Spectrum of Cayley sum graphs

Jyoti Prakash Saha

December 11, 2020
(1) Graphs
(2) Expanders
(3) The lower spectrum of graphs
(4) Cayley sum graphs
(5) The lower spectra of Cayley sum graphs

Preliminaries

Definition 1

A graph is a pair $\mathbb{G}=(V, E)$, where V is called the vertex set, E is called the edge set, and E is a subset of $\binom{V}{2}$.

Definition 2

A multi-graph is a pair $\mathbb{G}=(V, E)$, where V is called the vertex set, E is called the edge multi-set, and E is a multi-subset of $\binom{V}{2}$.

Definition 3

Let $\mathbb{G}=(V, E)$ be a multi-graph. The neighbourhood $N\left(V_{1}\right)$ of a subset V_{1} of V is the set of vertices in V adjacent to some element of V_{1}. The boundary $\delta\left(V_{1}\right)$ of a subset V_{1} of V is the set of vertices in V that lie outside V_{1} and are adjacent to some element of V_{1}.

Let $\mathbb{G}=(V, E)$ be a graph. Let $\ell^{2}(V)$ denote the space of complex valued functions $f: V \rightarrow \mathbb{C}$, equipped with the inner product, defined by

$$
\langle f, g\rangle=\sum_{v \in V} f(v) \overline{g(v)}
$$

Definition 4

The adjacency operator $A: \ell^{2}(V) \rightarrow \ell^{2}(V)$ is defined by

$$
(A f)(v)=\sum_{w \in V,\{v, w\} \in E} f(w), \quad f \in \ell^{2}(V)
$$

Definition 5

For a d-regular multi-graph (V, E), its normalized Laplacian operator is defined by

$$
\Delta=\mathrm{id}-\frac{1}{d} A
$$

- Tao, Expansion in finite simple groups of Lie type.

Lemma 6

For a d-regular graph (V, E), the eigenvalues of its adjacency operator A lies in $[-d, d]$, and d is an eigenvalue of A.

Proof.

Note that d is an eigenvalue of A since $A 1=d 1$, where 1 denotes the constant function sending $v \mapsto 1$. For any $f, g \in \ell^{2}(V)$ having norm one,

$$
\begin{aligned}
\left|\langle A f, g\rangle_{\ell^{2}(V)}\right| & =\left|\sum_{v, w \in V,\{v, w\} \in E} f(w) \overline{g(v)}\right| \\
& \leq \frac{1}{2} \sum_{v, w \in V,\{v, w\} \in E}\left(|f(w)|^{2}+|g(v)|^{2}\right) \\
& \leq \frac{d}{2} \sum_{w \in V}|f(w)|^{2}+\frac{d}{2} \sum_{v \in V}|g(v)|^{2} \\
& =d .
\end{aligned}
$$

This shows that the eigenvalues of A lie in the interval $[-d, d]$.

For a d-regular graph (V, E), the eigenvalues of $\frac{1}{d} A, \Delta$ are denoted by

$$
\begin{aligned}
& -1 \leqslant t_{n} \leqslant t_{n-1} \leqslant \cdots \leqslant t_{2} \leqslant t_{1}=1, \\
& 0=\lambda_{1} \leqslant \lambda_{2} \leqslant \cdots \leqslant \lambda_{n-1} \leqslant \lambda_{n} \leqslant 2
\end{aligned}
$$

respectively, where $\lambda_{i}=1-t_{i}$.

Expanders

Definition 7 (Vertex Cheeger constant)

The vertex Cheeger constant of the multi-graph $\mathbb{G}=(V, E)$, denoted by $h(\mathbb{G})$, is defined as

$$
h(\mathbb{G}):=\inf \left\{\frac{\left|\delta\left(V_{1}\right)\right|}{\left|V_{1}\right|}: \emptyset \neq V_{1} \subseteq V,\left|V_{1}\right| \leqslant \frac{|V|}{2}\right\} .
$$

Definition 8 ((n, d, ε)-expander, Alon (1986))

Let $\varepsilon>0$. An (n, d, ε)-expander is a graph $\mathbb{G}=(V, E)$ on $|V|=n$ vertices, having maximal degree d, such that for every set $\emptyset \neq V_{1} \subseteq V$ satisfying $\left|V_{1}\right| \leqslant \frac{n}{2},\left|\delta\left(V_{1}\right)\right| \geqslant \varepsilon\left|V_{1}\right|$ holds (equivalently, $h(\mathbb{G}) \geqslant \varepsilon$).

Like vertex expansion, one also has a notion of edge expansion and a corresponding edge Cheeger constant.

Definition 9 (Edge expansion)

Let $\mathbb{G}=(V, E)$ be a d-regular multi-graph. For a subset $\emptyset \neq V_{1} \subseteq V$, let $E\left(V_{1}, V \backslash V_{1}\right)$ be the edge boundary of V_{1}, defined as

$$
E\left(V_{1}, V \backslash V_{1}\right):=\left\{\left(v_{1}, v_{2}\right) \in E: v_{1} \in V, v_{2} \in V \backslash V_{1}\right\}
$$

Then the edge expansion ratio $\phi\left(V_{1}\right)$ of V_{1} is defined as

$$
\phi\left(V_{1}\right):=\frac{\left|E\left(V_{1}, V \backslash V_{1}\right)\right|}{d\left|V_{1}\right|} .
$$

Definition 10 (Edge-Cheeger constant)

The edge-Cheeger constant $\mathfrak{h}(\mathbb{G})$ of a multi-graph \mathbb{G} is defined by

$$
\mathfrak{h}(\mathbb{G}):=\inf _{\emptyset \neq V_{1} \subseteq V,\left|V_{1}\right| \leqslant|V| / 2} \phi\left(V_{1}\right) .
$$

Relation between the Cheeger constants

Lemma 11

Let $\mathbb{G}=(V, E)$ be a d-regular multi-graph. Then

$$
\frac{h(\mathbb{G})}{d} \leqslant \mathfrak{h}(\mathbb{G}) \leqslant h(\mathbb{G}) .
$$

The Cheeger constants and the spectrum

Proposition 12 (Discrete Cheeger-Buser inequality)

Let $\mathbb{G}=(V, E)$ be a finite d-regular multi-graph. Let λ_{2} denote the second smallest eigenvalue of its normalised Laplacian operator and $\mathfrak{h}(\mathbb{G})$ be the (edge) Cheeger constant. Then

$$
\frac{\mathfrak{h}(\mathbb{G})^{2}}{2} \leqslant \lambda_{2} \leqslant 2 \mathfrak{h}(\mathbb{G})
$$

Proof.

Lubotzky, Discrete groups, expanding graphs and invariant measures.

The lower spectrum

- Breuillard-Green-Guralnick-Tao argued qualitatively that in the case of non-bipartite Cayley graphs, the lower spectrum cannot be arbitrarily close to -1 (2013).
- Biswas established a quantitative version of this fact (2018).
- Moorman-Ralli-Tetali obtained an improvement to Biswas's bound (2020).

Cayley sum graphs and their spectra

Definition 13

Let G be a group and S be a subset of a group G. The Cayley sum graph $C_{\Sigma}(G, S)$ is the graph having G as its set of vertices, and two vertices $g, h \in G$ are adjacent if $g h=s$ (or equivalently, $h=g^{-1} s$).

Definition 14

Let G be a group and S be a subset of a group G. The Cayley graph $C(G, S)$ is the graph having G as its set of vertices, and two vertices $g, h \in G$ are adjacent if $g^{-1} h=s$ (or equivalently, $h=g s$).

Cayley graphs vs Cayley sum graphs

A Cayley graph 'looks' the same around every vertex (it is vertex transitive). The Cayley sum graphs do not have this property.

Example 15

The Cayley sum graph $C_{\Sigma}(\mathbb{Z} /(2 k+1) \mathbb{Z},\{ \pm 1\})$ has loops at the vertices $k, k+1$, and does not admit loops at the remaining vertices.

Lemma 16

The Cayley sum graph $C_{\Sigma}(G, S)$ is undirected if and only if S is closed under conjugation by the elements of G.

Proof.

The graph $C_{\Sigma}(G, S)$ is undirected if and only if for any $g \in G, s \in S$, $g=\left(g^{-1} s\right)^{-1} t$ holds for some $t \in S$, i.e., S is closed under conjugation.

Lemma 17

Suppose the Cayley sum graph $C_{\Sigma}(G, S)$ is connected. Then the graph $C_{\Sigma}(G, S)$ is bipartite if and only if there is an index two subgroup H of G that avoids S.

Proof.

(\Leftarrow) Suppose G contains a subgroup H of index two which does not intersect S. Then the set H is an independent set of vertices. Otherwise, $h^{\prime}=h^{-1} s$ for some $h, h^{\prime} \in H, s \in S$, which implies $s=h h^{\prime} \in H$. The set $G \backslash H$ is also an independent set of vertices since $h^{\prime}=h^{-1} s$ for some $h, h^{\prime} \in G \backslash H, s \in S$, which implies $s=h h^{\prime} \in(G \backslash H)^{2}=H$.

The lower spectra of Cayley sum graphs

Theorem 18 (Biswas-S, 2019)

Let $h_{\Sigma}(G)$ denote the vertex Cheeger constant of the Cayley sum graph $C_{\Sigma}(G, S)$. Then if $C_{\Sigma}(G, S)$ is non-bipartite, we have

$$
\lambda_{n}<2-\frac{h_{\Sigma}(G)^{4}}{2^{9} d^{8}} \text { (equivalently }-1+\frac{h_{\Sigma}(G)^{4}}{2^{9} d^{8}}<t_{n} \text {) }
$$

where λ_{n} (respectively, t_{n}) is the largest (respectively, the smallest) eigenvalue of the normalised Laplacian operator (respectively, the normalised adjacency operator) of $C_{\Sigma}(G, S)$.

Key steps of the proof

Proposition 19

Let $C_{\Sigma}(G, S)$ be a non-bipartite (n, d, ε)-vertex expander for some $\varepsilon>0$. Suppose the normalised adjacency operator of $C_{\Sigma}(G, S)$ has an eigenvalue in the interval $(-1,-1+\zeta]$ for some ζ satisfying $0<\zeta \leqslant \frac{\varepsilon^{2}}{4 d^{4}}$. Then for some subset A of G, the following conditions hold with $\beta=d^{2} \sqrt{2 \zeta(2-\zeta)}$.
(1) $\left(\frac{1}{2+\beta+\frac{d \beta}{\varepsilon}}\right)|G| \leqslant|A| \leqslant \frac{1}{2}|G|$.
(2) $\left|A g \cap(A g)^{-1} S\right| \leqslant \frac{\beta}{\varepsilon}|A|$ for all $g \in G$.
(3) $\left|(A g)^{-1} s \Delta(A g)^{c}\right| \leqslant \frac{\beta}{\varepsilon}(\varepsilon+d+2)|A|$ for all $s \in S, g \in G$.
(9) $\left|A^{-1} g \cap\left(A^{-1} g\right)^{-1} S\right| \leqslant \frac{\beta}{\varepsilon}|A|$ for all $g \in G$.
(9) $\left|\left(A^{-1} g\right)^{-1} s \Delta\left(A^{-1} g\right)^{c}\right| \leqslant \frac{\beta}{\varepsilon}(\varepsilon+d+2)|A|$ for all $s \in S, g \in G$.

Proposition 20

Under the notations and assumptions as above, and the additional hypothesis

$$
\beta<\frac{\varepsilon^{2}}{4 d(d+1)},
$$

it follows that for a given element $g \in G$,
(1) exactly one of the inequalities

$$
|A \cap A g| \leqslant \frac{d \beta}{\varepsilon^{2}}(\varepsilon+d+2)|A|, \quad|A \cap A g| \geqslant\left(1-\frac{d \beta}{\varepsilon^{2}}(\varepsilon+d+2)\right)|A|
$$

holds, and
(2) exactly one of the inequalities

$$
\left|A \cap A^{-1} g\right| \leqslant \frac{d \beta}{\varepsilon^{2}}(\varepsilon+d+2)|A|, \quad\left|A \cap A^{-1} g\right| \geqslant\left(1-\frac{d \beta}{\varepsilon^{2}}(\varepsilon+d+2)\right)|A|
$$ holds.

Theorem 21

Suppose $C_{\Sigma}(G, S)$ be a non-bipartite (n, d, ε)-vertex expander for some $\varepsilon>0$. Then the eigenvalues of the normalised adjacency operator of this graph are greater than $-1+\ell_{\varepsilon, d}$ with

$$
\ell_{\varepsilon, d}=\frac{\varepsilon^{4}}{2^{9} d^{8}}
$$

Proof.

(1) To define two subsets H_{+}, H_{-}of G.
(2) H_{+}is a subgroup of G of index two.
(3) A dichotomy result for H_{-}.
(9) To use the dichotomy to conclude the proof.

The subsets H_{+}, H_{-}

Let us assume that an eigenvalue of the normalised adjacency operator of the graph $C_{\Sigma}(G, S)$ lies in the interval $\left[-1,-1+\ell_{\varepsilon, d}\right]$. Note that -1 is not an eigenvalue of its normalised adjacency operator. Hence an eigenvalue of the normalised adjacency operator of the graph $C_{\Sigma}(G, S)$ lies in the interval $\left(-1,-1+\ell_{\varepsilon, d}\right]$. Set

$$
\begin{aligned}
\tau & =d^{2} \sqrt{2 \ell_{\varepsilon, d}\left(2-\ell_{\varepsilon, d}\right)} \\
r & =1-\frac{d \tau}{\varepsilon^{2}}(\varepsilon+d+2)
\end{aligned}
$$

Define the subsets H_{+}, H_{-}of G by

$$
\begin{aligned}
& H_{+}:=\{g \in G:|A \cap A g| \geqslant r|A|\}, \\
& H_{-}:=\left\{g \in G:\left|A \cap A^{-1} g\right| \geqslant r|A|\right\} .
\end{aligned}
$$

H_{+}is a subgroup of G of index two

We use an argument due to Freĭman.

- H_{+}contains the identity element of G.
- By the triangle inequality, it follows that H_{+}is a subgroup of G.
- By counting arguments, it follows that $H_{+} \neq G$.
- Furthermore,

$$
|A| \leqslant\left|H_{+}\right|+\frac{d \tau}{\varepsilon^{2}}(\varepsilon+d+2)\left(|G|-\left|H_{+}\right|\right)
$$

Using Proposition 19(1), we obtain

$$
\left(\frac{1}{2+\tau+\frac{d \tau}{\varepsilon}}\right)|G|-\frac{d \tau}{\varepsilon^{2}}(\varepsilon+d+2)|G| \leqslant\left(1-\frac{d \tau}{\varepsilon^{2}}(\varepsilon+d+2)\right)\left|H_{+}\right|
$$

If $|G| \geq 3\left|H_{+}\right|$, then one obtains a contradiction. This implies that H_{+}is a subgroup of G of index two.

A dichotomy result for H_{-}

We use the strategy of Freĭman once again.

- By Proposition 19(2), H_{-}does not intersect the set S (in particular $\left.H_{-} \neq G\right)$.
- Using counting arguments, it follows that

$$
\left|H_{-}\right|>\frac{|G|}{3}
$$

and consequently, H_{-}is nonempty.

- Using the triangle inequality once again, it follows that H_{-}contains $h_{-} h_{+}$for $h_{-} \in H_{-}, h_{+} \in H_{+}$, i.e.,

$$
H_{-} H_{+} \subseteq H_{-} .
$$

- (Dichotomy) Since H_{-}is a nonempty proper subset of G, it follows that

$$
H_{-}=H_{+}, \quad \text { or } H_{-}=G \backslash H_{+} .
$$

Concluding the proof

- If $H_{-}=H_{+}$, then H_{+}is an index two subgroup of G avoiding S, which implies that $C_{\Sigma}(G, S)$ is bipartite.
- Suppose H_{-}is not equal to H_{+}. Then H_{+}of G contains S. Since the graph $C_{\Sigma}(G, S)$ is connected, every element of G is connected to the identity element. So, any of element of G can be expressed as a product of elements of the set $S \cup S^{-1}$. This shows that G is contained in H_{+}, which is impossible.

This completes the proof.

Thank you

