Characteristic center of a tree

Kamal Lochan Patra
School of Mathematical Sciences
National Institute of Science Education and Research
Bhubaneswar, India

- Let $G=(V, E)$ be a graph with vertex set $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and edge set E.
- Let $G=(V, E)$ be a graph with vertex set $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and edge set E.
- The adjacency matrix of G, denoted by $A(G)$, is defined as $A(G)=\left[a_{i j}\right]_{n \times n}$, where

$$
a_{i j}= \begin{cases}1, & \text { if } v_{i} \text { and } v_{j} \text { are adjacent in } G, \\ 0, & \text { otherwise }\end{cases}
$$

- Let $G=(V, E)$ be a graph with vertex set $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and edge set E.
- The adjacency matrix of G, denoted by $A(G)$, is defined as $A(G)=\left[a_{i j}\right]_{n \times n}$, where

$$
a_{i j}= \begin{cases}1, & \text { if } v_{i} \text { and } v_{j} \text { are adjacent in } G \\ 0, & \text { otherwise }\end{cases}
$$

- The Laplacian matrix of G is defined as $L(G)=D(G)-A(G)$ where $D(G)$ is the diagonal degree matrix of G.
- Let $G=(V, E)$ be a graph with vertex set $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and edge set E.
- The adjacency matrix of G, denoted by $A(G)$, is defined as $A(G)=\left[a_{i j}\right]_{n \times n}$, where

$$
a_{i j}= \begin{cases}1, & \text { if } v_{i} \text { and } v_{j} \text { are adjacent in } G, \\ 0, & \text { otherwise }\end{cases}
$$

- The Laplacian matrix of G is defined as $L(G)=D(G)-A(G)$ where $D(G)$ is the diagonal degree matrix of G.
- $L(G)$ is symmetric and positive semi-definite.
- $S(G)=\left(\lambda_{1}(G), \lambda_{2}(G), \cdots, \lambda_{n}(G)\right)$ is the Laplacian spectrum, where $0 \leq \lambda_{1}(G) \leq \lambda_{2}(G) \leq \cdots \leq \lambda_{n}(G)$ are the eigenvalues of $L(G)$.
- $S(G)=\left(\lambda_{1}(G), \lambda_{2}(G), \cdots, \lambda_{n}(G)\right)$ is the Laplacian spectrum, where $0 \leq \lambda_{1}(G) \leq \lambda_{2}(G) \leq \cdots \leq \lambda_{n}(G)$ are the eigenvalues of $L(G)$.
- $\left(0, \mathbf{e}=(1,1, \cdots, 1)^{t}\right)$ is an eigenpair of $L(G)$.
- $S(G)=\left(\lambda_{1}(G), \lambda_{2}(G), \cdots, \lambda_{n}(G)\right)$ is the Laplacian spectrum, where $0 \leq \lambda_{1}(G) \leq \lambda_{2}(G) \leq \cdots \leq \lambda_{n}(G)$ are the eigenvalues of $L(G)$.
- $\left(0, \mathbf{e}=(1,1, \cdots, 1)^{t}\right)$ is an eigenpair of $L(G)$.
- Matrix-tree theorem: Let G be a graph with $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. Then the co-factor of any element of $L(G)$ equals the number of spanning trees of G.
- $S(G)=\left(\lambda_{1}(G), \lambda_{2}(G), \cdots, \lambda_{n}(G)\right)$ is the Laplacian spectrum, where $0 \leq \lambda_{1}(G) \leq \lambda_{2}(G) \leq \cdots \leq \lambda_{n}(G)$ are the eigenvalues of $L(G)$.
- $\left(0, \mathbf{e}=(1,1, \cdots, 1)^{t}\right)$ is an eigenpair of $L(G)$.
- Matrix-tree theorem: Let G be a graph with $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. Then the co-factor of any element of $L(G)$ equals the number of spanning trees of G.
- Corollary Let G be a graph with $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. The number of spanning trees of G equals $\frac{\lambda_{2} \lambda_{3} \cdots \lambda_{n}}{n}$.
- M. Fiedler (1973): $\lambda_{2}(G)>0$ if and only if G is connected.
- M. Fiedler (1973): $\lambda_{2}(G)>0$ if and only if G is connected.
- $\lambda_{2}(G) \rightarrow \mu(G)$, algebraic connectivity of G.
- M. Fiedler (1973): $\lambda_{2}(G)>0$ if and only if G is connected.
- $\lambda_{2}(G) \rightarrow \mu(G)$, algebraic connectivity of G.
- An eigenvector corresponing to $\mu(G)$ is called a Fiedler vector of G.
- M. Fiedler (1973): $\lambda_{2}(G)>0$ if and only if G is connected.
- $\lambda_{2}(G) \rightarrow \mu(G)$, algebraic connectivity of G.
- An eigenvector corresponing to $\mu(G)$ is called a Fiedler vector of G.
- Let Y be a Fiedler vector. By $Y(v)$, we mean the co-ordinate of Y corresponding to the vertex v.

- Let T be a tree with vertex set V.

- Let T be a tree with vertex set V.
- $\mu(T) \leftrightarrow Y$ denotes Fiedler Vector and $Y \perp e$.

- Let T be a tree with vertex set V.
- $\mu(T) \leftrightarrow Y$ denotes Fiedler Vector and $Y \perp e$.
- Characteristic vertex: $v \in V$, if $Y(v)=0$ and there exists w adjacent to v such that $Y(w) \neq 0$.

- Let T be a tree with vertex set V.
- $\mu(T) \leftrightarrow Y$ denotes Fiedler Vector and $Y \perp e$.
- Characteristic vertex: $v \in V$, if $Y(v)=0$ and there exists w adjacent to v such that $Y(w) \neq 0$.
- Characteristic edge: $e=\{u, v\} \in E$, if $Y(u) Y(v)<0$.

- Let T be a tree with vertex set V.
- $\mu(T) \leftrightarrow Y$ denotes Fiedler Vector and $Y \perp e$.
- Characteristic vertex: $v \in V$, if $Y(v)=0$ and there exists w adjacent to v such that $Y(w) \neq 0$.
- Characteristic edge: $e=\{u, v\} \in E$, if $Y(u) Y(v)<0$.
- Characteristic set: Collection of characteristic edges and characteristic vertices and is denoted by $\mathcal{C}(T, Y)$.

Proposition[Fiedler, 1975]: Let T be tree on n vertices and let Y be a Fiedler vector of T. Then one of the following holds:

Proposition[Fiedler, 1975]: Let T be tree on n vertices and let Y be a Fiedler vector of T. Then one of the following holds:
(1) No entry of Y is zero. In this case, there is a unique pair of vertices u and v such that u and v are adjacent in T with $Y(u)>0$ and $Y(v)<0$. Further the entries of Y increases along any path in T which starts at u and does not contain v while the entries of Y decreases along any path in T which starts at v and does not contain u.

Proposition[Fiedler, 1975]: Let T be tree on n vertices and let Y be a Fiedler vector of T. Then one of the following holds:
(1) No entry of Y is zero. In this case, there is a unique pair of vertices u and v such that u and v are adjacent in T with $Y(u)>0$ and $Y(v)<0$. Further the entries of Y increases along any path in T which starts at u and does not contain v while the entries of Y decreases along any path in T which starts at v and does not contain u.
(2) Some entries of Y are zero. The subgraph of T induced by the set of vertices corresponding to zero's in Y is connected. Moreover, there is a unique vertex u such that $Y(u)=0$ and u is adjacent to a vertex v with $Y(v) \neq 0$. The entries of Y are either increasing, decreasing or identically zero along any path in T which starts at u.

- Theorem[Fiedler,1975]: For a tree $T,|\mathcal{C}(T, Y)|=1$ and is fixed for any Fiedler vector Y.
- Theorem[Fiedler,1975]: For a tree $T,|\mathcal{C}(T, Y)|=1$ and is fixed for any Fiedler vector Y.
- Type-I tree \leftrightarrow tree with a characteistic vertex Type-II tree \leftrightarrow tree with a characteistic edge
- Theorem[Fiedler,1975]: For a tree $T,|\mathcal{C}(T, Y)|=1$ and is fixed for any Fiedler vector Y.
- Type-I tree \leftrightarrow tree with a characteistic vertex Type-II tree \leftrightarrow tree with a characteistic edge
- Characteristic center $\longleftrightarrow \chi(T)$

A real matrix A is called positive if all its entries are positive. It is called non-negative if all its entries are non-negative. Similarly, we can define a positive and non-negative vector.

A real matrix A is called positive if all its entries are positive. It is called non-negative if all its entries are non-negative. Similarly, we can define a positive and non-negative vector.

A square matrix P is called a permutation matrix if exactly one entry in each row and column of P is equal to 1 , and all other entries are zero.

A real matrix A is called positive if all its entries are positive. It is called non-negative if all its entries are non-negative. Similarly, we can define a positive and non-negative vector.

A square matrix P is called a permutation matrix if exactly one entry in each row and column of P is equal to 1 , and all other entries are zero.

A square matrix A of order $n \geq 2$, is called reducible if there is a permutation matrix P such that $P^{t} A P=\left(\begin{array}{rr}B & C \\ \mathbf{0} & D\end{array}\right)$, where B and D are square submatrices. Otherwise A is called irreducible.

Perron-Frobenius Theorem: An irreducible non-negative matrix A has a real positive simple eigenvalue r such that $r \geq|\lambda|$ for any eigenvalue λ of A. Furthermore, there is a positive eigenvector corresponding to r. Also if \mathbf{u} is an eigenvector of A with positive entries then \mathbf{u} is the eigenvector corresponding to the eigenvalue r mentioned above.

Perron-Frobenius Theorem: An irreducible non-negative matrix A has a real positive simple eigenvalue r such that $r \geq|\lambda|$ for any eigenvalue λ of A. Furthermore, there is a positive eigenvector corresponding to r. Also if \mathbf{u} is an eigenvector of A with positive entries then \mathbf{u} is the eigenvector corresponding to the eigenvalue r mentioned above.

Corollary: Let A be an irreducible non-negative matrix and B be a principal submtrix of A. Then the largest eigenvalue of A is strictly larger than the largest eigenvalue of B.

Perron-Frobenius Theorem: An irreducible non-negative matrix A has a real positive simple eigenvalue r such that $r \geq|\lambda|$ for any eigenvalue λ of A. Furthermore, there is a positive eigenvector corresponding to r. Also if \mathbf{u} is an eigenvector of A with positive entries then \mathbf{u} is the eigenvector corresponding to the eigenvalue r mentioned above.

Corollary: Let A be an irreducible non-negative matrix and B be a principal submtrix of A. Then the largest eigenvalue of A is strictly larger than the largest eigenvalue of B.

Corollary: Let G be a connected graph. Then the smallest eigenvalue of $L(G)$ is simple and there is a positive eigenvector associated with it. Furthermore, if M is a principal submatrix of $L(G)$ then the smallest eigenvalue of $L(G)$ is strictly smaller than the smallest eigenvalue of M.

For non-negative square matrix A and B (not necessarily same order), the notation $A \ll B$ is used to mean that there exist a permutation matrix P such that $P^{t} A P$ is entry wise dominated by a pricipal submatrix of B, with strict inequality in atleast one position in case A and B have the same order.

For non-negative square matrix A and B (not necessarily same order), the notation $A \ll B$ is used to mean that there exist a permutation matrix P such that $P^{t} A P$ is entry wise dominated by a pricipal submatrix of B, with strict inequality in atleast one position in case A and B have the same order.

Corollary: Let A and B be two non-negative square matrices. If B is irreducible and $A \ll B$ then the largest eiginvalue of A is strictly less that the largest eigenvalue of B.

M-matrix: A square matrix with all its off-diagonal entries are nonpositive and all its eigenvalues have nonnegative real part.

M-matrix: A square matrix with all its off-diagonal entries are nonpositive and all its eigenvalues have nonnegative real part.
M-matrices are closed under the extraction of principal submatrices and the inverse of an irreducible nonsingular M-matrix has positive entries.

Let v be a vertex of a tree T. Let $T_{1}, T_{2}, \cdots, T_{k}$ be the connected components of $T-v$. For each such component, let $\hat{L}\left(T_{i}\right), i=1,2, \cdots, k$ denote the principal submatrix of the Laplacian matrix L corresponding to the vertices of T_{i}. Then $\hat{L}\left(T_{i}\right)$ is invertible and $\hat{L}\left(T_{i}\right)^{-1}$ is a positive matrix which is called the bottleneck matrix for T_{i}.

Let v be a vertex of a tree T. Let $T_{1}, T_{2}, \cdots, T_{k}$ be the connected components of $T-v$. For each such component, let $\hat{L}\left(T_{i}\right), i=1,2, \cdots, k$ denote the principal submatrix of the Laplacian matrix L corresponding to the vertices of T_{i}. Then $\hat{L}\left(T_{i}\right)$ is invertible and $\hat{L}\left(T_{i}\right)^{-1}$ is a positive matrix which is called the bottleneck matrix for T_{i}.

By Perron -Frobenius Theorem, $\hat{L}\left(T_{i}\right)^{-1}$ has a simple dominant eigenvalue, called Perron value of T_{i} at v. The component T_{j} is called a Perron component at v if its Perron value is maximal among $T_{1}, T_{2}, \cdots, T_{k}$, the components at v.

Let v be a vertex of a tree T. Let $T_{1}, T_{2}, \cdots, T_{k}$ be the connected components of $T-v$. For each such component, let $\hat{L}\left(T_{i}\right), i=1,2, \cdots, k$ denote the principal submatrix of the Laplacian matrix L corresponding to the vertices of T_{i}. Then $\hat{L}\left(T_{i}\right)$ is invertible and $\hat{L}\left(T_{i}\right)^{-1}$ is a positive matrix which is called the bottleneck matrix for T_{i}.

By Perron-Frobenius Theorem, $\hat{L}\left(T_{i}\right)^{-1}$ has a simple dominant eigenvalue, called Perron value of T_{i} at v. The component T_{j} is called a Perron component at v if its Perron value is maximal among $T_{1}, T_{2}, \cdots, T_{k}$, the components at v.

Proposition[Kirkland, Neumann and Shader(1996)]: Let T be a tree and v be any vertex of T. Let T_{1} be a connected component of $T-v$. Then $\hat{L}\left(T_{1}\right)^{-1}=\left[m_{i j}\right]$, where $m_{i j}$ is the number of edges in common between the path $P_{i v}$ joining the vertex i and v and the path $P_{j v}$ joining the vertex j and v.

Let C_{1} be the connected component of $T-2$ containing the vertex 6 . Then

$$
\widehat{L}\left(C_{1}\right)=\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right] \widehat{L}\left(C_{1}\right)^{-1}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right]
$$

Theorem[Kirkland, Neumann and Shader(1996)]: Let T be a tree on n vertices. Then the edge $\{i, j\}$ is the characteristic edge of T if and only if the component T_{i} at vertex j containing the vertex i is the unique Perron component at j while the component T_{j} at vertex i containing the vertex j is the unique Perron component at i. Moreover in this case there exists a $\gamma \in(0,1)$ such that

$$
\frac{1}{\mu(T)}=\rho\left(\widehat{L}\left(C_{i}\right)^{-1}-\gamma J\right)=\rho\left(\widehat{L}\left(C_{j}\right)^{-1}-(1-\gamma) J\right)
$$

Furthermore, any eigenvector Y of $L(T)$ corresponding to $\mu(T)$ acn be permuted and partitioned into block form $Y^{t}=\left[Y_{1}^{t} \mid-Y_{2}^{t}\right]$, where Y_{1} is a Perron vector for $\rho\left(\widehat{L}\left(C_{i}\right)^{-1}-\gamma J\right)$ and Y_{2} is a Perron vector for $\rho\left(\widehat{L}\left(C_{j}\right)^{-1}-(1-\gamma) J\right)$. Here J is the all one matrix and ρ stands for spectral radius.

Theorem[Kirkland, Neumann and Shader(1996)]: Let T be a tree on n vertices. Then the vertex v is the characteristic vertex of T if and only if there are two or more Perron components of T at v. Moreover in this case,

$$
\mu(T)=\frac{1}{\rho\left(L_{v}^{-1}\right.},
$$

where L_{v} is a perron component at v. Furthermore, given any two Perron components C_{1}, C_{2} of T at v, an eigenvector Y corresponding to $\mu(T)$ can be choosen so that Y can be permutated and partitioned into block form $Y^{t}=\left[Y_{1}^{t}\left|-Y_{2}^{t}\right| \mathbf{0}^{\mathbf{t}}\right]$. where Y_{1} and Y_{2} are Perron vectors for the bottleneck matrices $\widehat{L}\left(C_{1}\right)^{-1}$ and $\widehat{L}\left(C_{2}\right)^{-1}$, respectively and $\mathbf{0}$ is the column vector of an appropriate order.

Theorem[Kirkland, Neumann and Shader(1996)]: Let T be a tree on n vertices. Then the vertex v is the characteristic vertex of T if and only if there are two or more Perron components of T at v. Moreover in this case,

$$
\mu(T)=\frac{1}{\rho\left(L_{v}^{-1}\right.},
$$

where L_{v} is a perron component at v. Furthermore, given any two Perron components C_{1}, C_{2} of T at v, an eigenvector Y corresponding to $\mu(T)$ can be choosen so that Y can be permutated and partitioned into block form $Y^{t}=\left[Y_{1}^{t}\left|-Y_{2}^{t}\right| \mathbf{0}^{\mathbf{t}}\right]$. where Y_{1} and Y_{2} are Perron vectors for the bottleneck matrices $\widehat{L}\left(C_{1}\right)^{-1}$ and $\widehat{L}\left(C_{2}\right)^{-1}$, respectively and $\mathbf{0}$ is the column vector of an appropriate order.

Theorem[Kirkland, Neumann and Shader(1996)]: Let T be a tree. Then for any vertex v that is neither a characteristic vertex nor an end vertex of the characteristic edge, the unique Perron component at v contains the characteristic set of T.

- $T(V, E)$: A tree with vertex set V and edge set E
- $T(V, E)$: A tree with vertex set V and edge set E
- For $u, v \in V$, the length of the $u-v$ path is the number of edges in the path from u to v and distance between u and v, denoted by $d_{T}(u, v)=d(u, v)$, is the length of the $u-v$ path. We set $d(u, u)=0$.
- $T(V, E)$: A tree with vertex set V and edge set E
- For $u, v \in V$, the length of the $u-v$ path is the number of edges in the path from u to v and distance between u and v, denoted by $d_{T}(u, v)=d(u, v)$, is the length of the $u-v$ path. We set $d(u, u)=0$.
- For $v \in V$, the eccentricity $e(v)$ of v is defined by $e(v)=\max \{d(u, v): u \in V\}$.
- $T(V, E)$: A tree with vertex set V and edge set E
- For $u, v \in V$, the length of the $u-v$ path is the number of edges in the path from u to v and distance between u and v, denoted by $d_{T}(u, v)=d(u, v)$, is the length of the $u-v$ path. We set $d(u, u)=0$.
- For $v \in V$, the eccentricity $e(v)$ of v is defined by $e(v)=\max \{d(u, v): u \in V\}$.
- The radius $\operatorname{rad}(T)$ of T is defined by $\operatorname{rad}(T)=\min \{e(v): v \in V\}$.
- $T(V, E)$: A tree with vertex set V and edge set E
- For $u, v \in V$, the length of the $u-v$ path is the number of edges in the path from u to v and distance between u and v, denoted by $d_{T}(u, v)=d(u, v)$, is the length of the $u-v$ path. We set $d(u, u)=0$.
- For $v \in V$, the eccentricity $e(v)$ of v is defined by $e(v)=\max \{d(u, v): u \in V\}$.
- The radius $\operatorname{rad}(T)$ of T is defined by $\operatorname{rad}(T)=\min \{e(v): v \in V\}$.
- The diameter $\operatorname{diam}(T)$ of T is defined by $\operatorname{diam}(T)=\max \{e(v): v \in V\}$.

Center of a tree:

Center of a tree:

- A vertex $v \in V$ is a central vertex of T if $e(v)=\operatorname{rad}(T)$. The center of T, denoted by $C=C(T)$, is the set of all central vertices of T.

Center of a tree:

- A vertex $v \in V$ is a central vertex of T if $e(v)=\operatorname{rad}(T)$. The center of T, denoted by $C=C(T)$, is the set of all central vertices of T.
- Theorem (Jordan, 1869): The center of a tree consists of either one vertex or two adjacent vertices.

Center of a tree:

- A vertex $v \in V$ is a central vertex of T if $e(v)=\operatorname{rad}(T)$. The center of T, denoted by $C=C(T)$, is the set of all central vertices of T.
- Theorem (Jordan, 1869): The center of a tree consists of either one vertex or two adjacent vertices.

The center is located by a simple recursive procedue.

Center of a tree:

- A vertex $v \in V$ is a central vertex of T if $e(v)=\operatorname{rad}(T)$. The center of T, denoted by $C=C(T)$, is the set of all central vertices of T.
- Theorem (Jordan, 1869): The center of a tree consists of either one vertex or two adjacent vertices.

The center is located by a simple recursive procedue.

For any tree $T, C(T)$ is same as the center of any $u-v$ path in T of length $\operatorname{diam}(T)$.

Centroid of a tree:

Centroid of a tree:

- For $v \in V$, a branch (rooted) at v is a maximal subtree containing v as a pendant vertex. The number of branches at v is $\operatorname{deg}(v)$.

Centroid of a tree:

- For $v \in V$, a branch (rooted) at v is a maximal subtree containing v as a pendant vertex. The number of branches at v is $\operatorname{deg}(v)$.
- The weight of v, denoted by $\omega(v)=\omega_{T}(v)$, is the maximal number of edges in any branch at v.

Centroid of a tree:

- For $v \in V$, a branch (rooted) at v is a maximal subtree containing v as a pendant vertex. The number of branches at v is $\operatorname{deg}(v)$.
- The weight of v, denoted by $\omega(v)=\omega_{T}(v)$, is the maximal number of edges in any branch at v.
- A vertex $v \in V$ is a centroid vertex of T if $\omega(v)=\min _{u \in V} \omega(u)$.

Centroid of a tree:

- For $v \in V$, a branch (rooted) at v is a maximal subtree containing v as a pendant vertex. The number of branches at v is $\operatorname{deg}(v)$.
- The weight of v, denoted by $\omega(v)=\omega_{T}(v)$, is the maximal number of edges in any branch at v.
- A vertex $v \in V$ is a centroid vertex of T if $\omega(v)=\min _{u \in V} \omega(u)$.
- The centroid of T, denoted by $C_{d}=C_{d}(T)$, is the set of all centroid vertices of T.
- Theorem (Jordan, 1869): The centroid of a tree consists of either one vertex or two adjacent vertices.
- Theorem (Jordan, 1869): The centroid of a tree consists of either one vertex or two adjacent vertices.
- For a tree T on n vertices, if $\left|C_{d}(T)\right|=2$ and $C_{d}(T)=\{u, v\}$, then n must be even and $\omega(u)=\omega(v)=\frac{n}{2}$.
- Theorem (Jordan, 1869): The centroid of a tree consists of either one vertex or two adjacent vertices.
- For a tree T on n vertices, if $\left|C_{d}(T)\right|=2$ and $C_{d}(T)=\{u, v\}$, then n must be even and $\omega(u)=\omega(v)=\frac{n}{2}$.
- If $n \geq 3$, then neither the center nor the centroid of T contain pendant vertices.

For the above tree T, the vertex 6 is the center as its eccentricity is 5 , less than any other vertex. The vertex 9 is the centroid as it has weight 8 , less than any other vertex.
Also $\mu(T)=.0483$ and $Y=$
$(-0.4116,-0.3917,-0.3528,-0.2970,-0.2267,-0.1455,-0.0573,0.0337$, $0.1231,0.2065,0.2170,0.2170,0.2170,0.2170,0.2170,0.2170,0.2170)^{t}$ is a Fiedler vector. So $\chi(T)=\{7,8\}$, which is disjoint from each of the center, centroid and subtree core.

For a given tree T, we denote by $d_{T}\left(C, C_{d}\right)=\min \left\{d(u, v) \mid u \in C\right.$ and $\left.v \in C_{d}\right\}$ the distance between the center and the centroid of T.

For a given tree T, we denote by $d_{T}\left(C, C_{d}\right)=\min \left\{d(u, v) \mid u \in C\right.$ and $\left.v \in C_{d}\right\}$ the distance between the center and the centroid of T. $\left(d_{T}(C, \chi)\right.$ and $\left.d_{T}\left(C_{d}, \chi\right)\right)$

For a given tree T, we denote by $d_{T}\left(C, C_{d}\right)=\min \left\{d(u, v) \mid u \in C\right.$ and $\left.v \in C_{d}\right\}$ the distance between the center and the centroid of T.
$\left(d_{T}(C, \chi)\right.$ and $\left.d_{T}\left(C_{d}, \chi\right)\right)$

Problems:

(1) $\delta_{n}\left(C, C_{d}\right)=\max \left\{d_{T}\left(C, C_{d}\right): T\right.$ is a tree on n vertices $\}=$?

For a given tree T, we denote by $d_{T}\left(C, C_{d}\right)=\min \left\{d(u, v) \mid u \in C\right.$ and $\left.v \in C_{d}\right\}$ the distance between the center and the centroid of T.
$\left(d_{T}(C, \chi)\right.$ and $\left.d_{T}\left(C_{d}, \chi\right)\right)$

Problems:

(1) $\delta_{n}\left(C, C_{d}\right)=\max \left\{d_{T}\left(C, C_{d}\right): T\right.$ is a tree on n vertices $\}=$?
(2) $\delta_{n}(C, \chi)=\max \left\{d_{T}(C, \chi): T\right.$ is a tree on n vertices $\}=$?

For a given tree T, we denote by
$d_{T}\left(C, C_{d}\right)=\min \left\{d(u, v) \mid u \in C\right.$ and $\left.v \in C_{d}\right\}$ the distance between the center and the centroid of T.
$\left(d_{T}(C, \chi)\right.$ and $\left.d_{T}\left(C_{d}, \chi\right)\right)$

Problems:

(1) $\delta_{n}\left(C, C_{d}\right)=\max \left\{d_{T}\left(C, C_{d}\right): T\right.$ is a tree on n vertices $\}=$?
(2) $\delta_{n}(C, \chi)=\max \left\{d_{T}(C, \chi): T\right.$ is a tree on n vertices $\}=$?
(3) $\delta_{n}\left(C_{d}, \chi\right)=\max \left\{d_{T}\left(C_{d}, \chi\right): T\right.$ is a tree on n vertices $\}=$?

Let $P_{n-g, g}, n \geq 5,2 \leq g \leq n-3$, denote the tree on n vertices which is obtained from the path P_{n-g} by adding g pendant vertices to the vertex $n-g$. Such a tree $P_{n-g, g}$ is called a path-star tree.

Theorem[-, 2007]: Among all trees on $n \geq 5$ vertices, the distance between the center and the characteristic center is maximized by a path-star tree $P_{n-g, g}$, for some positive integer g.
Proof:
Case 1: Characteristic center lies in one of the longest path

Theorem[-, 2007]: Among all trees on $n \geq 5$ vertices, the distance between the center and the characteristic center is maximized by a path-star tree $P_{n-g, g}$, for some positive integer g.
Proof:
Case 1: Characteristic center lies in one of the longest path

Case 2: Characteristic center does not lie in any of the longest path

Theorem[-, 2007]: Among all trees on $n \geq 5$ vertices, the distance between the center and the characteristic center is maximized by a path-star tree $P_{n-g, g}$, for some positive integer g.

Theorem[-, 2007]: Among all trees on $n \geq 5$ vertices, the distance between the center and the characteristic center is maximized by a path-star tree $P_{n-g, g}$, for some positive integer g.

Theorem[-, 2007]: Among all path-star trees on $n \geq 5$ vertices, the distance between centroid and characteristic set maximized by $P_{n-\left\lfloor\frac{n}{2}\right\rfloor,\left\lfloor\frac{n}{2}\right\rfloor}$.

Theorem[-, 2007]: Among all trees on $n \geq 5$ vertices, the distance between the center and the characteristic center is maximized by a path-star tree $P_{n-g, g}$, for some positive integer g.

Theorem[-, 2007]: Among all path-star trees on $n \geq 5$ vertices, the distance between centroid and characteristic set maximized by $P_{n-\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\left\lfloor\frac{n}{2}\right\rfloor\right.}$.

Theorem[-, 2007]: Let $P_{n-g, g}$ be a path-star tree. Then the characteristic center of $P_{n-g, g}$ lies in the path from $C\left(P_{n-g, g}\right)$ to $C_{d}\left(P_{n-g, g}\right)$.

The position of the center of $P_{n-g, g}$ can also be expressed in terms of $n-g$. The following result is straight-forward.

The position of the center of $P_{n-g, g}$ can also be expressed in terms of $n-g$. The following result is straight-forward.

Lemma: The center of the path-star tree $P_{n-g, g}$ is given by

$$
C\left(P_{n-g, g}\right)= \begin{cases}\left\{\frac{n-g+2}{2}\right\}, & \text { if } n-g \text { is even } \\ \left\{\frac{n-g+1}{2}, \frac{n-g+3}{2}\right\}, & \text { if } n-g \text { is odd }\end{cases}
$$

The position of the centroid of a path-star tree $P_{n-g, g}$ can be expressed in terms of g. The following result is straight-forward.

The position of the centroid of a path-star tree $P_{n-g, g}$ can be expressed in terms of g. The following result is straight-forward.

Lemma: The centroid of the path-star tree $P_{n-g, g}$ is given by

$$
C_{d}\left(P_{n-g, g}\right)= \begin{cases}\left\{\begin{array}{ll}
\left\{\frac{n+1}{2}\right\}, & \text { if } g \leq \frac{n-1}{2} \\
\{n-g\}, & \text { if } g>\frac{n-1}{2},
\end{array} \quad \text { if } n\right. \text { is odd, } \\
\left\{\begin{array}{ll}
\left\{\frac{n}{2}, \frac{n}{2}+1\right\}, & \text { if } g \leq \frac{n}{2}-1 \\
\{n-g\}, & \text { if } g>\frac{n}{2}-1
\end{array}, \quad \text { if } n\right. \text { is even. }\end{cases}
$$

Theorem[-, 2007]: Among all trees on $n \geq 5$ vertices, the distance between the center and the centroid is maximized by $P_{n-\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\left\lfloor\frac{n}{2}\right\rfloor\right.}$. Futhermore,

$$
d_{P_{\left.n-\left\lfloor\frac{n}{2}\right\rfloor\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor}}\left(C, C_{d}\right)=\left\lfloor\frac{n-3}{4}\right\rfloor .
$$

Theorem[-, 2007]: Among all trees on $n \geq 5$ vertices, the distance between the center and the centroid is maximized by $P_{n-\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\left\lfloor\frac{n}{2}\right\rfloor\right.}$. Futhermore,

$$
d_{P_{n-\left\lfloor\frac{n}{2}\right\rfloor,\left\lfloor\frac{n}{2}\right\rfloor}}\left(C, C_{d}\right)=\left\lfloor\frac{n-3}{4}\right\rfloor .
$$

Corollary: $\lim _{n \rightarrow \infty} \frac{\delta_{n}\left(C, C_{d}\right)}{n}=\frac{1}{4}$.

Theorem[Kirkland et al.,2017]: Let z be the unique root of the equation $\tan (z)+z=0$ that lies in the interval $\left(\frac{\pi}{2}, \pi\right]$. Then

$$
\lim _{n \rightarrow \infty} \frac{\delta_{n}\left(C_{d}, \chi\right)}{n}=\frac{1}{2}-\frac{\pi}{4 z}
$$

Theorem[Kirkland et al.,2017]: Let z be the unique root of the equation $\tan (z)+z=0$ that lies in the interval $\left(\frac{\pi}{2}, \pi\right]$. Then

$$
\lim _{n \rightarrow \infty} \frac{\delta_{n}\left(C_{d}, \chi\right)}{n}=\frac{1}{2}-\frac{\pi}{4 z}
$$

Theorem[Kirkland et al.,2017]:

$$
\lim _{n \rightarrow \infty} \frac{\delta_{n}(C, \chi)}{n}=\frac{c_{0} \pi}{4}\left(c_{0} \pi-\sqrt{c_{0}^{2} \pi^{2}-4\left(1-c_{0}\right)}\right)-\frac{1-c_{0}}{2}
$$

where $c_{0} \in\left(\frac{2 \sqrt{\pi^{2}+1}}{\pi^{2}}-1,1\right)$ is the unique solution of $w(c)=\frac{\pi}{2(1-r)}, r$ is a function of $c, r \in\left(c, \frac{c+1}{2}\right), c \in(0,1)$.

Conjecture: For $n \geq 5$ and $2 \leq g \leq n-3$, the path star-tree is a Type-II tree.
(N. Abreu, E. Fritscher, C. Justel and S. Kirkland, On the characteristic set, centroid, and centre for a tree, Linear and Multilinear Algebra, 65 (2017), no. 10, 2046-2063.
(in D. N. S. Desai and K. L. Patra, Maximizing distance between center, centroid and subtree core of trees, Proc. Indian Acad. Sci.(Math. Sci.), 129(2019), no. 1, Art. 7, 18pp.
圊 K. L. Patra, Maximizing the distance between center, centroid and characteristic set of a tree, Linear and Multilinear Algebra, 55 (2007), no. 4, 381-397.
R. H. Smith, L. Szekely, H. Wang, and S. Yuan, On different middle parts of a tree, Electronic Journal of Combinatorics, 25 (2018), no. 3, paper 3.17, 32 pp.
E. L. A. Szekely and H. Wang, On subtrees of trees, Adv. Appl. Math. 34 (2005), 138-155.
© D. Pandey and K. L. Patra, Different central parts of trees and their pairwise distances, arXiv:2004.02197 .

THANK YOU

