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This Talk

I Define a generating function called Poincaré Series associated
to a finite collection of “divisors” on a finite graph.

I Our Main Result: A rationality result for the Poincaré series.

I Tools: Riemann-Roch theorem for graphs (Baker-Norine’07),
Jacobians of graphs (Bacher-La Harpe-Nagnibeda’97), Lattice
point enumeration of polyhedra (Barvinok-Pommershein’98).
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to a finite collection of “divisors” on a finite graph.

I Our Main Result: A rationality result for the Poincaré series.
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I Sketch of the proof.

I Extensions to metric graphs.

I Based on the arxiv preprint “ Poincaré Series of Divisors on
Graphs and Chains of Loops” (arXiv:2011.11910), 25
November, 2020.

I We start with a gentle introduction to divisors and the chip
firing game.
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Divisors on a Graph

I Let G be a finite, undirected, connected (multi)-graph (no
loops).

I A divisor on G is an element in the free Abelian group
generated by its vertices.

I In other words, a divisor is an assignment of integers called
“chips” to each vertex in the graph.

I A divisor is written D =
∑

v∈V (G) av (v).

I Example: 2(v1)− 3(v2)− (v3) + (v4), (v1)− (v3).

I Degree of a divisor D: deg(D) :=
∑

v∈V (G) av (the total
number of chips).
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Chip Firing Games

I Initial Configuration: A divisor D =
∑

v∈V (G) av (v) on G .

I Move: An arbitrary vertex u fires exactly one chip along every
edge incident on it.

I Final Configuration: Another divisor D̃ =
∑

v∈V (G) bv (v)
where bu = au − val(u) and bw = aw + mu,w for all w 6= u
with mu,w : the number of edges between u and w .
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An Example
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v4 v2 v4 v2

Figure: A Chip Firing Move: An Example



In terms of the Laplacian

I Let v1, . . . , vn be the vertices of G .

I Recall that the Laplacian matrix Q(G ) of G is defined as
D −A where D is a diagonal matrix diag(val(v1), . . . , val(vn))
where val(vi ) is the valence of the vertex vi and A is the
vertex to vertex adjacency matrix.
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I Example:

v1

v3

v4 v2


3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2





I Identify vi with the standard basis element ei of Rn.

I Write divisors as vectors in Zn. Example: (v1)− 2(v3) will be
(1, 0,−2, 0).

I We have D̃ = D − Q(G ) · eu.

I For a sequence of chip firings, D̃ = D − Q(G ) ·w where the
i-th entry of w is the number of times vi fires.

I Two divisors are said to be linearly equivalent if they can be
reached from one to another via a sequence of chip firings.
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Questions

Observe: The degree of the divisor is preserved by each move.

Call a divisor effective if every vertex has a non-negative number of
chips.

I Given a divisor D (with possibly negative coefficients), is there
a sequence of chip firing moves that transforms it into an
effective divisor?

I No, if its degree is negative. More subtle, if the degree is
non-negative.
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Rank of a divisor

Given a divisor D, let |D| be the set of effective divisors linearly
equivalent to it. A refinement to the previous slide, due to
Baker-Norine’07, is the following:

Definition
Given a divisor D, define its rank rG (D) to be the minimum degree
of any effective divisor E such that |D − E | = ∅, minus one.

I Minimum number of chips to be removed: the resulting
divisor is no longer linearly equivalent to an effective one.

I By construction, if deg(D) ≥ −1, then rG (D) ≤ deg(D) and
the rank of a divisor of negative degree is minus one.

I The answer to our question is yes if and only rG (D) ≥ 0.

I Riemann-Roch Problem: Determine the rank of a divisor (in
terms of the underlying graph and suitable quantities).
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Poincaré Series of Divisors on a Finite Graph

For divisors D1, . . . ,Dk on G , we define the Poincaré series
PG ,D1,...,Dk

(z1, . . . , zk) as:

PG ,D1,...,Dk
(z1, . . . , zk) :=∑

(n1,...,nk )∈Nk (rG (n1D1 + · · ·+ nkDk) + 1)zn1
1 · · · z

nk
k

Remarks:

I Here N is the set of non-negative integers.

I For a divisor D =
∑

v av (v), its multiple n · D =
∑

v n · av (v)
for n ∈ Z.

I For now, we consider PG ,D1,...,Dk
(z1, . . . , zk) as a formal power

series.
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Rationality of the Poincaré Series

I We say that a power series in z1, . . . , zk is rational if there is a
rational function f /g where f , g 6= 0 ∈ C[z1, . . . , zk ] such
that the power series agrees with this rational function at
every (z1, . . . , zk) ∈ Ck where it is absolutely convergent.

I Via the upper bound rG (D) ≤ deg(D) (if deg(D) ≥ −1):
PG ,D1,...,Dk

(z1, . . . , zk) is absolutely convergent in the set
{(z1, . . . , zk)| |zi | < 1∀i}.

Our main theorem is:

Theorem
The Poincaré series PG ,D1,...,Dk

(z1, . . . , zk) is rational with
polynomials f , g ∈ Z[z1, . . . , zk ].

I We discuss some key tools in the proof.
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I We say that a power series in z1, . . . , zk is rational if there is a
rational function f /g where f , g 6= 0 ∈ C[z1, . . . , zk ] such
that the power series agrees with this rational function at
every (z1, . . . , zk) ∈ Ck where it is absolutely convergent.

I Via the upper bound rG (D) ≤ deg(D) (if deg(D) ≥ −1):
PG ,D1,...,Dk

(z1, . . . , zk) is absolutely convergent in the set
{(z1, . . . , zk)| |zi | < 1∀i}.

Our main theorem is:

Theorem
The Poincaré series PG ,D1,...,Dk

(z1, . . . , zk) is rational with
polynomials f , g ∈ Z[z1, . . . , zk ].

I We discuss some key tools in the proof.



Rationality of the Poincaré Series
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Riemann-Roch

Let KG =
∑

v (val(v)− 2)(v). For the kite graph,
KG = (v1) + (v3).

Theorem (Baker and Norine 2007)

For every divisor D, the following formula holds:

rG (D) = rG (KG − D) + deg(D)− (g − 1)

where g = m − n + 1 is the first Betti number of G (G has m
edges and n vertices).

As a consequence:

I If deg(D) > 2g − 2, then rG (D) = deg(D)− g .
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Jacobian of a Graph

I The set of divisors of G form a free Abelian group (under
addition) of rank n denoted by Div(G ).

I Consider the set of all divisors that are linearly equivalent to
the zero divisor.

I They are of the form Q(G ) · v for v ∈ Zn and also form a
group denoted by Prin(G ) (group of principal divisors).

I Note that the degree of every principal divisor is zero.
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I Let Div0(G ) be the group of divisors of degree zero.

I The Jacobian Jac(G ) of G is defined as Div0(G )/Prin(G ).

I Kirchoff’s matrix-tree theorem: The Jacobian is a finite group
of order equal to the number of spanning trees of G .

I A closely related group Div(G )/Prin(G ) and is isomorphic to
Jac(G )⊕ Z.



I Let Div0(G ) be the group of divisors of degree zero.

I The Jacobian Jac(G ) of G is defined as Div0(G )/Prin(G ).

I Kirchoff’s matrix-tree theorem: The Jacobian is a finite group
of order equal to the number of spanning trees of G .

I A closely related group Div(G )/Prin(G ) and is isomorphic to
Jac(G )⊕ Z.



I Let Div0(G ) be the group of divisors of degree zero.

I The Jacobian Jac(G ) of G is defined as Div0(G )/Prin(G ).

I Kirchoff’s matrix-tree theorem: The Jacobian is a finite group
of order equal to the number of spanning trees of G .

I A closely related group Div(G )/Prin(G ) and is isomorphic to
Jac(G )⊕ Z.



I Let Div0(G ) be the group of divisors of degree zero.

I The Jacobian Jac(G ) of G is defined as Div0(G )/Prin(G ).

I Kirchoff’s matrix-tree theorem: The Jacobian is a finite group
of order equal to the number of spanning trees of G .

I A closely related group Div(G )/Prin(G ) and is isomorphic to
Jac(G )⊕ Z.



Lattice Point Enumeration of Rational Polyhedra

I A polyhedron P in Rd is called rational if it can defined a
system of linear inequalities with integer coefficients.

I Given an affine sublattice Λ of Zd , its lattice point
enumeration function is

∑
(n1,...,nd )∈P∩Λ zn1

1 · · · z
nd
d .

I A central result: The lattice point enumeration function is
rational with both the numerator and denominator having
integer coefficients.

I See Barvinok-Pommershein’98 for more details.



Lattice Point Enumeration of Rational Polyhedra

I A polyhedron P in Rd is called rational if it can defined a
system of linear inequalities with integer coefficients.

I Given an affine sublattice Λ of Zd , its lattice point
enumeration function is

∑
(n1,...,nd )∈P∩Λ zn1

1 · · · z
nd
d .

I A central result: The lattice point enumeration function is
rational with both the numerator and denominator having
integer coefficients.

I See Barvinok-Pommershein’98 for more details.



Lattice Point Enumeration of Rational Polyhedra

I A polyhedron P in Rd is called rational if it can defined a
system of linear inequalities with integer coefficients.

I Given an affine sublattice Λ of Zd , its lattice point
enumeration function is

∑
(n1,...,nd )∈P∩Λ zn1

1 · · · z
nd
d .

I A central result: The lattice point enumeration function is
rational with both the numerator and denominator having
integer coefficients.

I See Barvinok-Pommershein’98 for more details.



Lattice Point Enumeration of Rational Polyhedra

I A polyhedron P in Rd is called rational if it can defined a
system of linear inequalities with integer coefficients.

I Given an affine sublattice Λ of Zd , its lattice point
enumeration function is

∑
(n1,...,nd )∈P∩Λ zn1

1 · · · z
nd
d .

I A central result: The lattice point enumeration function is
rational with both the numerator and denominator having
integer coefficients.

I See Barvinok-Pommershein’98 for more details.



Inspiration

I This line of work is inspired by analogous constructions in
algebraic and arithmetic geometry.

I For a compact Riemann surface or a projective algebraic curve
over an algebraically closed field, there are analogues of
divisors, their rank, Riemann-Roch and Jacobians.

I Upcoming Area: “Tropical algebraic geometry”: Several
applications to algebraic geometry and combinatorics. See
Maclagan-Sturmfels 2015.

I Poincaré series of algebraic curves has been studied by
Cutkosky 2003, goes back to Cutkosky-Srinivas 1993.
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A Special Case

I The case k = 1 (only one divisor D):

PG ,D(z) =
∑

n∈N(r(nD) + 1)zn.

We have three cases:

1. If deg(D) < 0, then PG ,D = 0 (since r(nD) = −1 for every
n ∈ N).

2. If deg(D) > 0, then by Riemann-Roch
r(nD) = deg(nD)− g = ndeg(D)− g for n >> 0.
Hence, PG ,D(z) = p(z) + m/(1− z)2 − gzm/(1− z) for some
positive integer m.
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3. If deg(D) = 0, then consider the homomorphism
φG ,D : Z→ Jac(G ) given by φG ,D(n) = [nD].

Note that

r(nD) ={
0, if n ∈ ker(φG ,D),

−1, otherwise.

I Hence, PG ,D(z) =
∑

n∈(ker(φG,D )∩N) z
n.

I Note that ker(φG ,D) is a subgroup of Z and is hence, of the
form m · Z where m is the order of [D] in the Jacobian.

I Hence, PG ,D(z) = 1/(1− zm).

Hence, the Poincaré series is rational.
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Main Ideas of the Proof

I Key Idea 1: Refine PG ,D1,...,Dk
into smaller pieces based on the

degree
∑k

i=1 niDi .

I Let di = deg(Di ) and note that deg(
∑k

i=1 niDi ) =
∑k

i=1 nidi .
For an integer l , define
Q l = {(n1, . . . , nk) ∈ Nk |

∑k
i=1 nidi = l}.

Let P
(l)
G ,D1,...,Dk

(z1, . . . , zk) =

{∑
(n1,...,nk )∈Q(l)(r(n1D1 + · · ·+ nkDk) + 1)zn1

1 · · · z
nk
k , if Q(l) 6= ∅

0, otherwise.

I Note PG ,D1,...,Dk
=

∑
l∈Z P

(l)
G ,D1,...,Dk
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I Decompose PG ,D1,...,Dk
into three pieces:∑

l<0

P
(l)
G ,D1,...,Dk︸ ︷︷ ︸
small

+
∑

0≤l≤2g−2

P
(l)
G ,D1,...,Dk︸ ︷︷ ︸

intermediate

+
∑

l≥2g−1

P
(l)
G ,D1,...,Dk︸ ︷︷ ︸

large

I Since the rank of a divisor of negative degree is −1, the small
piece is zero.

I Key Idea 2: Show that the intermediate and large piece are
both rational by interpreting them in term lattice point
enumerating functions of rational polyhedra
(Barvinok-Pommershein’98).
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Rationality of the Large Piece

I If l > 2g − 2, then by Riemann-Roch
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(n1,...,nk )∈Q(l)(
∑k

i=1 nidi − g)zn1
1 · · · z

nk
k .

I Hence,
∑∞

l=2g−1 P
(l)
G ,D1,...,Dk

can be expressed in terms of the
lattice point enumerating function EC of the rational
polyhedron:

C = {(n1, . . . , nk) ∈ Rk |
∑k

i=1 nidi ≥ 2g − 2, ni ≥ 0 ∀i}
I In other words, EC (z1, . . . , zk) =
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Rationality of the Intermediate Piece

I Key Idea 3: Further refine P
(l)
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based on each divisor
class [D].
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i=1 niDi ) + 1)zn1

1 · · · z
nk
k , if Q([D]) 6= ∅

0, otherwise.
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I Note that P
(l)
G ,D1,...,Dk

=
∑

[D]∈Jacl (G) P
[D]
G ,D1,...,Dk

.

I Here Jac(l)(G ) is the set of divisor classes of degree l and is
finite.
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I We show:
∑

(n1,...,nk )∈Q [D] z
n1
1 · · · z

nk
k is rational by interpreting

Q [D] in terms of the “set of lattice points in a rational
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I Key Idea 4: Consider the homomorphism

φG ,D1,...,Dk
: Zk → Div(G )/Prin(G )

taking (n1, . . . , nk) to [
∑k

i=1 niDi ].

I Study the fiber of φG ,D1,...,Dk
over [D].
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Concluding Remarks

I An interesting future direction is to study the information that
the Poincaré series contains about the graph (see the arxiv
preprint for examples).

I The notion of Poincaré series can be defined for metric graphs.

I See the arxiv preprint for rationality of a family called chains
of loops.
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