# On equitable partition of matrices and its applications 

Dr．Fouzul Atik



Department of Mathematics
SRM University－AP，Amaravati

- Consider an $n \times p$ matrix $M$ whose rows and columns are indexed by the elements of $X=\{1,2, \cdots, n\}$ and $Y=\{1,2, \cdots, p\}$ respectively. Let $\alpha$ be a subset of $X$ and $\beta$ be a subset of $Y$.
- Consider an $n \times p$ matrix $M$ whose rows and columns are indexed by the elements of $X=\{1,2, \cdots, n\}$ and $Y=\{1,2, \cdots, p\}$ respectively. Let $\alpha$ be a subset of $X$ and $\beta$ be a subset of $Y$.
- The submatrix of $M$, whose rows are indexed by elements of $\alpha$ and columns are indexed by elements of $\beta$, is denoted by $M[\alpha: \beta]$.
- Consider an $n \times p$ matrix $M$ whose rows and columns are indexed by the elements of $X=\{1,2, \cdots, n\}$ and $Y=\{1,2, \cdots, p\}$ respectively. Let $\alpha$ be a subset of $X$ and $\beta$ be a subset of $Y$.
- The submatrix of $M$, whose rows are indexed by elements of $\alpha$ and columns are indexed by elements of $\beta$, is denoted by $M[\alpha: \beta]$.
- We denote the same matrix by $M[\alpha], M[\alpha:]$ and $M[: \beta]$ according as $\alpha=\beta$, $\beta=Y$ and $\alpha=X$ respectively.
- Consider an $n \times p$ matrix $M$ whose rows and columns are indexed by the elements of $X=\{1,2, \cdots, n\}$ and $Y=\{1,2, \cdots, p\}$ respectively. Let $\alpha$ be a subset of $X$ and $\beta$ be a subset of $Y$.
- The submatrix of $M$, whose rows are indexed by elements of $\alpha$ and columns are indexed by elements of $\beta$, is denoted by $M[\alpha: \beta]$.
- We denote the same matrix by $M[\alpha], M[\alpha:]$ and $M[: \beta]$ according as $\alpha=\beta$, $\beta=Y$ and $\alpha=X$ respectively.
- By $P^{T}$ we denote the transpose of the matrix $P$ and by $X^{c}$ we denote the complement of the set $X$.
- Consider an $n \times p$ matrix $M$ whose rows and columns are indexed by the elements of $X=\{1,2, \cdots, n\}$ and $Y=\{1,2, \cdots, p\}$ respectively. Let $\alpha$ be a subset of $X$ and $\beta$ be a subset of $Y$.
- The submatrix of $M$, whose rows are indexed by elements of $\alpha$ and columns are indexed by elements of $\beta$, is denoted by $M[\alpha: \beta]$.
- We denote the same matrix by $M[\alpha], M[\alpha:]$ and $M[: \beta]$ according as $\alpha=\beta$, $\beta=Y$ and $\alpha=X$ respectively.
- By $P^{T}$ we denote the transpose of the matrix $P$ and by $X^{c}$ we denote the complement of the set $X$.
- The spectrum of the matrix $A$ is denoted by $\operatorname{Spec}(A) . J_{m \times n}$ is the all ones matrix of order $m \times n$.
－We consider a square matrix $A$ whose rows and columns are indexed by ele－ ments of $X=\{1,2, \cdots, n\}$ ．Let $\pi=\left\{X_{1}, X_{2}, \cdots, X_{m}\right\}$ be a partition of $X$ ．
- We consider a square matrix $A$ whose rows and columns are indexed by elements of $X=\{1,2, \cdots, n\}$. Let $\pi=\left\{X_{1}, X_{2}, \cdots, X_{m}\right\}$ be a partition of $X$.
- The characteristic matrix $C=\left(c_{i j}\right)$ of $\pi$ is an $n \times m$ order matrix such that $c_{i j}=1$ if $i \in X_{j}$ and 0 otherwise.
- We consider a square matrix $A$ whose rows and columns are indexed by elements of $X=\{1,2, \cdots, n\}$. Let $\pi=\left\{X_{1}, X_{2}, \cdots, X_{m}\right\}$ be a partition of $X$.
- The characteristic matrix $C=\left(c_{i j}\right)$ of $\pi$ is an $n \times m$ order matrix such that $c_{i j}=1$ if $i \in X_{j}$ and 0 otherwise.
- We partition the matrix $A$ according to $\pi$ as $\left(\begin{array}{cccc}A_{11} & A_{12} & \cdots & A_{1 m} \\ A_{21} & A_{22} & \cdots & A_{2 m} \\ \cdots & \cdots & \cdots & \cdots \\ A_{m 1} & A_{m 2} & \cdots & A_{m m}\end{array}\right)$, where

$$
A_{i j}=A\left[X_{i}: X_{j}\right] \text { and } i, j=1,2, \cdots, m
$$

- We consider a square matrix $A$ whose rows and columns are indexed by elements of $X=\{1,2, \cdots, n\}$. Let $\pi=\left\{X_{1}, X_{2}, \cdots, X_{m}\right\}$ be a partition of $X$.
- The characteristic matrix $C=\left(c_{i j}\right)$ of $\pi$ is an $n \times m$ order matrix such that $c_{i j}=1$ if $i \in X_{j}$ and 0 otherwise.
- We partition the matrix $A$ according to $\pi$ as $\left(\begin{array}{cccc}A_{11} & A_{12} & \cdots & A_{1 m} \\ A_{21} & A_{22} & \cdots & A_{2 m} \\ \cdots & \cdots & \cdots & \cdots \\ A_{m 1} & A_{m 2} & \cdots & A_{m m}\end{array}\right)$, where $A_{i j}=A\left[X_{i}: X_{j}\right]$ and $i, j=1,2, \cdots, m$.
- If $q_{i j}$ denotes the average row sum of $A_{i j}$ then the matrix $Q=\left(q_{i j}\right)$ is called a quotient matrix of $A$. If the row sum of each block $A_{i j}$ is a constant then the partition $\pi$ is called equitable.
- We consider a square matrix $A$ whose rows and columns are indexed by elements of $X=\{1,2, \cdots, n\}$. Let $\pi=\left\{X_{1}, X_{2}, \cdots, X_{m}\right\}$ be a partition of $X$.
- The characteristic matrix $C=\left(c_{i j}\right)$ of $\pi$ is an $n \times m$ order matrix such that $c_{i j}=1$ if $i \in X_{j}$ and 0 otherwise.
- We partition the matrix $A$ according to $\pi$ as $\left(\begin{array}{cccc}A_{11} & A_{12} & \cdots & A_{1 m} \\ A_{21} & A_{22} & \cdots & A_{2 m} \\ \cdots & \cdots & \cdots & \cdots \\ A_{m 1} & A_{m 2} & \cdots & A_{m m}\end{array}\right)$, where $A_{i j}=A\left[X_{i}: X_{j}\right]$ and $i, j=1,2, \cdots, m$.
- If $q_{i j}$ denotes the average row sum of $A_{i j}$ then the matrix $Q=\left(q_{i j}\right)$ is called a quotient matrix of $A$. If the row sum of each block $A_{i j}$ is a constant then the partition $\pi$ is called equitable.

$$
A=\left[\begin{array}{cccccc}
2 & -2 & 1 & 1 & 0 & 1 \\
-1 & 2 & 1 & 1 & 1 & 2 \\
-1 & 0 & 3 & 1 & 2 & 1 \\
2 & 1 & -1 & 1 & -1 & 1 \\
2 & 0 & 0 & 0 & 2 & -1 \\
2 & -2 & 2 & -2 & 0 & 3
\end{array}\right]
$$

- Let $X=\{1,2, \cdots, 6\}$ and $\pi=\left\{X_{1}, X_{2}, X_{3}\right\}$ be a partition of $X$, where $X_{1}=$ $\{1\}, X_{2}=\{2,3\}$ and $X_{3}=\{4,5,6\}$.
- We consider the following matrix $A$ whose rows and columns are indexed by elements of $X$.

$$
A=\left[\begin{array}{c|cc|ccc}
2 & -2 & 1 & 1 & 0 & 1 \\
\hline-1 & 2 & 1 & 1 & 1 & 2 \\
-1 & 0 & 3 & 1 & 2 & 1 \\
\hline 2 & 1 & -1 & 1 & -1 & 1 \\
2 & 0 & 0 & 0 & 2 & -1 \\
2 & -2 & 2 & -2 & 0 & 3
\end{array}\right]
$$

- Here the matrix $A$ is partitioned according to $\pi$. Then the quotient matrix is given by

$$
Q=\left[\begin{array}{ccc}
2 & -1 & 2 \\
-1 & 3 & 4 \\
2 & 0 & 1
\end{array}\right]
$$

- Here the partition $\pi$ is equitable partition for the matrix $A$.

The following are well known results on an equitable partition of a matrix.

## Theorem 1 (Brouwer and Haemers [4])

Let $Q$ be a quotient matrix of any square matrix $A$ corresponding to an equitable partition. Then the spectrum of $A$ contains the spectrum of $Q$.

The following are well known results on an equitable partition of a matrix.

## Theorem 1 (Brouwer and Haemers [4])

Let $Q$ be a quotient matrix of any square matrix $A$ corresponding to an equitable partition. Then the spectrum of $A$ contains the spectrum of $Q$.

## Theorem 2 (Atik and Panigrahi, 2018)

The spectral radius of a nonnegative square matrix $A$ is the same as the spectral radius of a quotient matrix corresponding to an equitable partition.

The following are well known results on an equitable partition of a matrix.

## Theorem 1 (Brouwer and Haemers [4])

Let $Q$ be a quotient matrix of any square matrix $A$ corresponding to an equitable partition. Then the spectrum of $A$ contains the spectrum of $Q$.

## Theorem 2 (Atik and Panigrahi, 2018)

The spectral radius of a nonnegative square matrix $A$ is the same as the spectral radius of a quotient matrix corresponding to an equitable partition.

## Stochastic matrix:

A square matrix whose entries are nonnegative and for which each row sum equals to one is known as a stochastic matrix. Therefore stochastic matrices can be considered to have an equitable partition with one partition set and by previous theorem 1 is the spectral radius of a stochastic matrix.

Let $A$ be a square matrix having an equitable partition. Then the theorem below finds some matrices whose eigenvalues are the eigenvalues of $A$ other than the eigenvalues of the quotient matrix $Q$.

## Theorem 3

Let $Q$ be a quotient matrix of any square matrix $A$ corresponding to an equitable partition $\pi=\left\{X_{1}, X_{2}, \cdots, X_{k}\right\}$. Also let $C$ be the characteristic matrix of $\pi$ and $\alpha$ be an index set which contains exactly one element from each $X_{i}, i=1,2, \cdots, k$. Then the spectrum of $A$ is equal to the union of spectrum of $Q$ and spectrum of $Q^{*}$, where $Q^{*}=A\left[\alpha^{c}\right]-C\left[\alpha^{c}:\right] A\left[\alpha: \alpha^{c}\right]$.

## An example

We consider the partition $\pi=\left\{X_{1}, X_{2}\right\}$ for the matrix $S$, where $X_{1}=\{1,2\}$ and $X_{2}=\{3,4,5\}$ :

$$
S=\left[\begin{array}{cc|ccc}
0.21 & 0.32 & 0.12 & 0 & 0.35 \\
0.23 & 0.3 & 0.17 & 0.2 & 0.1 \\
\hline 0.15 & 0.2 & 0.21 & 0.2 & 0.24 \\
0.3 & 0.05 & 0.3 & 0.35 & 0 \\
0.17 & 0.18 & 0.15 & 0.2 & 0.3
\end{array}\right]
$$

Then $\pi$ is also an equitable partition for the matrix $S$. For this $\pi$ corresponding quotient matrix is

$$
Q=\left[\begin{array}{ll}
0.53 & 0.47 \\
0.35 & 0.65
\end{array}\right]
$$

and we have $\left|X_{1}\right|\left|X_{2}\right|=6$ choice of $\alpha$ as in Theorem 3. For each $\alpha$ corresponding $Q^{*}$ are as follows:

$$
\begin{gathered}
\alpha=\{1,3\}, Q_{\alpha}^{*}=\left[\begin{array}{ccc}
-0.02 & 0.2 & -0.25 \\
-0.15 & 0.15 & -0.24 \\
-0.02 & 0 . & 0.06
\end{array}\right], \alpha=\{1,4\}, Q_{\alpha}^{*}=\left[\begin{array}{cc}
-0.02 & 0.05 \\
0.15 & -0.25 \\
0.13 & -0.09 \\
0.24 \\
0.3
\end{array}\right], \\
\alpha=\{1,5\}, Q_{\alpha}^{*}=\left[\begin{array}{ccc}
-0.02 & 0.05 & 0.2 \\
0.02 & 0.06 & 0 . \\
-0.13 & 0.15 & 0.15
\end{array}\right], \alpha=\{2,3\}, Q_{\alpha}^{*}=\left[\begin{array}{cc}
-0.02 & -0.2 \\
0.15 & 0.15 \\
0.02 & -0.24 \\
0 . & 0.06
\end{array}\right] \\
\alpha=\{2,4\}, Q_{\alpha}^{*}=\left[\begin{array}{ccc}
-0.02 & -0.05 & 0.25 \\
-0.15 & -0.09 & 0.24 \\
-0.13 & -0.15 & 0.3
\end{array}\right], \alpha=\{2,5\}, Q_{\alpha}^{*}=\left[\begin{array}{ccc}
-0.02 & -0.05 & -0.2 \\
-0.02 & 0.06 & 0 . \\
0.13 & 0.15 & 0.15
\end{array}\right]
\end{gathered}
$$

- We consider the following matrix

$$
A=\left[\begin{array}{c|cc|ccc}
2 & -2 & -2 & 1 & 1 & 1 \\
\hline-1 & 2 & -1 & 1.5 & 1 & 2 \\
-1 & -1 & 2 & 1.5 & 2 & 1 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 \\
2 & 1 & 1 & 0 & 2 & 1 \\
2 & 1 & 1 & 2 & 0 & 1
\end{array}\right]
$$

- We consider the following matrix

$$
A=\left[\begin{array}{c|cc|ccc}
2 & -2 & -2 & 1 & 1 & 1 \\
\hline-1 & 2 & -1 & 1.5 & 1 & 2 \\
-1 & -1 & 2 & 1.5 & 2 & 1 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 \\
2 & 1 & 1 & 0 & 2 & 1 \\
2 & 1 & 1 & 2 & 0 & 1
\end{array}\right]
$$

- Then the quotient matrices corresponding to the rows and columns are given by

$$
Q=\left[\begin{array}{ccc}
2 & -4 & 3 \\
-1 & 1 & 4.5 \\
2 & 2 & 3
\end{array}\right] \text { and } P=\left[\begin{array}{ccc}
2 & -2 & 1 \\
-2 & 1 & 3 \\
6 & 3 & 3
\end{array}\right] \text { respectively. }
$$

- We consider the following matrix
$A=\left[\begin{array}{c|cc|ccc}2 & -2 & -2 & 1 & 1 & 1 \\ \hline-1 & 2 & -1 & 1.5 & 1 & 2 \\ -1 & -1 & 2 & 1.5 & 2 & 1 \\ \hline 2 & 1 & 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 0 & 2 & 1 \\ 2 & 1 & 1 & 2 & 0 & 1\end{array}\right]$.
- Then the quotient matrices corresponding to the rows and columns are given by $Q=\left[\begin{array}{ccc}2 & -4 & 3 \\ -1 & 1 & 4.5 \\ 2 & 2 & 3\end{array}\right]$ and $P=\left[\begin{array}{ccc}2 & -2 & 1 \\ -2 & 1 & 3 \\ 6 & 3 & 3\end{array}\right]$ respectively.
- One may expect that the matrices $P$ and $Q$ have different eigenvalues. But observe that $P$ and $Q$ have same eigenvalues. Then the question is whether this situation holds for all such $P$ and $Q$ or not. This is answered in the next result.


## One more observation

- We consider the following matrix
$A=\left[\begin{array}{c|cc|ccc}2 & -2 & -2 & 1 & 1 & 1 \\ \hline-1 & 2 & -1 & 1.5 & 1 & 2 \\ -1 & -1 & 2 & 1.5 & 2 & 1 \\ \hline 2 & 1 & 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 0 & 2 & 1 \\ 2 & 1 & 1 & 2 & 0 & 1\end{array}\right]$.
- Then the quotient matrices corresponding to the rows and columns are given by
$Q=\left[\begin{array}{ccc}2 & -4 & 3 \\ -1 & 1 & 4.5 \\ 2 & 2 & 3\end{array}\right]$ and $P=\left[\begin{array}{ccc}2 & -2 & 1 \\ -2 & 1 & 3 \\ 6 & 3 & 3\end{array}\right]$ respectively.
- One may expect that the matrices $P$ and $Q$ have different eigenvalues. But observe that $P$ and $Q$ have same eigenvalues. Then the question is whether this situation holds for all such $P$ and $Q$ or not. This is answered in the next result.


## Theorem 4

Let $Q$ and $P$ be quotient matrices for rows and columns of any square matrix $A$ corresponding to the equitable partition $\pi=\left\{X_{1}, X_{2}, \cdots, X_{k}\right\}$. Then $P$ and $Q$ have same eigenvalues.

## Geršgorin discs theorem

## Theorem 5 (Geršgorin[5])

Let $A=\left[a_{i j}\right] \in M_{n}$ and consider the $n$ Geršgorin discs

$$
\left\{z \in \mathbb{C}:\left|z-a_{i i}\right| \leq \sum_{j \neq i}\left|a_{i j}\right|\right\}, i=1,2, \ldots, n
$$

Then the eigenvalues of $A$ are in the union of Geršgorin discs

$$
G(A)=\bigcup_{i=1}^{n}\left\{z \in \mathbb{C}:\left|z-a_{i i}\right| \leq \sum_{j \neq i}\left|a_{i j}\right|\right\}
$$



Figure: Geršgorin discs for any square matrix

For the matrix $A=\left[a_{i j}\right] \in M_{n}$, we hereby denote as $\mathcal{G}(A)$ the intersection of two regions as follows:
$\mathcal{G}(A)=\left(\bigcup_{i=1}^{n}\left\{z \in \mathbb{C}:\left|z-a_{i i}\right| \leq \sum_{j \neq i}\left|a_{i j}\right|\right\}\right) \bigcap\left(\bigcup_{i=1}^{n}\left\{z \in \mathbb{C}:\left|z-a_{i i}\right| \leq \sum_{j \neq i}\left|a_{j i}\right|\right\}\right)$.

## Theorem 6

Let $Q$ be a quotient matrix of any square matrix $A$ corresponding to an equitable partition $\pi=\left\{X_{1}, X_{2}, \cdots, X_{k}\right\}$. Also let $C$ be the characteristic matrix of $\pi$ and $\mathcal{I}=\left\{\alpha: \alpha\right.$ contains exactly one element from each $\left.X_{i}, i=1,2, \cdots, k\right\}$. Let $\mathcal{G}(A)$ be the region defined as in (1). Then the eigenvalues of $A$ lie in

$$
\left[\bigcap_{\alpha \in \mathcal{I}} \mathcal{G}\left(Q_{\alpha}\right)\right] \bigcup \operatorname{Spec}(Q), \text { where } Q_{\alpha}=A\left[\alpha^{c}\right]-C\left[\alpha^{c}:\right] A\left[\alpha: \alpha^{c}\right]
$$

Here we state some of the earlier results for eigenvalue localization for stochastic matrices

## Theorem 7 (Cvetković et al., 2011)

Let $S=\left(s_{i j}\right)$ be a stochastic matrix, and let $s_{i}$ be the minimal element among the offdiagonal entries of the ith column of $S$. Taking $\gamma=\max _{i \in[n]}\left(s_{i i}-s_{i}\right)$, for any $\lambda \in$ $\sigma(S) \backslash\{1\}$, we have

$$
|\lambda-\gamma| \leq 1-\operatorname{trace}(S)+(n-1) \gamma .
$$

## Theorem 8 (Li and Li, 2014 )

Let $S=\left(s_{i j}\right)$ be a stochastic matrix, and let $S_{i}=\max _{j \neq i} s_{j i}$. Taking $\gamma^{\prime}=\max _{i \in[n]}\left(S_{i}-\right.$ $\left.s_{i i}\right)$, for any $\lambda \in \sigma(S) \backslash\{1\}$, we have

$$
\left|\lambda+\gamma^{\prime}\right| \leq \operatorname{trace}(S)+(n-1) \gamma^{\prime}-1
$$

## Theorem 9 (Banerjee and Mehatari, 2016)

Let $S$ be a stochastic matrix of order $n$. Then the eigenvalues of $S$ lie in the region

$$
\left[\bigcap_{i=1}^{n} G_{S(i)} \cup\{1\}\right], \text { where } G_{S(i)}=\bigcup_{k \neq i}\left\{z \in \mathbb{C}:\left|z-s_{k k}+s_{i k}\right| \leq \sum_{j \neq k}\left|s_{k j}-s_{i j}\right|\right\}
$$

## Theorem 10

Let $S$ be a stochastic matrix of order $n$. Then the eigenvalues of $S$ lie in the region

$$
\begin{aligned}
& {\left[\bigcap_{i=1}^{n} \mathcal{G}_{i} \cup\{1\}\right], \text { where }} \\
& \mathcal{G}_{i}=\left(\bigcup_{k \neq i}\left\{z \in \mathbb{C}:\left|z-s_{k k}+s_{i k}\right| \leq \sum_{j \neq k}\left|s_{k j}-s_{i j}\right|\right\}\right) \bigcap \\
& \quad\left(\bigcup_{k \neq i}\left\{z \in \mathbb{C}:\left|z-s_{k k}+s_{i k}\right| \leq \sum_{j \neq k}\left|s_{j k}-s_{i k}\right|\right\}\right)
\end{aligned}
$$

## Corollary 11

Let $S$ be a stochastic matrix of order $n$ and $p \in[0,1]$. Then the eigenvalues of $S$ lie in the region

$$
\begin{gathered}
{\left[\bigcap_{i=1}^{n} \mathcal{O}_{i} \cup\{1\}\right], \text { where }} \\
\mathcal{O}_{i}=\left(\bigcup_{k \neq i}\left\{z \in \mathbb{C}:\left|z-s_{k k}+s_{i k}\right| \leq\left(\sum_{j \neq k}\left|s_{k j}-s_{i j}\right|\right)^{p}\left(\sum_{j \neq k}\left|s_{j k}-s_{i k}\right|\right)^{1-p}\right\}\right)
\end{gathered}
$$

In the following we give an example of a stochastic matrix for which this fact has been described graphically. We consider the following stochastic matrix:

$$
S=\left[\begin{array}{ccccc}
0.21 & 0.32 & 0.12 & 0 & 0.35 \\
0.23 & 0.3 & 0.17 & 0.2 & 0.1 \\
0.15 & 0.2 & 0.21 & 0.2 & 0.24 \\
0.3 & 0.05 & 0.3 & 0.35 & 0 \\
0.17 & 0.18 & 0.15 & 0.2 & 0.3
\end{array}\right]
$$

The eigenvalues of $S$ other than one are $0.18,0.0878717,0.0510641+0.134975 i$ and $0.0510641-0.134975 i$ which are plotted in figure (a).

Note that the above stochastic matrix has two quotient matrix corresponding to two different equitable partitions as follows: $Q=[1]$ and $Q^{\prime}=\left[\begin{array}{ll}0.53 & 0.47 \\ 0.35 & 0.65\end{array}\right]$

(a) Eigenvalues other than 1

(d) Region given by Theorem 9

(b) Region given by Theorem 7

(e) Region given by Theorem 10

(c) Region given by Theorem 8

(f) Region given by Theorem 6

- We notice that in case of distance regular graph [3], the equitable partition concept has been used to find the eigenvalues of adjacency [3] and distance [2] matrices. In each case some quotient matrix corresponding to an equitable partition contain all the distinct eigenvalues of the corresponding adjacency and distance matrices.
- We notice that in case of distance regular graph [3], the equitable partition concept has been used to find the eigenvalues of adjacency [3] and distance [2] matrices. In each case some quotient matrix corresponding to an equitable partition contain all the distinct eigenvalues of the corresponding adjacency and distance matrices.
- Again consider the following matrix:

$$
J=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Again $Q_{1}=$ [3] and $Q_{2}=\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right]$ are quotient matrices of $J$ corresponding to two different equitable partitions. One can observe that $Q_{2}$ contains all the distinct eigenvalues of $J$ where as $Q_{1}$ does not.

## Problem to think

- We notice that in case of distance regular graph [3], the equitable partition concept has been used to find the eigenvalues of adjacency [3] and distance [2] matrices. In each case some quotient matrix corresponding to an equitable partition contain all the distinct eigenvalues of the corresponding adjacency and distance matrices.
- Again consider the following matrix:

$$
J=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Again $Q_{1}=[3]$ and $Q_{2}=\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right]$ are quotient matrices of $J$ corresponding
to two different equitable partitions. One can observe that $Q_{2}$ contains all the distinct eigenvalues of $J$ where as $Q_{1}$ does not.

- Thus it is an interesting problem to find the condition when a quotient matrix contains all the distinct eigenvalues of the original matrix. Formally, we impose the following problem:


## Problem 12

Let $Q$ be a quotient matrix of a matrix $A$ corresponding to an equitable partition. Then what is the necessary and sufficient condition on $Q$ to contain all the distinct eigenvalues of $A$ ?

On equitable partition of matrices and its applications, Linear and Multilinear Algebra, F. Atik DOI: 10.1080/03081087.2019.1572708
F. Atik and P. Panigrahi, On the distance spectrum of distance regular graphs, Linear Algebra Appl. 478 (2015) 256-273.
A. E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, SpringerVerlag, Berlin, 1989.
$\square$ A. E. Brouwer and W. H. Haemers, Spectra of graphs. Springer Science and Business Media; 2011.
目
R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university press; 2013.
A. Banerjee and R. Mehatari, An eigenvalue localization theorem for stochastic matrices and its application to randic matrices, Linear Algebra Appl. 505 (2016) 85-96.
L. Cvetkovic, V. Kostic, J. Pena, Eigenvalue localization refinements for matrices related to positivity, SIAM Journal on Matrix Analysis and Applications, 32(3) (2011) 771-784.
.
C. Li and Y. Li, A modification of eigenvalue localization for stochastic matrices, Linear Algebra Appl. 460 (2014) 231-241.
R
H. Q. Lin, Y. Hong, J. F. Wang, J. L. Shu, On the distance spectrum of graphs, Linear Algebra Appl. 439 (2013), 1662-1669.
R
Hui Zhou, The inverse of the distance matrix of a distance well-defined graph, Linear Algebra Appl. 517 (2017) 11-29.
Thank youl?

