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Distance Matrix

The distance matrix of a connected graph G of order n is an
n × n matrix D(G ) = [dij ], where dij is the distance between the
vertices vi and vj .









v1 v2 v3 v4

v1 0 1 1 2
v2 1 0 1 1
v3 1 1 0 2
v4 2 1 2 0
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Distance Matrix

Distance matrix of a graph is a real symmetric matrix with
diagonal entries 0’s.

All the distance eigenvalues are real.

The distance spectrum of G is {λ1, . . . , λn}, where λ′

i s are
the eigenvalues of D(G ).

The largest eigenvalue of the distance matrix D of G is called
the distance spectral radius ρD(G ).
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Integral Distance Spectrum

Figure: A graph with integral distance spectrum {7, 0, 0,−2,−2,−3}

.
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Transmission Regular Graph

The transmission Tr(v) of a vertex v in G is the sum of the
distances from v to all other vertices in G, i.e.,
Tr(v) =

∑

u∈V

d(u, v).

We say that G is a k−transmission regular graph if Tr(v) = k
for every v ∈ V .

A k−transmission regular graph has distance spectral radius k .
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Transmission Regular Graph

Kn is (n − 1) transmission regular.

Cn and Km,m are both regular and transmission regular.

There exists regular and non-regular transmission regular
graphs.
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Transmission Regular Graph

Figure: A transmission regular graph which is not degree regular

.
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Strongly Regular Graph

A k−regular graph G on n vertices is said to be strongly
regular if there exist two integers p and q such that any two
adjacent vertices in G have p common neighbors and any
non-adjacent vertices have q common neighbors. In this case
n, k , p and q are the called the parameters of G , and G is
called (n, k , p, q)− strongly regular graph.

Strongly regular graphs have exactly three distinct distance
eigenvalues [3].

Strongly regular graphs are transmission regular [17].
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SRG (10, 3, 0, 1) :

Figure: Petersen graph has distance spectrum

(

−3 0 15
5 4 1

)

.
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Shrikhande graph - SRG (16, 6, 2, 2)

Figure: Shrikhande graph has distance spectrum

(

−4 0 24
6 9 1

)

.
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Perron Frobenius theorem [16]

Let A be an irreducible non-negative nxn matrix with spectral
radius ρ(A). Then the following statements hold:

The number ρ(A) is a positive real number and is an
eigenvalue of the matrix A, called the Perron Frobenius
eigenvalue.

The Perron Frobenius eigenvalue ρ(A) is simple.

A has an eigenvector corresponding to eigenvalue ρ(A) whose
components are all positive.

The only eigenvectors whose components are all positive are
those associated with the eigenvalue ρ(A).
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Review of Literature

The remarkable theorem proved by Graham and Pollack [8]
gives a formula for the determinant of the distance matrix of a
tree depending only on the order n. If T is a tree on n ≥ 2
vertices with distance matrix D, then

det(D) = (−1)(n−1)(n − 1)(2n−2).

Graham and Lovasz [7] proved that it is possible to compute
the inverse of the distance matrix of a tree in terms of the
degrees and the entries of the adjacency matrix.
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Review of Literature

Graphs having a unique positive distance eigenvalue have been
intensively studied in literature.

In 1971 Graham and Pollack [8] showed that trees have a
unique positive distance eigenvalue.

In 1994 Koolen and Schpectorov characterised the
distance-regular graphs with unique positive distance
eigenvalue [18].

In 2005 Bapat, Kirkland and Neumann [2] proved that
unicyclic graphs have a unique positive distance eigenvalue.
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Non-isomorphic graphs with the same distance spectrum are
called distance cospectral graphs.

In 2016 Koolen etal. [23] proved that the hyper d−cube is
determined by the spectrum of its distance matrix.
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Note that the d−cube is not determined by its adjacency
spectrum as the Hoffman graph has the same adjacency
spectrum as the 4−cube.

Figure: Hoffman Graph Figure: 4−cube
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Distance Energy

Definition [16]

The distance energy of G is defined by ED(G ) =
n
∑

i=1

|λi |.

Motivation

chemistry↔mathematics

conjugated hydrocarbons↔graph G

(atoms and bonds) ↔ (vertices and edges)

molecular orbital energy levels↔graph eigenvalues

total energy of π−electrons↔graph energy E (G )
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Distance Energy

[1] Distance matrix has its applications in the design of
communication networks, network flow algorithms, graph
embedding theory as well as molecular stability.

Balaban, Ciubotariu and Medeleanu [24] proposed the use of
ρD(G ) as a molecular descriptor, later [26] it is used in QSPR
(Quantitative Structure-Property Relationship) modelling and
in [25] it was successfully used to infer the extent of branching
and model boiling points of alkanes.
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Preliminaries

The distance matrix has zero diagonal entries, so that
λ1 + · · ·+ λn = tr(D(G )) = 0. Hence

ED(G ) = 2
∑

λi>0

λi = −2
∑

λi<0

λi .

Let ρD(G ) denote the spectral radius of D(G ), then by
Perron-Frobenius theory [9], ED(G ) ≥ 2ρD(G ), and equality
holds if and only if G has a unique positive distance
eigenvalue.
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Distance energy of path Pn [19] is approximately
0.6948n2 − 0.7964.

Distance energy of a cycle Cn is

{

n2−1
2 , if nisodd
n2

2 , if nis even

Distance energy of star Sn [22] is

2 (n − 2) + 2
√

(n − 2)2 + (n − 1).

Distance energy of complete bipartite graph Km,n [21] is
4(m + n − 2).

Distance energy of a complete split graph CSm,n is given by
2(2m + n − 3).
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Possible types of Problems

Derive energy bounds using graph parameters:
order, size, degrees,...

Characterize graphs with extremal energy in a specific family:
bipartite, trees, unicyclic,...

Characterize how energy changes due to a specific operation:
vertex deletion, edge deletion, subdivision,...
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How to Solve?

Let A be a real symmetric matrix partitioned as:

A =











A1,1 A1,2 . . . A1,r

A2,1 A2,2 . . . A2,r
...

...
...

Ar ,1 Ar ,2 . . . Ar ,r











,

where Ai ,j is a block or submatrix of A.
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How to Solve?

If qi ,j denote the average row sum of Ai ,j , then Q = (qi ,j) is
called the quotient matrix of A.

If the row sum of each block Ai ,j is a constant, then the
partition is called equitable.
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How to Solve?

Let Q be a quotient matrix of a square matrix A,
corresponding to a partition of A. Then the eigenvalues of Q
interlace the eigenvalues of A.

Let Q be a quotient matrix of a square matrix C
corresponding to an equitable partition. Then the spectrum
of C contains the spectrum of Q. Moreover, the spectral
radius of A and Q are equal.
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How to Solve?

Cauchy’s Interlacing Theorem : Bapat [16]

Let A ∈ Mn and B ∈ Mm be symmetric matrices with eigenvalues
α1 ≥ α2 ≥ · · · ≥ αn and β1 ≥ β2 ≥ · · · ≥ βm
respectively. If B is a principal submatrix of A, then:
αk ≥ βk ≥ αk+n−m for k ∈ {1, 2, . . . ,m}.
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Preliminaries

Let H be a connected induced subgraph of G of order m.

The adjacency matrix of H is a principal submatrix of the
adjacency matrix of G .

By interlacing theorem the adjacency eigenvalues of G
interlace the eigenvalues of H, see [16].
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Distance Matrix DG

Figure: G













u1 u2 u3 u4 u5

u1 0 1 2 2 1
u2 1 0 1 2 2
u3 2 1 0 1 2
u4 2 2 1 0 1
u5 1 2 2 1 0
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Distance Matrix DH

Figure: H









u1 u2 u3 u4

u1 0 1 2 3
u2 1 0 1 2
u3 2 1 0 1
u4 3 2 1 0
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The distance matrix, distance eigenvalue, and distance energy
of a connected graph have been studied intensively in
literature, see [1, 10, 11, 12, 15].

We discuss a new problem of how the distance energy changes
when an edge is deleted.

Similar problem for adjacency energy of a graph was studied
by Day and So in [4, 5].
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Day and So proved that, if e is a bridge in a simple graph G ,
then E (G − e) < E (G ), hence for a tree the same inequality
holds.

They also proved that, if G ′ is an induced subgraph of a
simple graph G , then E (G ′) ≤ E (G ) and equality holds if and
only if G ′ and G has same edge set.

Also they proved the existence of infinite families of graphs
with the property that, deleting a certain edge does not
change the energy, deleting any edge will decrease the energy
and deleting any edge will increase the energy.
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Results

It turns out that the results for distance energy change and
adjacency energy change are quite different.

From an observation in [15], it follows that, for any connected
graph with a unique positive eigenvalue, the deletion of any
edge increases the distance energy provided that the resulting
graph is still connected.
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Results

For examples, both complete graphs [6] and unicyclic graphs
[2] have a unique positive distance eigenvalue. Therefore, for
any edge e,

ED(Kn) < ED(Kn − e)

and
ED(Cn) < ED(Cn − e) = ED(Pn)

where Kn,Cn and Pn are the complete graph, cycle graph and
path graph of order n respectively.
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Results

It is interesting to note that:

limn→∞ ED(Kn − e)− ED(Kn) = 0, but

limn→∞ ED(Pn)− ED(Cn) = ∞.
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Results

Two natural questions arise:

1 Is the property of having a unique positive distance eigenvalue
a necessary condition for the increase of distance energy by
deleting an edge?

2 Does the deletion of an edge always increase the distance
energy of any graph?

We answer both questions negatively.
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Results

We prove that the distance energy of a complete bipartite
graph is always increased when an edge is deleted even though
it has two positive distance eigenvalues.

Also, we give a set of examples of connected graph whose
distance energy decreases when a specific edge is deleted.
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Results

We consider the complete bipartite graph Km,n with m, n > 1.
Since m, n ≥ 2, both Km,n and Km,n − e are connected for any
edge e.

Moreover, the negative distance eigenvalues of Km,n are
exactly −2 of multiplicity m + n − 2 [14]. Hence
ED(Km,n) = 4(m + n − 2).

However, explicit formulae for the distance eigenvalues and
the distance energy of Km,n − e are harder to obtain.

Nonetheless, we are able to compare ED(Km,n) and
ED(Km,n − e).
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Results [20] ( Anu, So, Vijayakumar )

Theorem

Let Km,n be the complete bipartite graph with m, n > 1 and e be
any edge. Then the distance eigenvalues of Km,n − e are −2 with
multiplicity m + n − 4 and the roots α4 ≤ α3 ≤ α2 ≤ α1 of the
polynomial

p(x) = x4 + [8− 2 (m + n)] x3 + [3mn − 12 (m + n) + 16] x2

+ [12mn − 16 (m + n)− 16] x + [12 (m + n)− 60] .
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Results [20] ( Anu, So, Vijayakumar )

For m, n ≥ 2 and any edge e,

ED(Km,n) < ED(Km,n − e).

The distance energy of a complete multi-partite graph is
known in literature, one can see [13] for a short proof:
ED(Kn1,n2,...,nr ) = 4(n1 + · · ·+ nr − r). However,
ED(Kn1,n2,...,nr − e) is NOT known to have any closed form.
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Family of Graphs - Distance Energy decreases

Figure: Graphs in which edge deletion decreases distance energy

.
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Figure: Book 1 Figure: Book 2
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Books

Figure: Book 3
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Books

Figure: Book 4 Figure: Book 5
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