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Let G = (V ,E ) be a graph with vertex set V = {v1, v2, · · · , vn} and
edge set E .
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The adjacency matrix of G , denoted by A(G ), is defined as
A(G ) = [aij ]n×n, where

aij =

{
1, if vi and vj are adjacent in G ,

0, otherwise.
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Let G = (V ,E ) be a graph with vertex set V = {v1, v2, · · · , vn} and
edge set E .

The adjacency matrix of G , denoted by A(G ), is defined as
A(G ) = [aij ]n×n, where

aij =

{
1, if vi and vj are adjacent in G ,

0, otherwise.

The Laplacian matrix of G is defined as L(G ) = D(G )− A(G )
where D(G ) is the diagonal degree matrix of G .

L(G ) is symmetric and positive semi-definite.
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S(G ) = (λ1(G ), λ2(G ), · · · , λn(G )) is the Laplacian spectrum,
where 0 ≤ λ1(G ) ≤ λ2(G ) ≤ · · · ≤ λn(G ) are the eigenvalues of
L(G ).
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(0, e = (1, 1, · · · , 1)t) is an eigenpair of L(G ).
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S(G ) = (λ1(G ), λ2(G ), · · · , λn(G )) is the Laplacian spectrum,
where 0 ≤ λ1(G ) ≤ λ2(G ) ≤ · · · ≤ λn(G ) are the eigenvalues of
L(G ).

(0, e = (1, 1, · · · , 1)t) is an eigenpair of L(G ).

Matrix-tree theorem: Let G be a graph with
V (G ) = {v1, v2, · · · , vn}. Then the co-factor of any element of L(G )
equals the number of spanning trees of G .
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S(G ) = (λ1(G ), λ2(G ), · · · , λn(G )) is the Laplacian spectrum,
where 0 ≤ λ1(G ) ≤ λ2(G ) ≤ · · · ≤ λn(G ) are the eigenvalues of
L(G ).

(0, e = (1, 1, · · · , 1)t) is an eigenpair of L(G ).

Matrix-tree theorem: Let G be a graph with
V (G ) = {v1, v2, · · · , vn}. Then the co-factor of any element of L(G )
equals the number of spanning trees of G .

Corollary Let G be a graph with V (G ) = {v1, v2, · · · , vn}. The
number of spanning trees of G equals λ2λ3···λn

n
.
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M. Fiedler (1973): λ2(G ) > 0 if and only if G is connected.
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M. Fiedler (1973): λ2(G ) > 0 if and only if G is connected.

λ2(G )→ µ(G ), algebraic connectivity of G .

An eigenvector corresponing to µ(G ) is called a Fiedler vector of G .

Let Y be a Fiedler vector. By Y (v), we mean the co-ordinate of Y
corresponding to the vertex v .
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Let T be a tree with vertex set V .
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Let T be a tree with vertex set V .

µ(T )↔ Y denotes Fiedler Vector and Y ⊥ e.
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Let T be a tree with vertex set V .

µ(T )↔ Y denotes Fiedler Vector and Y ⊥ e.

Characteristic vertex: v ∈ V , if Y (v) = 0 and there exists w
adjacent to v such that Y (w) 6= 0.
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Let T be a tree with vertex set V .

µ(T )↔ Y denotes Fiedler Vector and Y ⊥ e.

Characteristic vertex: v ∈ V , if Y (v) = 0 and there exists w
adjacent to v such that Y (w) 6= 0.

Characteristic edge: e = {u, v} ∈ E , if Y (u)Y (v) < 0.

K. L. Patra (NISER) Central parts of trees 5 / 31



− − 0

+

0

+

0

v1 v2 v3

v4

v6

v5

v7

v1

v3

v2

v5

v4

w v7

v8

v9

−

−

−

−

−

+ +

1

1

Let T be a tree with vertex set V .

µ(T )↔ Y denotes Fiedler Vector and Y ⊥ e.

Characteristic vertex: v ∈ V , if Y (v) = 0 and there exists w
adjacent to v such that Y (w) 6= 0.

Characteristic edge: e = {u, v} ∈ E , if Y (u)Y (v) < 0.

Characteristic set: Collection of characteristic edges and
characteristic vertices and is denoted by C(T ,Y ).
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Proposition[Fiedler, 1975]: Let T be tree on n vertices and let Y be a
Fiedler vector of T . Then one of the following holds:
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Proposition[Fiedler, 1975]: Let T be tree on n vertices and let Y be a
Fiedler vector of T . Then one of the following holds:

1 No entry of Y is zero. In this case, there is a unique pair of vertices
u and v such that u and v are adjacent in T with Y (u) > 0 and
Y (v) < 0. Further the entries of Y increases along any path in T
which starts at u and does not contain v while the entries of Y
decreases along any path in T which starts at v and does not contain
u.
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Proposition[Fiedler, 1975]: Let T be tree on n vertices and let Y be a
Fiedler vector of T . Then one of the following holds:

1 No entry of Y is zero. In this case, there is a unique pair of vertices
u and v such that u and v are adjacent in T with Y (u) > 0 and
Y (v) < 0. Further the entries of Y increases along any path in T
which starts at u and does not contain v while the entries of Y
decreases along any path in T which starts at v and does not contain
u.

2 Some entries of Y are zero. The subgraph of T induced by the set
of vertices corresponding to zero’s in Y is connected. Moreover, there
is a unique vertex u such that Y (u) = 0 and u is adjacent to a vertex
v with Y (v) 6= 0. The entries of Y are either increasing, decreasing
or identically zero along any path in T which starts at u.
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Theorem[Fiedler,1975]: For a tree T , |C(T ,Y )| = 1 and is fixed for
any Fiedler vector Y .
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Theorem[Fiedler,1975]: For a tree T , |C(T ,Y )| = 1 and is fixed for
any Fiedler vector Y .

Type-I tree ↔ tree with a characteistic vertex
Type-II tree ↔ tree with a characteistic edge
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Theorem[Fiedler,1975]: For a tree T , |C(T ,Y )| = 1 and is fixed for
any Fiedler vector Y .

Type-I tree ↔ tree with a characteistic vertex
Type-II tree ↔ tree with a characteistic edge

Characteristic center ←→ χ(T )
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A real matrix A is called positive if all its entries are positive. It is called
non-negative if all its entries are non-negative. Similarly, we can define a
positive and non-negative vector.
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A real matrix A is called positive if all its entries are positive. It is called
non-negative if all its entries are non-negative. Similarly, we can define a
positive and non-negative vector.

A square matrix P is called a permutation matrix if exactly one entry in
each row and column of P is equal to 1, and all other entries are zero.
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A real matrix A is called positive if all its entries are positive. It is called
non-negative if all its entries are non-negative. Similarly, we can define a
positive and non-negative vector.

A square matrix P is called a permutation matrix if exactly one entry in
each row and column of P is equal to 1, and all other entries are zero.

A square matrix A of order n ≥ 2, is called reducible if there is a

permutation matrix P such that P tAP =

(
B C
0 D

)
, where B and D are

square submatrices. Otherwise A is called irreducible.
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Perron-Frobenius Theorem: An irreducible non-negative matrix A has a
real positive simple eigenvalue r such that r ≥ |λ| for any eigenvalue λ of
A. Furthermore, there is a positive eigenvector corresponding to r . Also if
u is an eigenvector of A with positive entries then u is the eigenvector
corresponding to the eigenvalue r mentioned above.
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Perron-Frobenius Theorem: An irreducible non-negative matrix A has a
real positive simple eigenvalue r such that r ≥ |λ| for any eigenvalue λ of
A. Furthermore, there is a positive eigenvector corresponding to r . Also if
u is an eigenvector of A with positive entries then u is the eigenvector
corresponding to the eigenvalue r mentioned above.

Corollary: Let A be an irreducible non-negative matrix and B be a
principal submtrix of A. Then the largest eigenvalue of A is strictly larger
than the largest eigenvalue of B .
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Perron-Frobenius Theorem: An irreducible non-negative matrix A has a
real positive simple eigenvalue r such that r ≥ |λ| for any eigenvalue λ of
A. Furthermore, there is a positive eigenvector corresponding to r . Also if
u is an eigenvector of A with positive entries then u is the eigenvector
corresponding to the eigenvalue r mentioned above.

Corollary: Let A be an irreducible non-negative matrix and B be a
principal submtrix of A. Then the largest eigenvalue of A is strictly larger
than the largest eigenvalue of B .

Corollary: Let G be a connected graph. Then the smallest eigenvalue of
L(G ) is simple and there is a positive eigenvector associated with it.
Furthermore, if M is a principal submatrix of L(G ) then the smallest
eigenvalue of L(G ) is strictly smaller than the smallest eigenvalue of M.
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For non-negative square matrix A and B(not necessarily same order), the
notation A≪ B is used to mean that there exist a permutation matrix P
such that P tAP is entry wise dominated by a pricipal submatrix of B , with
strict inequality in atleast one position in case A and B have the same
order.
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For non-negative square matrix A and B(not necessarily same order), the
notation A≪ B is used to mean that there exist a permutation matrix P
such that P tAP is entry wise dominated by a pricipal submatrix of B , with
strict inequality in atleast one position in case A and B have the same
order.

Corollary: Let A and B be two non-negative square matrices. If B is
irreducible and A≪ B then the largest eiginvalue of A is strictly less that
the largest eigenvalue of B .
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M-matrix: A square matrix with all its off-diagonal entries are nonpositive
and all its eigenvalues have nonnegative real part.
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M-matrix: A square matrix with all its off-diagonal entries are nonpositive
and all its eigenvalues have nonnegative real part.

M-matrices are closed under the extraction of principal submatrices and
the inverse of an irreducible nonsingular M-matrix has positive entries.
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Let v be a vertex of a tree T . Let T1,T2, · · · ,Tk be the connected
components of T − v . For each such component, let L̂(Ti ), i = 1, 2, · · · , k
denote the principal submatrix of the Laplacian matrix L corresponding to
the vertices of Ti . Then L̂(Ti) is invertible and L̂(Ti )

−1 is a positive
matrix which is called the bottleneck matrix for Ti .
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Let v be a vertex of a tree T . Let T1,T2, · · · ,Tk be the connected
components of T − v . For each such component, let L̂(Ti ), i = 1, 2, · · · , k
denote the principal submatrix of the Laplacian matrix L corresponding to
the vertices of Ti . Then L̂(Ti) is invertible and L̂(Ti )

−1 is a positive
matrix which is called the bottleneck matrix for Ti .

By Perron -Frobenius Theorem, L̂(Ti )
−1 has a simple dominant

eigenvalue, called Perron value of Ti at v . The component Tj is called a
Perron component at v if its Perron value is maximal among
T1,T2, · · · ,Tk , the components at v .
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Let v be a vertex of a tree T . Let T1,T2, · · · ,Tk be the connected
components of T − v . For each such component, let L̂(Ti ), i = 1, 2, · · · , k
denote the principal submatrix of the Laplacian matrix L corresponding to
the vertices of Ti . Then L̂(Ti) is invertible and L̂(Ti )

−1 is a positive
matrix which is called the bottleneck matrix for Ti .

By Perron -Frobenius Theorem, L̂(Ti )
−1 has a simple dominant

eigenvalue, called Perron value of Ti at v . The component Tj is called a
Perron component at v if its Perron value is maximal among
T1,T2, · · · ,Tk , the components at v .

Proposition[Kirkland, Neumann and Shader(1996)]: Let T be a tree
and v be any vertex of T . Let T1 be a connected component of T − v .
Then L̂(T1)

−1 = [mij ], where mij is the number of edges in common
between the path Piv joining the vertex i and v and the path Pjv joining
the vertex j and v .
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Let C1 be the connected component of T − 2 containing the vertex 6.
Then

L̂(C1) =




2 −1 0
−1 2 −1
0 −1 1


 L̂(C1)

−1 =




1 1 1
1 2 2
1 2 3


 .
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Theorem[Kirkland, Neumann and Shader(1996)]: Let T be a tree on
n vertices. Then the edge {i , j} is the characteristic edge of T if and only
if the component Ti at vertex j containing the vertex i is the unique
Perron component at j while the component Tj at vertex i containing the
vertex j is the unique Perron component at i . Moreover in this case there
exists a γ ∈ (0, 1) such that

1

µ(T )
= ρ(L̂(Ci )

−1 − γJ) = ρ(L̂(Cj )
−1 − (1− γ)J).

Furthermore, any eigenvector Y of L(T ) corresponding to µ(T ) acn be
permuted and partitioned into block form Y t = [Y t

1 | − Y t
2 ], where Y1 is a

Perron vector for ρ(L̂(Ci )
−1 − γJ) and Y2 is a Perron vector for

ρ(L̂(Cj)
−1 − (1− γ)J). Here J is the all one matrix and ρ stands for

spectral radius.
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Theorem[Kirkland, Neumann and Shader(1996)]: Let T be a tree on
n vertices. Then the vertex v is the characteristic vertex of T if and only if
there are two or more Perron components of T at v . Moreover in this case,

µ(T ) =
1

ρ(L−1
v

,

where Lv is a perron component at v . Furthermore, given any two Perron
components C1,C2 of T at v , an eigenvector Y corresponding to µ(T )
can be choosen so that Y can be permutated and partitioned into block
form Y t = [Y t

1 | − Y t
2 |0

t]. where Y1 and Y2 are Perron vectors for the

bottleneck matrices L̂(C1)
−1 and L̂(C2)

−1, respectively and 0 is the
column vector of an appropriate order.
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Theorem[Kirkland, Neumann and Shader(1996)]: Let T be a tree on
n vertices. Then the vertex v is the characteristic vertex of T if and only if
there are two or more Perron components of T at v . Moreover in this case,

µ(T ) =
1

ρ(L−1
v

,

where Lv is a perron component at v . Furthermore, given any two Perron
components C1,C2 of T at v , an eigenvector Y corresponding to µ(T )
can be choosen so that Y can be permutated and partitioned into block
form Y t = [Y t

1 | − Y t
2 |0

t]. where Y1 and Y2 are Perron vectors for the

bottleneck matrices L̂(C1)
−1 and L̂(C2)

−1, respectively and 0 is the
column vector of an appropriate order.

Theorem[Kirkland, Neumann and Shader(1996)]: Let T be a tree.
Then for any vertex v that is neither a characteristic vertex nor an end
vertex of the characteristic edge, the unique Perron component at v
contains the characteristic set of T .
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T (V ,E ) : A tree with vertex set V and edge set E
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T (V ,E ) : A tree with vertex set V and edge set E

For u, v ∈ V , the length of the u-v path is the number of edges in
the path from u to v and distance between u and v , denoted by
dT (u, v) = d(u, v), is the length of the u-v path. We set d(u, u) = 0.
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For u, v ∈ V , the length of the u-v path is the number of edges in
the path from u to v and distance between u and v , denoted by
dT (u, v) = d(u, v), is the length of the u-v path. We set d(u, u) = 0.

For v ∈ V , the eccentricity e(v) of v is defined by
e(v) = max{d(u, v) : u ∈ V }.
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For v ∈ V , the eccentricity e(v) of v is defined by
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T (V ,E ) : A tree with vertex set V and edge set E

For u, v ∈ V , the length of the u-v path is the number of edges in
the path from u to v and distance between u and v , denoted by
dT (u, v) = d(u, v), is the length of the u-v path. We set d(u, u) = 0.

For v ∈ V , the eccentricity e(v) of v is defined by
e(v) = max{d(u, v) : u ∈ V }.

The radius rad(T ) of T is defined by rad(T ) = min{e(v) : v ∈ V }.

The diameter diam(T ) of T is defined by
diam(T ) = max{e(v) : v ∈ V }.
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Center of a tree:
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Center of a tree:
A vertex v ∈ V is a central vertex of T if e(v) = rad(T ). The
center of T , denoted by C = C (T ), is the set of all central vertices
of T .
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Center of a tree:
A vertex v ∈ V is a central vertex of T if e(v) = rad(T ). The
center of T , denoted by C = C (T ), is the set of all central vertices
of T .

Theorem (Jordan, 1869): The center of a tree consists of either
one vertex or two adjacent vertices.
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Center of a tree:
A vertex v ∈ V is a central vertex of T if e(v) = rad(T ). The
center of T , denoted by C = C (T ), is the set of all central vertices
of T .

Theorem (Jordan, 1869): The center of a tree consists of either
one vertex or two adjacent vertices.

The center is located by a simple recursive procedue.

For any tree T , C (T ) is same as the center of any u− v path in T of
length diam(T ).
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Centroid of a tree:
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Centroid of a tree:

For v ∈ V , a branch (rooted) at v is a maximal subtree containing v
as a pendant vertex. The number of branches at v is deg(v).
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of edges in any branch at v .
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Centroid of a tree:

For v ∈ V , a branch (rooted) at v is a maximal subtree containing v
as a pendant vertex. The number of branches at v is deg(v).

The weight of v , denoted by ω(v) = ωT (v), is the maximal number
of edges in any branch at v .

A vertex v ∈ V is a centroid vertex of T if ω(v) = min
u∈V

ω(u).
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Centroid of a tree:

For v ∈ V , a branch (rooted) at v is a maximal subtree containing v
as a pendant vertex. The number of branches at v is deg(v).

The weight of v , denoted by ω(v) = ωT (v), is the maximal number
of edges in any branch at v .

A vertex v ∈ V is a centroid vertex of T if ω(v) = min
u∈V

ω(u).

The centroid of T , denoted by Cd = Cd (T ), is the set of all centroid
vertices of T .
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Theorem (Jordan, 1869): The centroid of a tree consists of either
one vertex or two adjacent vertices.
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Theorem (Jordan, 1869): The centroid of a tree consists of either
one vertex or two adjacent vertices.

For a tree T on n vertices, if |Cd (T )| = 2 and Cd (T ) = {u, v}, then
n must be even and ω(u) = ω(v) = n

2 .
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Theorem (Jordan, 1869): The centroid of a tree consists of either
one vertex or two adjacent vertices.

For a tree T on n vertices, if |Cd (T )| = 2 and Cd (T ) = {u, v}, then
n must be even and ω(u) = ω(v) = n

2 .

If n ≥ 3, then neither the center nor the centroid of T contain
pendant vertices.

K. L. Patra (NISER) Central parts of trees 19 / 31
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For the above tree T , the vertex 6 is the center as its eccentricity is 5, less
than any other vertex. The vertex 9 is the centroid as it has weight 8, less
than any other vertex.
Also µ(T ) = .0483 and Y =
(−0.4116,−0.3917,−0.3528,−0.2970,−0.2267,−0.1455,−0.0573, 0.0337,
0.1231, 0.2065, 0.2170, 0.2170, 0.2170, 0.2170, 0.2170, 0.2170, 0.2170)t is a
Fiedler vector. So χ(T ) = {7, 8}, which is disjoint from each of the
center, centroid and subtree core.
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For a given tree T , we denote by
dT (C ,Cd ) = min{d(u, v)|u ∈ C and v ∈ Cd} the distance between the
center and the centroid of T .
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Problems:

1 δn(C ,Cd ) = max{dT (C ,Cd ) : T is a tree on n vertices} =?

2 δn(C , χ) = max{dT (C , χ) : T is a tree on n vertices} =?
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For a given tree T , we denote by
dT (C ,Cd ) = min{d(u, v)|u ∈ C and v ∈ Cd} the distance between the
center and the centroid of T .
(dT (C , χ) and dT (Cd , χ))

Problems:

1 δn(C ,Cd ) = max{dT (C ,Cd ) : T is a tree on n vertices} =?

2 δn(C , χ) = max{dT (C , χ) : T is a tree on n vertices} =?

3 δn(Cd , χ) = max{dT (Cd , χ) : T is a tree on n vertices} =?
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Let Pn−g ,g , n ≥ 5, 2 ≤ g ≤ n − 3, denote the tree on n vertices which is
obtained from the path Pn−g by adding g pendant vertices to the vertex
n − g . Such a tree Pn−g ,g is called a path-star tree.

1 2 3 n − g − 2

n − g − 1

n − g + 1

n

n − g + 2

n − 1

n − g
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Theorem[-, 2007]: Among all trees on n ≥ 5 vertices, the distance
between the center and the characteristic center is maximized by a
path-star tree Pn−g ,g , for some positive integer g .
Proof:
Case 1: Characteristic center lies in one of the longest path
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Theorem[-, 2007]: Among all trees on n ≥ 5 vertices, the distance
between the center and the characteristic center is maximized by a
path-star tree Pn−g ,g , for some positive integer g .
Proof:
Case 1: Characteristic center lies in one of the longest path

Case 2: Characteristic center does not lie in any of the longest path
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Theorem[-, 2007]: Among all trees on n ≥ 5 vertices, the distance
between the center and the characteristic center is maximized by a
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Theorem[-, 2007]: Among all trees on n ≥ 5 vertices, the distance
between the center and the characteristic center is maximized by a
path-star tree Pn−g ,g , for some positive integer g .

Theorem[-, 2007]: Among all path-star trees on n ≥ 5 vertices, the
distance between centroid and characteristic set maximized by Pn−⌊ n

2
⌋,⌊ n

2
⌋.
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Theorem[-, 2007]: Among all trees on n ≥ 5 vertices, the distance
between the center and the characteristic center is maximized by a
path-star tree Pn−g ,g , for some positive integer g .

Theorem[-, 2007]: Among all path-star trees on n ≥ 5 vertices, the
distance between centroid and characteristic set maximized by Pn−⌊ n

2
⌋,⌊ n

2
⌋.

Theorem[-, 2007]: Let Pn−g ,g be a path-star tree. Then the
characteristic center of Pn−g ,g lies in the path from C (Pn−g ,g ) to
Cd (Pn−g ,g ).
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The position of the center of Pn−g ,g can also be expressed in terms of
n − g . The following result is straight-forward.
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The position of the center of Pn−g ,g can also be expressed in terms of
n − g . The following result is straight-forward.

Lemma: The center of the path-star tree Pn−g ,g is given by

C (Pn−g ,g ) =





{
n−g+2

2

}
, if n − g is even,{

n−g+1
2 , n−g+3

2

}
, if n − g is odd.
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The position of the centroid of a path-star tree Pn−g ,g can be expressed in
terms of g . The following result is straight-forward.
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The position of the centroid of a path-star tree Pn−g ,g can be expressed in
terms of g . The following result is straight-forward.

Lemma: The centroid of the path-star tree Pn−g ,g is given by

Cd (Pn−g ,g ) =





{
{n+1

2 }, if g ≤ n−1
2

{n − g}, if g > n−1
2

, if n is odd,

{
{n2 ,

n
2 + 1}, if g ≤ n

2 − 1

{n − g}, if g > n
2 − 1

, if n is even.
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Theorem[-, 2007]: Among all trees on n ≥ 5 vertices, the distance
between the center and the centroid is maximized by Pn−⌊ n

2
⌋,⌊ n

2
⌋.

Futhermore,

dPn−⌊ n
2 ⌋,⌊

n
2 ⌋
(C ,Cd ) =

⌊
n − 3

4

⌋
.

K. L. Patra (NISER) Central parts of trees 27 / 31



Theorem[-, 2007]: Among all trees on n ≥ 5 vertices, the distance
between the center and the centroid is maximized by Pn−⌊ n

2
⌋,⌊ n

2
⌋.

Futhermore,

dPn−⌊ n
2 ⌋,⌊

n
2 ⌋
(C ,Cd ) =

⌊
n − 3

4

⌋
.

Corollary: limn→∞
δn(C ,Cd )

n
= 1

4 .
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Theorem[Kirkland et al.,2017]: Let z be the unique root of the
equation tan(z) + z = 0 that lies in the interval (π2 , π]. Then

lim
n→∞

δn(Cd , χ)

n
=

1

2
−

π

4z
.
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Theorem[Kirkland et al.,2017]: Let z be the unique root of the
equation tan(z) + z = 0 that lies in the interval (π2 , π]. Then

lim
n→∞

δn(Cd , χ)

n
=

1

2
−

π

4z
.

Theorem[Kirkland et al.,2017]:

lim
n→∞

δn(C , χ)

n
=

c0π

4

(
c0π −

√
c20π

2 − 4(1 − c0)

)
−

1− c0
2

,

where c0 ∈
(
2
√
π2+1
π2 − 1, 1

)
is the unique solution of w(c) = π

2(1−r) , r is a

function of c , r ∈ (c , c+1
2 ), c ∈ (0, 1).
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Conjecture: For n ≥ 5 and 2 ≤ g ≤ n − 3, the path star-tree is a Type-II
tree.
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