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Definitions and Preliminaries

Distance Matrix

The distance matrix of a connected graph G of order n is an
n x n matrix D(G) = [djj], where djj is the distance between the
vertices v; and v;.
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Definitions and Preliminaries

Distance Matrix

@ Distance matrix of a graph is a real symmetric matrix with
diagonal entries 0O's.

@ All the distance eigenvalues are real.

@ The distance spectrum of G is {\1,..., A\p}, where Xis are
the eigenvalues of D(G).

@ The largest eigenvalue of the distance matrix D of G is called
the distance spectral radius pp(G).
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Definitions and Preliminaries

Integral Distance Spectrum

Figure: A graph with integral distance spectrum {7,0,0, -2, —2, —3}
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Definitions and Preliminaries

Transmission Regular Graph

@ The transmission Tr(v) of a vertex v in G is the sum of the
distances from v to all other vertices in G, i.e.,

Tr(v) = > d(u,v).

ueVv
@ We say that G is a k—transmission regular graph if Tr(v) = k
for every v e V.

@ A k—transmission regular graph has distance spectral radius k.
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Definitions and Preliminaries

Transmission Regular Graph

® K, is (n— 1) transmission regular.
o C, and Kp,,m are both regular and transmission regular.
@ There exists regular and non-regular transmission regular

graphs.
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Definitions and Preliminaries

Transmission Regular Graph

Figure: A transmission regular graph which is not degree regular
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Definitions and Preliminaries

Strongly Regular Graph

@ A k—regular graph G on n vertices is said to be strongly
regular if there exist two integers p and g such that any two
adjacent vertices in G have p common neighbors and any
non-adjacent vertices have ¢ common neighbors. In this case
n, k,p and g are the called the parameters of G, and G is
called (n, k, p, q)— strongly regular graph.

@ Strongly regular graphs have exactly three distinct distance
eigenvalues [3].

@ Strongly regular graphs are transmission regular [17].
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Definitions and Preliminaries

SRG(10,3,0,1) :
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Definitions and Preliminaries

Shrikhande graph - SRG(16,6, 2, 2)
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Definitions and Preliminaries

Perron Frobenius theorem [16]

Let A be an irreducible non-negative nxn matrix with spectral
radius p(A). Then the following statements hold:

@ The number p(A) is a positive real number and is an
eigenvalue of the matrix A, called the Perron Frobenius
eigenvalue.

@ The Perron Frobenius eigenvalue p(A) is simple.

@ A has an eigenvector corresponding to eigenvalue p(A) whose
components are all positive.

@ The only eigenvectors whose components are all positive are
those associated with the eigenvalue p(A).
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Definitions and Preliminaries

Review of Literature

@ The remarkable theorem proved by Graham and Pollack [8]
gives a formula for the determinant of the distance matrix of a
tree depending only on the order n. If T is a tree on n > 2
vertices with distance matrix D, then

det(D) = (—1)""Y(n — 1)2=2),

@ Graham and Lovasz [7] proved that it is possible to compute
the inverse of the distance matrix of a tree in terms of the
degrees and the entries of the adjacency matrix.
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Definitions and Preliminaries

Review of Literature

@ Graphs having a unique positive distance eigenvalue have been
intensively studied in literature.

@ In 1971 Graham and Pollack [8] showed that trees have a
unique positive distance eigenvalue.

@ In 1994 Koolen and Schpectorov characterised the
distance-regular graphs with unique positive distance
eigenvalue [18].

@ In 2005 Bapat, Kirkland and Neumann [2] proved that
unicyclic graphs have a unique positive distance eigenvalue.
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Definitions and Preliminaries

Review of Literature

@ Non-isomorphic graphs with the same distance spectrum are
called distance cospectral graphs.

@ In 2016 Koolen etal. [23] proved that the hyper d—cube is
determined by the spectrum of its distance matrix.
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Definitions and Preliminaries

Review of Literature

@ Note that the d—cube is not determined by its adjacency
spectrum as the Hoffman graph has the same adjacency
spectrum as the 4—cube.

Figure: Hoffman Graph Figure: 4—cube
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Distance Energy

Distance Energy

Definition [16]

The distance energy of G is defined by Ep(G) = > |Ai|.
i=1

-

@ chemistry<>mathematics

@ conjugated hydrocarbons<sgraph G
@ (atoms and bonds) < (vertices and edges)

@ molecular orbital energy levels<>graph eigenvalues

@ total energy of m—electrons<sgraph energy E(G)

\
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Distance Energy

Distance Energy

@ [1] Distance matrix has its applications in the design of
communication networks, network flow algorithms, graph
embedding theory as well as molecular stability.

@ Balaban, Ciubotariu and Medeleanu [24] proposed the use of
pp(G) as a molecular descriptor, later [26] it is used in QSPR
(Quantitative Structure-Property Relationship) modelling and
in [25] it was successfully used to infer the extent of branching
and model boiling points of alkanes.
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Distance Energy

Preliminaries

@ The distance matrix has zero diagonal entries, so that
A1+ -+ Ay, =tr(D(G)) = 0. Hence

Ep(G)=2) Xi=-2)> \.
Ai>0 Ai<0

@ Let pp(G) denote the spectral radius of D(G), then by
Perron-Frobenius theory [9], Ep(G) > 2pp(G), and equality
holds if and only if G has a unique positive distance
eigenvalue.
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Distance Energy

Review of Literature

@ Distance energy of path P, [19] is approximately
0.6948n% — 0.7964.
=1 if nisodd

. . >
Distance energy of a cycle C, is .
%, if niseven

(]

@ Distance energy of star S [22] is

(n—2)+ 2\/ (n— (n—1).
@ Distance energy of complete bipartite graph K, 5 [21] is
4(m+ n—2).
o Distance energy of a complete split graph CSp, , is given by
2(2m+n—3).
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Distance Energy

Possible types of Problems

@ Derive energy bounds using graph parameters:
order, size, degrees,...

@ Characterize graphs with extremal energy in a specific family:
bipartite, trees, unicyclic,...

@ Characterize how energy changes due to a specific operation:
vertex deletion, edge deletion, subdivision,...
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Distance Energy

How to Solve?

Let A be a real symmetric matrix partitioned as:

Al,l A1’2 - Al,r

Ax1 Asp ... Ao,
A= . . . ;

Al Ao ... Ay

where A; ; is a block or submatrix of A.

22/50



Distance Energy

How to Solve?

o If g;j denote the average row sum of A;j, then Q = (g; ) is
called the quotient matrix of A.

@ If the row sum of each block A;; is a constant, then the
partition is called equitable.
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Distance Energy

How to Solve?

o Let @ be a quotient matrix of a square matrix A,
corresponding to a partition of A. Then the eigenvalues of Q
interlace the eigenvalues of A.

o Let @ be a quotient matrix of a square matrix C
corresponding to an equitable partition. Then the spectrum
of C contains the spectrum of Q. Moreover, the spectral
radius of A and Q are equal.
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Distance Energy

How to Solve?

Cauchy'’s Interlacing Theorem : Bapat [16]

Let A€ M, and B € M, be symmetric matrices with eigenvalues
a1 >ax>--->apand 1 > o> > By

respectively. If B is a principal submatrix of A, then:

ak > Br = Qkyn—m for k € {1,2,...,m}.
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Distance Energy

Preliminaries

Let H be a connected induced subgraph of G of order m.

@ The adjacency matrix of H is a principal submatrix of the
adjacency matrix of G.

@ By interlacing theorem the adjacency eigenvalues of G
interlace the eigenvalues of H, see [16].
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Distance Energy

Distance Matrix D¢

vu /0 1 2 2 1
Figure: G w1 0 1 2 2
w2 1 0 1 2
uul 2 2 1 0 1
us \1 2 2 1 0
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Distance Energy

Distance Matrix Dy

wmy /{0 1 2 3
Figure: H Uy 1 0 1 2
wz| 2 1 0 1
ua 3 2 1 0
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Distance Energy

Review of Literature

@ The distance matrix, distance eigenvalue, and distance energy
of a connected graph have been studied intensively in
literature, see [1, 10, 11, 12, 15].

@ We discuss a new problem of how the distance energy changes
when an edge is deleted.

@ Similar problem for adjacency energy of a graph was studied
by Day and So in [4, 5].
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Distance Energy

Review of Literature

@ Day and So proved that, if e is a bridge in a simple graph G,
then E(G — e) < E(G), hence for a tree the same inequality
holds.

@ They also proved that, if G’ is an induced subgraph of a
simple graph G, then E(G’) < E(G) and equality holds if and
only if G’ and G has same edge set.

@ Also they proved the existence of infinite families of graphs
with the property that, deleting a certain edge does not
change the energy, deleting any edge will decrease the energy
and deleting any edge will increase the energy.
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Results

Results

@ It turns out that the results for distance energy change and
adjacency energy change are quite different.

@ From an observation in [15], it follows that, for any connected
graph with a unique positive eigenvalue, the deletion of any
edge increases the distance energy provided that the resulting
graph is still connected.
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Results

Results

@ For examples, both complete graphs [6] and unicyclic graphs
[2] have a unique positive distance eigenvalue. Therefore, for
any edge e,

ED(K,,) < ED(K,, — e)

and
Ep(Cn) < Ep(Cn — €) = Ep(Py)

where K,,, C,, and P, are the complete graph, cycle graph and
path graph of order n respectively.
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Results

Results

It is interesting to note that:
o limyoo Ep(Kn — €) — Ep(Kpn) =0, but
] |imnﬁoO ED(P,,) — ED(C,,) =
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Results

Results

Two natural questions arise:
© Is the property of having a unique positive distance eigenvalue
a necessary condition for the increase of distance energy by
deleting an edge?
@ Does the deletion of an edge always increase the distance
energy of any graph?

We answer both questions negatively.
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Results

Results

@ We prove that the distance energy of a complete bipartite
graph is always increased when an edge is deleted even though
it has two positive distance eigenvalues.

@ Also, we give a set of examples of connected graph whose
distance energy decreases when a specific edge is deleted.
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Results

Results

@ We consider the complete bipartite graph Ky, , with m, n > 1.
Since m, n > 2, both Ky, , and K, , — e are connected for any
edge e.

@ Moreover, the negative distance eigenvalues of K, , are
exactly —2 of multiplicity m 4+ n — 2 [14]. Hence
Ep(Km,n) = 4(m+n—2).

@ However, explicit formulae for the distance eigenvalues and
the distance energy of Ky, , — e are harder to obtain.

@ Nonetheless, we are able to compare Ep(Kp, ) and
ED(KmJ, — e).
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Results

Results [20] ( Anu, So, Vijayakumar )

Theorem

Let K n be the complete bipartite graph with m,n > 1 and e be
any edge. Then the distance eigenvalues of K, , — e are —2 with
multiplicity m + n — 4 and the roots ay < a3z < as < a7 of the
polynomial

p(x) = x*+[8—2(m+ n)]x>+[3mn—12(m+ n) + 16] x*
+[12mn — 16 (m + n) — 16] x + [12(m + n) — 60] .
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Results

Results [20] ( Anu, So, Vijayakumar )

@ For m,n > 2 and any edge e,
ED(KmJ,) < ED(Km,n — e).

@ The distance energy of a complete multi-partite graph is
known in literature, one can see [13] for a short proof:
Ep(Kny ny....n,) = 4(m + -+ -+ n, — r). However,

Ep(Kny ny,...n, — €) is NOT known to have any closed form.
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Results

Family of Graphs - Distance Energy decreases

Figure: Graphs in which edge deletion decreases distance energy
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Results

oo Graph Spectra
hanGutman for Complex Networks

Energy :

@ Springer <R
Figure: Book 1 Figure: Book 2
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R. Balakrishnan
K. Ranganathan

A Textbook of
Graph Theory

@ Springer

Figure: Book 3
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Universitext.

Andries E. Brouwer
Willem H. Haemers

Spectra of Graphs

@ Springer

Figure: Book 4

Results

An Introduction to the
Theory of Graph Spectra

ER ROWLINSON

Figure: Book 5
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