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Graphs, Digraphs and Multidigraphs

G = (V,E)

V : set of vertices, E: set of edges

(Undirected) Graph Digraph Multidigraph

E : distinct pairs of
vertices called edges

E : distinct ordered pairs
of vertices called directed edges

E : ordered pairs of vertices
not necessarily distinct



Spectral Graph Theory

Given the eigenvalues of a matrix associated with a graph, what can
be said about the structure of the graph?

The goal of spectral graph theory is to see how the eigenvalues and
eigenvectors of a matrix representation of a graph are related to the

graph structure.

Finding inter-relationship between graph structure and spectrum of its
associated matrix.



Adjacency matrix of a graph

G = (V,E)
V = {1, 2, . . . , n}

A(G) = [aij ]: called the adjacency matrix of G, n × n matrix whose
rows and columns are indexed by V

aij := the number of edges, or arcs, originating from the vertex
i and terminating at the vertex j

σA(G): called the adjacency spectrum of G, is the collection of
all the eigenvalues of A(G)



Example

G1 G2 G3
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A(G1) =


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

, A(G2) =


0 0 1 0
1 0 0 0
0 1 0 1
0 0 0 0

, A(G3) =


0 2 0 0
0 0 1 0
1 1 0 2
0 0 1 0





Adjacency spectrum of an undirected simple graph

Let G be an undirected graph on n vertices.

Adjacency spectrum :

Eigenvalues are all real.

σA(G) =
(
λ1, λ2, . . . , λn−1, λn

)
where λ1 ≤ λ2 ≤ . . . ≤ λn.

The adjacency matrix of G has a complete set of orthonormal
eigenvectors.



Spectral properties of undirected graphs

G is bipartite if and only if σA(G) is symmetric about origin.
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G:

σA(G) = (−2.53, − 1.47, − 1.09, − 0.26, 0.26, 1.09, 1.47, 2.35)



More spectral properties of undirected graphs

Let G be an undirected graph on n vertices.

If λn−1 = −1, then G is the complete graph.

If λn−1 = 0, then G is complete multipartite.

If λn−2 < −1, then G is isomorphic to P3.

If λn−2 = −1, then Gc is isomorphic to the union of a complete
bipartite graph and some isolated vertices.



If G is a connected (non-complete) graph with n ≥ 3, then
λ1 ≤ λ1(K1

n−1) with equality is true if and only if G ≡ K1
n−1, where

K1
n−1 is the graph obtained by the coalescence of Kn−1 with P2.

G has multiple eigenvalues equal to −1 if the third least eigenvalue of
its complement is zero.

If n ≥ 7 and λn−3 <
1−
√

5
2 , then the chromatic number of G is 3.

Let n ≥ 7. Then λ3 = 0 implies λn ≤ −2λ1.



Spectral Properties of Multidigraphs



Adjacency spectrum of a multidigraph

A(G) =



0 1 2 3 4
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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G :

σA(G) = (0, 0, 0, 0, 0)

BA(G) =





1
0
0
0
0


,



0
−3
0
1
0


,



0
−4
0
0
1







1 2 3 1 2 3 1 2

3

G1 G2 G3

σA(G1) = (0, 0, 0, 0); σA(G2) = (0, 0, 0, 0); σA(G3) = ( 3√6, 3√6ω, 3√6ω2)

where ω = −1+
√

3i
2

BA(G1) =




1
0
0


 , BA(G2) =




1
0
0

 ,


0
0
1


 ,

BA(G3) =




3√6
3√
62

3

 ,


3√6ω
3√
62ω

3

 ,


3√6ω2

−
3√
62ω2

3






Lacunae in associating a multidigraph by the adjacency
matrix

1 The adjacency spectrum may contain complex entries.
2 The matrix fails to possess a complete set of linearly independent

eigenvectors.
3 It is difficult to determine the change in orientation of any directed

edge either from its eigenvalues or from its eigenvectors.



Criteria for a new associated matrix of a multidigraph

1 The matrix should be well defined, i.e. for each matrix there should
be a unique multidigraph (at least upto isomorphism of graphs) and
vice versa.

2 It should be a generalization of the adjacency matrix of an undirected
graph.

3 An undirected edge should be treated equivalent to two oppositely
oriented directed edges.

4 The matrix should be Hermitian.



New associated matrix of a multidigraph: Complex
adjacency matrix

fij : number of forward edges from i to j,
i.e., number of directed edges from vertex i to vertex j

bij : number of backward edges from i to j,
i.e., number of directed edges from vertex j to vertex i

Definition
The complex adjacency matrix AC(G) of a multidigraph G is a square
n× n matrix whose (i, j)-entry is given by

aij =
(
fij + bij

2

)
+
(
fij − bij

2

)
i.

W =
{a

2 + b

2i : a, b ∈ Z, a ≥ |b| ≥ 0 and 2|(a− b)
}
, W+ = W\{0}



Example:

AC(G) =


0 3

2 −
i
2

1
2 + i

2 0
3
2 + i

2 0 1 0
1
2 −

i
2 1 0 3

2 + 3i
2

0 0 3
2 −

3i
2 0


σAC(G) = (−2.51, − 1.38, 1.19, 2.70)
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G:

BA(G) =


1
−071− 1.04i

0.29 + 2.13i

−1.44− 1.09i

,


1

−0.91− 0.12i

−0.22− 0.33i

0.60 + 0.11i

,


1

0.82 + 0.43i

−0.51 + 0.02i

−0.61 + 0.67i

,


1

1.27 + 0.01i

1.55− 0.46i

0.60− 1.11i






Relationship between A(G) and AC(G)

Let G be a multidigraph.

A(G) = real(AC(G)) + imag(AC(G))

If A(G) = [aij ] and AC(G) = [cij ], then

cij =
(
aij + aji

2

)
+
(
aij − aji

2

)
i.



Some interlacing results

Theorem (Cauchy’s interlacing theorem)
Let B ∈Mn be Hermitian, let y ∈ Cn and a ∈ R be given, and let

A =

 B y

y∗ a

 ∈Mn+1. Then

λ1(A) ≤ λ1(B) ≤ λ2(A) ≤ . . . ≤ λn(A) ≤ λn(B) ≤ λn+1(A).

Theorem
Let G be a multidigraph on n+ 1 vertices and H be obtained by deleting
a vertex v from G along with the directed edges associated to (incident to
or incident from) v in G. If {λi(G)}n+1

i=1 and {λi(H)}ni=1 are the sets of
eigenvalues of AC(G) and AC(H) written in nondecreasing order,
respectively, then

λ1(G) ≤ λ1(H) ≤ λ2(G) ≤ · · · ≤ λn(G) ≤ λn(H) ≤ λn+1(G).



Some interlacing results

Theorem
Let G be a multidigraph on vertices 1, . . . , n and H be a multidigraph
produced from G by deleting a directed edge e from G. If {λi(G)}ni=1 and
{λi(H)}ni=1 are the sets of eigenvalues of AC(G) and AC(H) written in
nondecreasing order, respectively, then

λ1(G) ≤ λ2(H),

λi−1(H) ≤ λi(G) ≤ λi+1(H), for i = 2, . . . , n− 1,

λn−1(H) ≤ λn(G).



Multidigraphs which satisfy SO-property

	 The adjacency spectrum of an undirected graph is symmetric about
origin if and only if the graph is bipartite.

Theorem

The complex adjacency spectrum of a bipartite multidigraph is
symmetric about origin.

A multidigraph is said to satisfy SO-property if its complex adjacency spectrum is

symmetric about origin.



Multidigraphs which satisfy SO-property

Theorem

The complex adjacency spectrum of a bipartite multidigraph is
symmetric about origin.

Converse of the above statement is NOT true.

σAC(G) =
(

0,±

√
7± 3

√
2

2

)
1

5

4

2

3

G:

A multidigraph is said to satisfy SO-property if its complex adjacency spectrum is

symmetric about origin.



Multidigraphs which satisfy SO-property

Which non-bipartite multidigraphs satisfy the SO-property?



Multidigraphs which satisfy SO-property

Theorem
Let G = Cn(w) be an odd cycle multidigraph on n vertices, where
w = (wi)ni=1 ∈Wn

+. Then the weight of G is purely imaginary if and only
if G satisfies SO-property.
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G : weight of G is 5i
4

1
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Gw :

1

12
+

i2

3
2
−

i
2

3
2 +

i
2

1 2
+

i 2

Theorem
A multidigraph satisfies SO-property if weights of all its odd cycle
sub-multidigraphs are purely imaginary.



Spectral properties of a multi-directed tree
Definition
Let G be a multidigraph on vertices 1, 2, . . . , n and Gw be its associated
weighted digraph. Then the modular graph of G, denoted by |G|, is the
weighted graph which is obtained from Gw by replacing each of its
directed edge by an edge of weight equal to the modulus of the
corresponding weight of the directed edge in Gw. That is, if i

w−→ j in Gw

(or, that is, in G) for some w ∈W, then the vertices i, j are adjacent in
|G| and the weight of the edge {i, j} is |w|.

1
+

i

3 2
+

i 2

1

3 2
+

3 2
i

32
+

32 i

1
2 + i

2

1
2 −

i
2

√
2√

5
2

1

√
3

2

√
3

2

1√
2

1√
2

G Gw |G|



Theorem
Let T be a multi-directed tree on n vertices and |T | be its modular tree.
Let AC(T ) and A(|T |) be the complex adjacency matrix and the adjacency
matrix of T and |T |, respectively. Then both T and |T | share same
AC-spectrum, that is

σAC(T ) = σA(|T |).

Furthermore, if x and y are eigenvectors of AC(T ) and A(|T |),
respectively, corresponding to an eigenvalue λ, then |x| = |y|.



Rough sketch of the proof:

AC(T ) = (cij)n×n and A(|T |) = [aij ]n×n

y = (yi)ni=1, A(|T |)y = λy

n∑
k=1

aijyj = λyi for i = 1, . . . , n

n∑
k=1

cijyjeiArg(cij) = λyi for i = 1, . . . , n

Now choose a vector x = (xi)ni=1 such that |x| = |y| and for i w−→ j in T

xj =

|yj |e
iθ, if yiyj ≥ 0

|yj |ei(θ+π), otherwise

where θ = Arg(xi) + Arg(w) and Arg(x1) = 0.



	 Application to any Hermitian matrix:

Theorem

Let A be a Hermitian matrix of order n× n with all its diagonal entries
zero such that its associated graph is a tree. Then A and |A| have the
same set of eigenvalues. More generally, if D is a real diagonal matrix of
order n× n, then D +A and D + |A| also have the same set of
eigenvalues.

P =



0 −
√

2 0 0 0
−
√

2 3 1− 3i 0 i

0 1 + 3i −1 0.5 0
0 0 0.5 0 0
0 −i 0 0 1.8


, |P |=



0
√

2 0 0 0
√

2 3
√

10 0 1
0
√

10 −1 0.5 0
0 0 0.5 0 0
0 1 0 0 1.8


σ(P ) =

(
− 3.0229,−0.2406, 0.1424, 1.6478, 5.2734

)
= σ(|P |)



Spectral Properties of
Simple Digraphs



Complex adjacency matrix of a digraph

(Digraphs which contains at most one directed edge between any two pairs
of vertices)

Definition
Let D = (V,E) be a digraph with V = {1, 2, . . . , n}. Then the complex
adjacency matrix of D, denoted by AC(D) = [aij ], is a square n×n matrix
whose rows and columns are indexed by V and whose ijth entry is given by

aij =


1
2 + i

2 if i→ j,

1
2 −

i
2 if i← j,

0 otherwise.



Properties of complex adjacency matrix of a digraph

The sum of all the 2× 2 principal minors of AC(D) equals −|E|.
Reason:

1
2

[
0 1 + i

1− i 0

]
or 1

2

[
0 1− i

1 + i 0

]
The determinant of each one is −1.

If p and q are the number of proper and improper 3-cycles of D, then the
sum of all the 3× 3 principal minors of AC(D) equals to 1

2 (p− q).



Complex Adjacency Spectra of a Directed Tree

All directed trees having same base structure share
same complex adjacency spectrum.
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2
3
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6
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0

−π
4

−π
2

−π
2

−π
4

0 −π
2

− 3π
4

−π
4 10

T :

π
4

|v| =



1
0.815
0.378
0.378
1.338
0.792
0.367
1.091
0.506
0.506



σAC(T ) = (±3.046,±2.334,±1.679,±0.669, 0, 0) and v is the eigenvector
corresponding to the eigenvalue 3.046.



Complex Adjacency Spectra of Cycle Digraphs

Remark
The complex adjacency spectrum of a proper cycle −→Cn is given by

σAC(−→Cn) =
(√

2 cos
(2πk
n

+ π

4
))n
k=1

and the eigenvectors of AC(−→Cn) are

xω = (1, ω, ω2, . . . , ωn−1)T where ωn = 1.



How does the change in orientation of some of the arcs of a cycle digraph
affect its complex adjacency spectrum?

Theorem
Let D be a cycle digraph on vertex set {1, 2, . . . , n} and having b number
of backward directed edges. Then the AC-spectrum of D consists of

√
2 cos

((4k − b)π
2n + π

4
)
, for k = 0, 1, . . . , n− 1.



Alternating cycle Colliding cycle

−→
C±6

−→
C6,3

σAC(−→C±6 ) =
(
−
√

2,− 1√
2
,− 1√

2
,

1√
2
,

1√
2
,
√

2
)

=
(
√

2 cos
((4k − 3)π

12 + π

4
))5

k=0

= σAC(−→C6,3)



How to find the structural difference between two cycle digraphs on the
same number of vertices whose AC-spectra are the same?

Theorem
Let D be a cycle digraph on vertex set {1, 2 . . . , n}. Let fj and bj be the
number of forward and backward directed edges in the path [1, 2, . . . , j],
respectively. Then the components of an eigenvector xk corresponding to
the AC-eigenvalue λk (whose algebraic multiplicity is 1),
k ∈ {0, 1, . . . , n− 1}, of AC(D) can be chosen as the following.

xk(1) = 1, xk(j) = ei(fjθ1+bjθ2), for 2 ≤ j ≤ n,

where θ1 = (4k− b) π2n , θ2 = π
2 + θ1 and b is the total number of backward

directed edges in D.



1 2

3

4

5
6

7

8

9

1 eiθ1

ei2θ1

ei3θ1

ei4θ1

ei(4θ1+θ2)
ei(4θ1+2θ2)

ei(5θ1+θ2)

ei(5θ1+2θ2)

ei(6θ1+2θ2)

θ1 = (4k − b) π2n , θ2 = π
2 + θ1

and b is the total number of backward directed edges in D.
λk kth eigenvalue of AC(D)
xk eigenvector corresponding to eigenvalue λk;



1 1

1

1

e−iπ4

e−iπ4

e−iπ4

e−iπ4

e−iπ2

e−iπ
e−iπ2

e−iπ4

−→
C±6

−→
C6,3

σAC(−→C±6 ) =
(
−
√

2,− 1√
2
,− 1√

2
,

1√
2
,

1√
2
,
√

2
)

= σAC(−→C6,3)

The eigenvectors corresponding to the eigenvalue
√

2 are shown here around the vertices
of the corresponding digraphs.
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Q&A



Thank You.


