Signed Distance in Signed Graphs

Germina K A ${ }^{1}$

Abstract

A signed graph is an ordered pair $\Sigma=(G, \sigma)$, where $G=(V, E)$ is the underlying graph of Σ with a signature function $\sigma: E \rightarrow\{1,-1\}$. Hence, signed graphs have their edges labeled either as positive or negative. Here we introduce two types of signed distance matrix for signed graph Σ. First we define auxiliary signs: (S1) $\sigma_{\max }(u, v)=-1$ if all shortest $u v$-paths are negative, and +1 otherwise. (S2) $\sigma_{\min }(u, v)=+1$ if all shortest $u v$-paths are positive, and -1 otherwise. Then we define signed distances: (d1) $d_{\max }(u, v)=\sigma_{\max }(u, v) d(u, v)=\max \left\{\sigma\left(P_{(u, v)}\right): \quad P_{(u, v)} \in\right.$ $\left.\mathcal{P}_{(u, v)}\right\} d(u, v)$. $(\mathrm{d} 2) d_{\min }(u, v)=\sigma_{\min }(u, v) d(u, v)=\min \left\{\sigma\left(P_{(u, v)}\right): \quad P_{(u, v)} \in\right.$ $\left.\mathcal{P}_{(u, v)}\right\} d(u, v)$.

Finally, we define the signed distance matrices:
(D1) $D^{\max }(\Sigma)=\left(d_{\max }(u, v)\right)_{n \times n}$.
(D2) $D^{\min }(\Sigma)=\left(d_{\min }(u, v)\right)_{n \times n}$.
We characterize balance in signed graphs using these matrices and we obtain explicit formulae for the distance spectrum of some unbalanced signed graphs. We also introduce the notion of distance-compatible signed graphs and partially characterize it.

Key Words: Signed graph, Signed distance, Distance compatibility
Mathematics Subject Classification (2010): 05C12, 05C22, 05C50.

[^0]
[^0]: ${ }^{1}$ Department of Mathematics, Central University of Kerala, Kasaragod - 671316, Kerela, India. Email: germinaka@cukerala.ac.in

