T}$ be a weight function. The \mathbb{T} -gain adjacency matrix or complex unit gain adjacency matrix $A(\Phi) = (a_{ij})$ is defined by

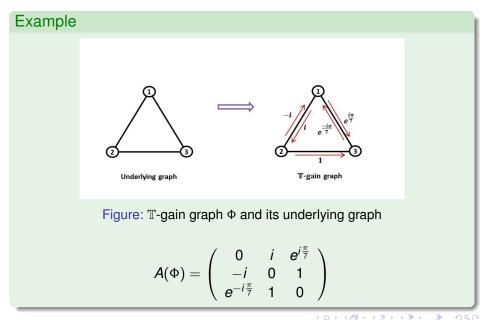
$$\mathbf{a}_{ij} = egin{cases} arphi(m{e}_{ij}) & ext{if } m{v}_i \sim m{v}_j, \ \mathbf{0} & ext{otherwise}. \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

On \mathbb{T} -gain adjacency matrix



On T-gain adjacency matrix



• The gain of a cycle $C = v_1 v_2, \ldots v_l v_1$, denoted by $\varphi(C)$, is defined as the product of the gains of its edges, that is $\varphi(C) = \varphi(e_{12})\varphi(e_{23})\ldots\varphi(e_{(l-1)l})\varphi(e_{l1}).$

- The gain of a cycle $C = v_1 v_2, \ldots v_l v_1$, denoted by $\varphi(C)$, is defined as the product of the gains of its edges, that is $\varphi(C) = \varphi(e_{12})\varphi(e_{23})\ldots\varphi(e_{(l-1)l})\varphi(e_{l1}).$
- A cycle C is said to be **neutral** if φ(C) = 1, and a gain graph is said to be **balanced** if all its cycles are neutral.

- The gain of a cycle $C = v_1 v_2, \ldots v_l v_1$, denoted by $\varphi(C)$, is defined as the product of the gains of its edges, that is $\varphi(C) = \varphi(e_{12})\varphi(e_{23})\ldots\varphi(e_{(l-1)l})\varphi(e_{l1}).$
- A cycle C is said to be **neutral** if φ(C) = 1, and a gain graph is said to be **balanced** if all its cycles are neutral.
- A function from the vertex set of *G* to the complex unit circle \mathbb{T} is called a **switching function**.

- The gain of a cycle $C = v_1 v_2, \ldots v_l v_1$, denoted by $\varphi(C)$, is defined as the product of the gains of its edges, that is $\varphi(C) = \varphi(e_{12})\varphi(e_{23})\ldots\varphi(e_{(l-1)l})\varphi(e_{l1}).$
- A cycle C is said to be **neutral** if φ(C) = 1, and a gain graph is said to be **balanced** if all its cycles are neutral.
- A function from the vertex set of *G* to the complex unit circle T is called a **switching function**.
- We say that, two gain graphs Φ₁ = (G, φ₁) and Φ₂ = (G, φ₂) are said to be switching equivalent, written as Φ₁ ~ Φ₂, if there is a switching function ζ : V → T such that φ₂(e_{ij}) = ζ(v_i)⁻¹φ₁(e_{ij})ζ(v_j).

Spectrum of T-gain adjacency matrix

Theorem (Zaslavsky[14],1989)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain graph. Then Φ is balanced if and only if $\Phi \sim (G, 1)$.

Spectrum of T-gain adjacency matrix

Theorem (Zaslavsky[14],1989)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain graph. Then Φ is balanced if and only if $\Phi \sim (G, 1)$.

Theorem (Reff[11], 2012)

Let $\Phi_1 = (G, \varphi_1)$ and $\Phi_2 = (G, \varphi_2)$ be two \mathbb{T} -gain graph. If $\Phi_1 \sim \Phi_2$, then $A(\Phi_1)$ and $A(\Phi_2)$ have the same spectrum.

Spectrum of T-gain adjacency matrix

Theorem (Zaslavsky[14],1989)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain graph. Then Φ is balanced if and only if $\Phi \sim (G, 1)$.

Theorem (Reff[11], 2012)

Let $\Phi_1 = (G, \varphi_1)$ and $\Phi_2 = (G, \varphi_2)$ be two \mathbb{T} -gain graph. If $\Phi_1 \sim \Phi_2$, then $A(\Phi_1)$ and $A(\Phi_2)$ have the same spectrum.

Converse?

Theorem (R. Mehatari, M.-, A. Samanta)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain (connected) graph, then $\rho(A(\Phi)) = \rho(A(G))$ if and only if either Φ or $-\Phi$ is balanced.

Theorem (R. Mehatari, M.-, A. Samanta)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain (connected) graph, then $\rho(A(\Phi)) = \rho(A(G))$ if and only if either Φ or $-\Phi$ is balanced.

Proof: If Φ or $-\Phi$ is balanced, then $\rho(A(\Phi)) = \rho(A(G))$.

Theorem (R. Mehatari, M.-, A. Samanta)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain (connected) graph, then $\rho(A(\Phi)) = \rho(A(G))$ if and only if either Φ or $-\Phi$ is balanced.

Proof: If Φ or $-\Phi$ is balanced, then $\rho(A(\Phi)) = \rho(A(G))$. Conversely, suppose that $\rho(A(\Phi)) = \rho(A(G))$.

Theorem (R. Mehatari, M.-, A. Samanta)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain (connected) graph, then $\rho(A(\Phi)) = \rho(A(G))$ if and only if either Φ or $-\Phi$ is balanced.

Proof: If Φ or $-\Phi$ is balanced, then $\rho(A(\Phi)) = \rho(A(G))$. Conversely, suppose that $\rho(A(\Phi)) = \rho(A(G))$. Let $\lambda_n \leq \lambda_{n-1} \leq \cdots \leq \lambda_1$ be the eigenvalues of $A(\Phi)$.

- 日本 - 4 日本 - 4 日本 - 日本

Theorem (R. Mehatari, M.-, A. Samanta)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain (connected) graph, then $\rho(A(\Phi)) = \rho(A(G))$ if and only if either Φ or $-\Phi$ is balanced.

Proof: If Φ or $-\Phi$ is balanced, then $\rho(A(\Phi)) = \rho(A(G))$. Conversely, suppose that $\rho(A(\Phi)) = \rho(A(G))$. Let $\lambda_n \leq \lambda_{n-1} \leq \cdots \leq \lambda_1$ be the eigenvalues of $A(\Phi)$. Since $A(\Phi)$ is Hermitian, either $\rho(A(\Phi)) = \lambda_1$ or $\rho(A(\Phi)) = -\lambda_n$.

Theorem (R. Mehatari, M.-, A. Samanta)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain (connected) graph, then $\rho(A(\Phi)) = \rho(A(G))$ if and only if either Φ or $-\Phi$ is balanced.

Proof: If Φ or $-\Phi$ is balanced, then $\rho(A(\Phi)) = \rho(A(G))$. Conversely, suppose that $\rho(A(\Phi)) = \rho(A(G))$. Let $\lambda_n \leq \lambda_{n-1} \leq \cdots \leq \lambda_1$ be the eigenvalues of $A(\Phi)$. Since $A(\Phi)$ is Hermitian, either $\rho(A(\Phi)) = \lambda_1$ or $\rho(A(\Phi)) = -\lambda_n$. **Case 1:** Suppose that $\rho(A(\Phi)) = \lambda_1$. Then there is a diagonal unitary matrix $D \in \mathbb{C}^{n \times n}$ such that $A(\Phi) = DA(G)D^{-1}$. Hence $\Phi \sim (G, 1)$.

Therefore, Φ is balanced.

Theorem (R. Mehatari, M.-, A. Samanta)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain (connected) graph, then $\rho(A(\Phi)) = \rho(A(G))$ if and only if either Φ or $-\Phi$ is balanced.

Proof: If Φ or $-\Phi$ is balanced, then $\rho(A(\Phi)) = \rho(A(G))$. Conversely, suppose that $\rho(A(\Phi)) = \rho(A(G))$. Let $\lambda_n \leq \lambda_{n-1} \leq \cdots \leq \lambda_1$ be the eigenvalues of $A(\Phi)$. Since $A(\Phi)$ is Hermitian, either $\rho(A(\Phi)) = \lambda_1$ or $\rho(A(\Phi)) = -\lambda_n$. **Case 1:** Suppose that $\rho(A(\Phi)) = \lambda_1$. Then there is a diagonal unitary

matrix $D \in \mathbb{C}^{n \times n}$ such that $A(\Phi) = DA(G)D^{-1}$. Hence $\Phi \sim (G, 1)$. Therefore, Φ is balanced.

Case 2: If $\rho(A(\Phi)) = -\lambda_n$, then $\lambda_n = e^{\iota \pi} \rho(A(\Phi))$.

Theorem (R. Mehatari, M.-, A. Samanta)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain (connected) graph, then $\rho(A(\Phi)) = \rho(A(G))$ if and only if either Φ or $-\Phi$ is balanced.

Proof: If Φ or $-\Phi$ is balanced, then $\rho(A(\Phi)) = \rho(A(G))$. Conversely, suppose that $\rho(A(\Phi)) = \rho(A(G))$. Let $\lambda_n \leq \lambda_{n-1} \leq \cdots \leq \lambda_1$ be the eigenvalues of $A(\Phi)$. Since $A(\Phi)$ is Hermitian, either $\rho(A(\Phi)) = \lambda_1$ or $\rho(A(\Phi)) = -\lambda_n$.

Case 1: Suppose that $\rho(A(\Phi)) = \lambda_1$. Then there is a diagonal unitary matrix $D \in \mathbb{C}^{n \times n}$ such that $A(\Phi) = DA(G)D^{-1}$. Hence $\Phi \sim (G, 1)$. Therefore, Φ is balanced.

Case 2: If $\rho(A(\Phi)) = -\lambda_n$, then $\lambda_n = e^{\iota \pi} \rho(A(\Phi))$. We have $A(\Phi) = e^{\iota \pi} DA(G)D^{-1}$, for some diagonal unitary matrix $D \in \mathbb{C}^{n \times n}$.

Theorem (R. Mehatari, M.-, A. Samanta)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain (connected) graph, then $\rho(A(\Phi)) = \rho(A(G))$ if and only if either Φ or $-\Phi$ is balanced.

Proof: If Φ or $-\Phi$ is balanced, then $\rho(A(\Phi)) = \rho(A(G))$. Conversely, suppose that $\rho(A(\Phi)) = \rho(A(G))$. Let $\lambda_n \leq \lambda_{n-1} \leq \cdots \leq \lambda_1$ be the eigenvalues of $A(\Phi)$. Since $A(\Phi)$ is Hermitian, either $\rho(A(\Phi)) = \lambda_1$ or $\rho(A(\Phi)) = -\lambda_n$.

- **Case 1:** Suppose that $\rho(A(\Phi)) = \lambda_1$. Then there is a diagonal unitary matrix $D \in \mathbb{C}^{n \times n}$ such that $A(\Phi) = DA(G)D^{-1}$. Hence $\Phi \sim (G, 1)$. Therefore, Φ is balanced.
- **Case 2:** If $\rho(A(\Phi)) = -\lambda_n$, then $\lambda_n = e^{\iota \pi} \rho(A(\Phi))$. We have $A(\Phi) = e^{\iota \pi} DA(G)D^{-1}$, for some diagonal unitary matrix $D \in \mathbb{C}^{n \times n}$. Thus $A(-\Phi) = DA(G)D^{-1}$. Hence, $(-\Phi) \sim (G, 1)$. Thus, $-\Phi$ is balanced.

Theorem (R. Mehatari, M.-, A. Samanta)

Let G be a connected graph. Then

(i) If G is bipartite, then whenever Φ is balanced implies $-\Phi$ is balanced.

Theorem (R. Mehatari, M.-, A. Samanta)

Let G be a connected graph. Then

- (i) If G is bipartite, then whenever Φ is balanced implies -Φ is balanced.
- (ii) If Φ is balanced implies -Φ is balanced for some gain Φ, then the graph is bipartite.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem (R. Mehatari, M.-, A. Samanta)

Let G be a connected graph. Then

- (i) If G is bipartite, then whenever Φ is balanced implies $-\Phi$ is balanced.
- (ii) If Φ is balanced implies -Φ is balanced for some gain Φ, then the graph is bipartite.

Proof.

(i) Suppose *G* is bipartite and Φ is balanced. Then due to the absence of odd cycles, $-\Phi$ is balanced.

Theorem (R. Mehatari, M.-, A. Samanta)

Let G be a connected graph. Then

- (i) If G is bipartite, then whenever Φ is balanced implies $-\Phi$ is balanced.
- (ii) If Φ is balanced implies $-\Phi$ is balanced for some gain Φ , then the graph is bipartite.

Proof.

(i) Suppose *G* is bipartite and Φ is balanced. Then due to the absence of odd cycles, $-\Phi$ is balanced.

(ii) Let Φ be a balanced cycle such that $-\Phi$ is balanced. Suppose that *G* is not bipartite. Then, any odd cycle in *G* can not be balanced with respect to $-\Phi$, which contradicts the assumption. Thus *G* must be bipartite.

Theorem (R. Mehatari, M.-, A. Samanta)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain(connected) graph. Then, $\sigma(A(\Phi)) = \sigma(A(G))$ if and only if Φ is balanced.

Theorem (R. Mehatari, M.-, A. Samanta)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain(connected) graph. Then, $\sigma(A(\Phi)) = \sigma(A(G))$ if and only if Φ is balanced.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proof.

If
$$\sigma(A(\Phi)) = \sigma(A(G))$$
, then $\rho(A(\Phi)) = \rho(A(G))$.

Theorem (R. Mehatari, M.-, A. Samanta)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain(connected) graph. Then, $\sigma(A(\Phi)) = \sigma(A(G))$ if and only if Φ is balanced.

Proof.

If $\sigma(A(\Phi)) = \sigma(A(G))$, then $\rho(A(\Phi)) = \rho(A(G))$. Now, we have either Φ or $-\Phi$ is balanced. If Φ is balanced, then we are done.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem (R. Mehatari, M.-, A. Samanta)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain(connected) graph. Then, $\sigma(A(\Phi)) = \sigma(A(G))$ if and only if Φ is balanced.

Proof.

If $\sigma(A(\Phi)) = \sigma(A(G))$, then $\rho(A(\Phi)) = \rho(A(G))$. Now, we have either Φ or $-\Phi$ is balanced. If Φ is balanced, then we are done. Suppose that $-\Phi$ is balanced, then -A(G) and $A(\Phi)$ have the same spectrum.

▲ 御 ▶ ▲ 国 ▶ ▲ 国 ▶ 二 国

Theorem (R. Mehatari, M.-, A. Samanta)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain(connected) graph. Then, $\sigma(A(\Phi)) = \sigma(A(G))$ if and only if Φ is balanced.

Proof.

If $\sigma(A(\Phi)) = \sigma(A(G))$, then $\rho(A(\Phi)) = \rho(A(G))$. Now, we have either Φ or $-\Phi$ is balanced. If Φ is balanced, then we are done. Suppose that $-\Phi$ is balanced, then -A(G) and $A(\Phi)$ have the same spectrum. Hence $\sigma(A(G)) = \sigma(-A(G))$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (R. Mehatari, M.-, A. Samanta)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain(connected) graph. Then, $\sigma(A(\Phi)) = \sigma(A(G))$ if and only if Φ is balanced.

Proof.

If $\sigma(A(\Phi)) = \sigma(A(G))$, then $\rho(A(\Phi)) = \rho(A(G))$. Now, we have either Φ or $-\Phi$ is balanced. If Φ is balanced, then we are done. Suppose that $-\Phi$ is balanced, then -A(G) and $A(\Phi)$ have the same spectrum. Hence $\sigma(A(G)) = \sigma(-A(G))$. Thus, we have *G* is bipartite. Therefore, Φ is balanced.

Theorem (R. Mehatari, M.-, A. Samanta)

Let G be a connected graph. Then, G is bipartite if and only if $\rho(A(\Phi)) = \rho(A(G))$ implies $\sigma(A(\Phi)) = \sigma(A(G))$ for every gain φ .

Theorem (R. Mehatari, M.-, A. Samanta)

Let G be a connected graph. Then, G is bipartite if and only if $\rho(A(\Phi)) = \rho(A(G))$ implies $\sigma(A(\Phi)) = \sigma(A(G))$ for every gain φ .

Proof.

Suppose $\rho(A(\Phi)) = \rho(A(G))$ implies $\sigma(A(\Phi)) = \sigma(A(G))$ for any gain φ . Let Φ be balanced. We shall prove that $-\Phi$ is also balanced.

Theorem (R. Mehatari, M.-, A. Samanta)

Let G be a connected graph. Then, G is bipartite if and only if $\rho(A(\Phi)) = \rho(A(G))$ implies $\sigma(A(\Phi)) = \sigma(A(G))$ for every gain φ .

Proof.

Suppose $\rho(A(\Phi)) = \rho(A(G))$ implies $\sigma(A(\Phi)) = \sigma(A(G))$ for any gain φ . Let Φ be balanced. We shall prove that $-\Phi$ is also balanced. We have $\sigma(A(\Phi)) = \sigma(A(G))$. Thus $\rho(A(\Phi)) = \rho(A(G))$. Also $\rho(A(\Phi)) = \rho(A(-\Phi))$ implies $\rho(A(-\Phi)) = \rho(A(G))$. Thus $\sigma(A(-\Phi)) = \sigma(A(G))$, and hence $-\Phi$ is balanced.

Theorem (R. Mehatari, M.-, A. Samanta)

Let G be a connected graph. Then, G is bipartite if and only if $\rho(A(\Phi)) = \rho(A(G))$ implies $\sigma(A(\Phi)) = \sigma(A(G))$ for every gain φ .

Proof.

Suppose $\rho(A(\Phi)) = \rho(A(G))$ implies $\sigma(A(\Phi)) = \sigma(A(G))$ for any gain φ . Let Φ be balanced. We shall prove that $-\Phi$ is also balanced. We have $\sigma(A(\Phi)) = \sigma(A(G))$. Thus $\rho(A(\Phi)) = \rho(A(G))$. Also $\rho(A(\Phi)) = \rho(A(-\Phi))$ implies $\rho(A(-\Phi)) = \rho(A(G))$. Thus $\sigma(A(-\Phi)) = \sigma(A(G))$, and hence $-\Phi$ is balanced. Thus *G* is bipartite.

Theorem (R. Mehatari, M.-, A. Samanta)

Let G be a connected graph. Then, G is bipartite if and only if $\rho(A(\Phi)) = \rho(A(G))$ implies $\sigma(A(\Phi)) = \sigma(A(G))$ for every gain φ .

Proof.

Suppose $\rho(A(\Phi)) = \rho(A(G))$ implies $\sigma(A(\Phi)) = \sigma(A(G))$ for any gain φ . Let Φ be balanced. We shall prove that $-\Phi$ is also balanced. We have $\sigma(A(\Phi)) = \sigma(A(G))$. Thus $\rho(A(\Phi)) = \rho(A(G))$. Also $\rho(A(\Phi)) = \rho(A(-\Phi))$ implies $\rho(A(-\Phi)) = \rho(A(G))$. Thus $\sigma(A(-\Phi)) = \sigma(A(G))$, and hence $-\Phi$ is balanced. Thus *G* is bipartite. Conversely, let *G* be a bipartite graph, and Φ be such that $\rho(A(\Phi)) = \rho(A(G))$. Then we have Φ is balanced.

Theorem (R. Mehatari, M.-, A. Samanta)

Let G be a connected graph. Then, G is bipartite if and only if $\rho(A(\Phi)) = \rho(A(G))$ implies $\sigma(A(\Phi)) = \sigma(A(G))$ for every gain φ .

Proof.

Suppose $\rho(A(\Phi)) = \rho(A(G))$ implies $\sigma(A(\Phi)) = \sigma(A(G))$ for any gain φ . Let Φ be balanced. We shall prove that $-\Phi$ is also balanced. We have $\sigma(A(\Phi)) = \sigma(A(G))$. Thus $\rho(A(\Phi)) = \rho(A(G))$. Also $\rho(A(\Phi)) = \rho(A(-\Phi))$ implies $\rho(A(-\Phi)) = \rho(A(G))$. Thus $\sigma(A(-\Phi)) = \sigma(A(G))$, and hence $-\Phi$ is balanced. Thus *G* is bipartite. Conversely, let *G* be a bipartite graph, and Φ be such that $\rho(A(\Phi)) = \rho(A(G))$. Then we have Φ is balanced. Hence $\sigma(A(\Phi)) = \sigma(A(G))$.

Invariance of gain spectrum and gain spectral radius

Theorem (A.Samanta, M.-)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain graph. Then G is a tree if and only if $\sigma(A(G)) = \sigma(A(\Phi))$ for all φ .

Invariance of gain spectrum and gain spectral radius

Theorem (A.Samanta, M.-)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain graph. Then G is a tree if and only if $\sigma(A(G)) = \sigma(A(\Phi))$ for all φ .

Theorem (A.Samanta, M.-)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain graph. Then G is a tree if and only if $\rho(\mathcal{A}(G)) = \rho(\mathcal{A}(\Phi))$ for all φ .

Invariance of gain spectrum and gain spectral radius

Theorem (A.Samanta, M.-)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain graph. Then G is a tree if and only if $\sigma(A(G)) = \sigma(A(\Phi))$ for all φ .

Theorem (A.Samanta, M.-)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain graph. Then G is a tree if and only if $\rho(\mathcal{A}(G)) = \rho(\mathcal{A}(\Phi))$ for all φ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Theorem (A.Samanta, M.-) Let $\Phi = (G, \varphi)$ be a T-gain graph. TFAE, G is tree, $\sigma(A(G)) = \sigma(A(\Phi))$ for all φ , $\rho(A(G)) = \rho(A(\Phi))$ for all φ .

References I

- R. B. Bapat, *Graphs and matrices*, Universitext, Springer, London; Hindustan Book Agency, New Delhi, 2010. MR 2797201
- R. B. Bapat, D. Kalita, and S. Pati, *On weighted directed graphs*, Linear Algebra Appl. **436** (2012), no. 1, 99–111. MR 2859913
- Andries E. Brouwer and Willem H. Haemers, *Spectra of graphs*, Universitext, Springer, New York, 2012. MR 2882891
- M. Cavers, S. M. Cioabă, S. Fallat, D. A. Gregory, W. H. Haemers, S. J. Kirkland, J. J. McDonald, and M. Tsatsomeros, *Skew-adjacency matrices of graphs*, Linear Algebra Appl. **436** (2012), no. 12, 4512–4529. MR 2917427
- Krystal Guo and Bojan Mohar, Hermitian adjacency matrix of digraphs and mixed graphs, J. Graph Theory 85 (2017), no. 1, 217–248. MR 3634484
- Roger A. Horn and Charles R. Johnson, *Matrix analysis*, second ed., Cambridge University Press, Cambridge, 2013. MR 2978290

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

References II

- Debajit Kalita and Sukanta Pati, A reciprocal eigenvalue property for unicyclic weighted directed graphs with weights from {±1,±i}, Linear Algebra Appl. 449 (2014), 417–434. MR 3191876
- Jianxi Liu and Xueliang Li, Hermitian-adjacency matrices and Hermitian energies of mixed graphs, Linear Algebra Appl. 466 (2015), 182–207. MR 3278246
- Ranjit Mehatari, M. Rajesh Kannan, and Aniruddha Samanta, On the adjacency matrix of a complex unit gain graph, Linear and Multilinear Algebra 0 (2020), no. 0, 1–16.
- Bojan Mohar, *A new kind of Hermitian matrices for digraphs*, Linear Algebra Appl. **584** (2020), 343–352. MR 4013179
- Nathan Reff, *Spectral properties of complex unit gain graphs*, Linear Algebra Appl. **436** (2012), no. 9, 3165–3176. MR 2900705
- Aniruddha Samanta and M Rajesh Kannan, *On the spectrum of complex unit gain graph*, arXiv:1908.10668 (2019).

ヘロト ヘ週 ト イヨト イヨト 三日

References III

- Kubota Sho, Etsuo Segawa, and Tetsuji Taniguchi, *Quantum walks defined by digraphs and generalized hermitian adjacency matrices*, arXiv:1910.12536.
- Thomas Zaslavsky, *Biased graphs. I. Bias, balance, and gains*, J. Combin. Theory Ser. B **47** (1989), no. 1, 32–52. MR 1007712

Thank you !