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Introduction and Preliminaries

Consider an n × p matrix M whose rows and columns are indexed by the ele-
ments of X = {1, 2, · · · , n} and Y = {1, 2, · · · , p} respectively. Let α be a
subset of X and β be a subset of Y .

The submatrix of M, whose rows are indexed by elements of α and columns are
indexed by elements of β, is denoted by M[α : β].

We denote the same matrix by M[α], M[α :] and M[: β] according as α = β,
β = Y and α = X respectively.

By PT we denote the transpose of the matrix P and by X c we denote the comple-
ment of the set X .

The spectrum of the matrix A is denoted by Spec(A). Jm×n is the all ones matrix
of order m × n.
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Equitable partition and quotient matrix

We consider a square matrix A whose rows and columns are indexed by ele-
ments of X = {1, 2, · · · , n}. Let π = {X1,X2, · · · ,Xm} be a partition of X .

The characteristic matrix C = (cij ) of π is an n ×m order matrix such that cij = 1
if i ∈ Xj and 0 otherwise.

We partition the matrix A according to π as


A11 A12 · · · A1m

A21 A22 · · · A2m

· · · · · · · · · · · ·
Am1 Am2 · · · Amm

, where

Aij = A[Xi : Xj ] and i, j = 1, 2, · · · ,m.

If qij denotes the average row sum of Aij then the matrix Q = (qij ) is called a quo-
tient matrix of A. If the row sum of each block Aij is a constant then the partition π
is called equitable.

A =



2 −2 1 1 0 1

−1 2 1 1 1 2

−1 0 3 1 2 1

2 1 −1 1 −1 1

2 0 0 0 2 −1

2 −2 2 −2 0 3


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An example of equitable partition and quotient matrix

Let X = {1, 2, · · · , 6} and π = {X1,X2,X3} be a partition of X , where X1 =
{1},X2 = {2, 3} and X3 = {4, 5, 6}.
We consider the following matrix A whose rows and columns are indexed by ele-
ments of X .

A =



2 −2 1 1 0 1

−1

−1

2 1

0 3

1 1 2

1 2 1

2

2

2

1 −1

0 0

−2 2

1 −1 1

0 2 −1

−2 0 3


.

Here the matrix A is partitioned according to π. Then the quotient matrix is given
by

Q =


2 −1 2

−1 3 4

2 0 1


Here the partition π is equitable partition for the matrix A.



Results on equitable partition and quotient matrix

The following are well known results on an equitable partition of a matrix.

Theorem 1 (Brouwer and Haemers [4])

Let Q be a quotient matrix of any square matrix A corresponding to an equitable parti-
tion. Then the spectrum of A contains the spectrum of Q.

Theorem 2 (Atik and Panigrahi, 2018)

The spectral radius of a nonnegative square matrix A is the same as the spectral ra-
dius of a quotient matrix corresponding to an equitable partition.

Stochastic matrix:
A square matrix whose entries are nonnegative and for which each row sum equals to
one is known as a stochastic matrix. Therefore stochastic matrices can be considered
to have an equitable partition with one partition set and by previous theorem 1 is the
spectral radius of a stochastic matrix.
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Main results

Let A be a square matrix having an equitable partition. Then the theorem below finds
some matrices whose eigenvalues are the eigenvalues of A other than the eigenvalues
of the quotient matrix Q.

Theorem 3

Let Q be a quotient matrix of any square matrix A corresponding to an equitable par-
tition π = {X1,X2, · · · ,Xk}. Also let C be the characteristic matrix of π and α be an
index set which contains exactly one element from each Xi , i = 1, 2, · · · , k. Then
the spectrum of A is equal to the union of spectrum of Q and spectrum of Q∗, where
Q∗ = A[αc ]− C[αc :]A[α : αc ].



An example

We consider the partition π = {X1,X2} for the matrix S, where X1 = {1, 2} and
X2 = {3, 4, 5} :

S =



0.21 0.32 0.12 0 0.35

0.23 0.3 0.17 0.2 0.1

0.15 0.2 0.21 0.2 0.24

0.3 0.05 0.3 0.35 0

0.17 0.18 0.15 0.2 0.3


Then π is also an equitable partition for the matrix S. For this π corresponding quotient
matrix is

Q =

 0.53 0.47

0.35 0.65


and we have |X1||X2| = 6 choice of α as in Theorem 3. For each α corresponding Q∗

are as follows:

α = {1, 3}, Q∗α =


−0.02 0.2 −0.25

−0.15 0.15 −0.24

−0.02 0. 0.06

 , α = {1, 4}, Q∗α =


−0.02 0.05 −0.25

0.15 −0.09 0.24

0.13 −0.15 0.3

 ,

α = {1, 5}, Q∗α =


−0.02 0.05 0.2

0.02 0.06 0.

−0.13 0.15 0.15

 , α = {2, 3}, Q∗α =


−0.02 −0.2 0.25

0.15 0.15 −0.24

0.02 0. 0.06



α = {2, 4}, Q∗α =


−0.02 −0.05 0.25

−0.15 −0.09 0.24

−0.13 −0.15 0.3

 , α = {2, 5}, Q∗α =


−0.02 −0.05 −0.2

−0.02 0.06 0.

0.13 0.15 0.15





One more observation

We consider the following matrix

A =



2 −2 −2 1 1 1

−1

−1

2 −1

−1 2

1.5 1 2

1.5 2 1

2

2

2

1 1

1 1

1 1

1 1 1

0 2 1

2 0 1


.

Then the quotient matrices corresponding to the rows and columns are given by

Q =


2 −4 3

−1 1 4.5

2 2 3

 and P =


2 −2 1

−2 1 3

6 3 3

 respectively.

One may expect that the matrices P and Q have different eigenvalues. But ob-
serve that P and Q have same eigenvalues. Then the question is whether this
situation holds for all such P and Q or not. This is answered in the next result.

Theorem 4

Let Q and P be quotient matrices for rows and columns of any square matrix A corre-
sponding to the equitable partition π = {X1,X2, · · · ,Xk}. Then P and Q have same
eigenvalues.
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Geršgorin discs theorem

Theorem 5 (Geršgorin[5])

Let A = [aij ] ∈ Mn and consider the n Geršgorin discs

{z ∈ C : |z − aii | ≤
∑
j 6=i

|aij |}, i = 1, 2, . . . , n.

Then the eigenvalues of A are in the union of Geršgorin discs

G(A) =
n⋃

i=1

{z ∈ C : |z − aii | ≤
∑
j 6=i

|aij |}.

 

 

Figure: Geršgorin discs for any square matrix



Eigenvalue localization theorem for matrices having an equatable partition

For the matrix A = [aij ] ∈ Mn, we hereby denote as G(A) the intersection of two
regions as follows:

G(A) =

 n⋃
i=1

{z ∈ C : |z − aii | ≤
∑
j 6=i

|aij |}

⋂ n⋃
i=1

{z ∈ C : |z − aii | ≤
∑
j 6=i

|aji |}

 . (1)

Theorem 6

Let Q be a quotient matrix of any square matrix A corresponding to an equitable
partition π = {X1,X2, · · · ,Xk}. Also let C be the characteristic matrix of π and
I = {α : α contains exactly one element from each Xi , i = 1, 2, · · · , k}. Let G(A) be
the region defined as in (1). Then the eigenvalues of A lie in ⋂

α∈I
G(Qα)

⋃
Spec (Q), where Qα = A[αc ]− C[αc :]A[α : αc ].



Eigenvalue localization for stochastic matrices

Here we state some of the earlier results for eigenvalue localization for stochastic
matrices

Theorem 7 (Cvetković et al., 2011)

Let S = (sij ) be a stochastic matrix, and let si be the minimal element among the off-
diagonal entries of the ith column of S. Taking γ = maxi∈[n](sii − si ), for any λ ∈
σ(S) \ {1}, we have

|λ− γ| ≤ 1− trace(S) + (n − 1)γ.

Theorem 8 (Li and Li, 2014 )

Let S = (sij ) be a stochastic matrix, and let Si = maxj 6=i sji . Taking γ′ = maxi∈[n](Si −
sii ), for any λ ∈ σ(S) \ {1}, we have

|λ+ γ′| ≤ trace(S) + (n − 1)γ′ − 1.

Theorem 9 (Banerjee and Mehatari, 2016)

Let S be a stochastic matrix of order n. Then the eigenvalues of S lie in the region[ n⋂
i=1

GS(i) ∪ {1}
]
, where GS(i) =

⋃
k 6=i

{z ∈ C : |z − skk + sik | ≤
∑
j 6=k

|skj − sij |}.



Our results on eigenvalue localization for stochastic matrices

Theorem 10

Let S be a stochastic matrix of order n. Then the eigenvalues of S lie in the region[ n⋂
i=1

Gi ∪ {1}
]
, where

Gi =

⋃
k 6=i

{z ∈ C : |z − skk + sik | ≤
∑
j 6=k

|skj − sij |}

⋂
⋃

k 6=i

{z ∈ C : |z − skk + sik | ≤
∑
j 6=k

|sjk − sik |}

 .

Corollary 11

Let S be a stochastic matrix of order n and p ∈ [0, 1]. Then the eigenvalues of S lie in
the region [ n⋂

i=1

Oi ∪ {1}
]
, where

Oi =

⋃
k 6=i

{z ∈ C : |z − skk + sik | ≤ (
∑
j 6=k

|skj − sij |)p(
∑
j 6=k

|sjk − sik |)1−p}

 .



Eigenvalue localization comparison with the existing results

In the following we give an example of a stochastic matrix for which this fact has been
described graphically. We consider the following stochastic matrix:

S =



0.21 0.32 0.12 0 0.35

0.23 0.3 0.17 0.2 0.1

0.15 0.2 0.21 0.2 0.24

0.3 0.05 0.3 0.35 0

0.17 0.18 0.15 0.2 0.3


The eigenvalues of S other than one are 0.18, 0.0878717, 0.0510641 + 0.134975i
and 0.0510641− 0.134975i which are plotted in figure (a).

Note that the above stochastic matrix has two quotient matrix corresponding to two

different equitable partitions as follows: Q = [1] and Q′ =

 0.53 0.47

0.35 0.65


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Problem to think

We notice that in case of distance regular graph [3], the equitable partition con-
cept has been used to find the eigenvalues of adjacency [3] and distance [2] ma-
trices. In each case some quotient matrix corresponding to an equitable partition
contain all the distinct eigenvalues of the corresponding adjacency and distance
matrices.

Again consider the following matrix:

J =


1 1 1

1 1 1

1 1 1



Again Q1 = [3] and Q2 =

 1 2

1 2

 are quotient matrices of J corresponding

to two different equitable partitions. One can observe that Q2 contains all the
distinct eigenvalues of J where as Q1 does not.

Thus it is an interesting problem to find the condition when a quotient matrix con-
tains all the distinct eigenvalues of the original matrix. Formally, we impose the
following problem:

Problem 12

Let Q be a quotient matrix of a matrix A corresponding to an equitable partition. Then
what is the necessary and sufficient condition on Q to contain all the distinct eigenval-
ues of A ?
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