On equitable partition of matrices and its applications

Dr. Fouzul Atik

Department of Mathematics SRM University-AP, Amaravati

Consider an n × p matrix M whose rows and columns are indexed by the elements of X = {1, 2, · · · , n} and Y = {1, 2, · · · , p} respectively. Let α be a subset of X and β be a subset of Y.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ◆○◆

- Consider an n × p matrix M whose rows and columns are indexed by the elements of X = {1, 2, · · · , n} and Y = {1, 2, · · · , p} respectively. Let α be a subset of X and β be a subset of Y.
- The submatrix of *M*, whose rows are indexed by elements of *α* and columns are indexed by elements of *β*, is denoted by *M*[*α* : *β*].

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○日 - のへで

- Consider an n × p matrix M whose rows and columns are indexed by the elements of X = {1, 2, · · · , n} and Y = {1, 2, · · · , p} respectively. Let α be a subset of X and β be a subset of Y.
- The submatrix of *M*, whose rows are indexed by elements of *α* and columns are indexed by elements of *β*, is denoted by *M*[*α* : *β*].
- We denote the same matrix by $M[\alpha]$, $M[\alpha :]$ and $M[: \beta]$ according as $\alpha = \beta$, $\beta = Y$ and $\alpha = X$ respectively.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○日 - のへで

- Consider an n × p matrix M whose rows and columns are indexed by the elements of X = {1, 2, · · · , n} and Y = {1, 2, · · · , p} respectively. Let α be a subset of X and β be a subset of Y.
- The submatrix of *M*, whose rows are indexed by elements of *α* and columns are indexed by elements of *β*, is denoted by *M*[*α* : *β*].
- We denote the same matrix by $M[\alpha]$, $M[\alpha :]$ and $M[: \beta]$ according as $\alpha = \beta$, $\beta = Y$ and $\alpha = X$ respectively.
- By P^T we denote the transpose of the matrix P and by X^c we denote the complement of the set X.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

- Consider an n × p matrix M whose rows and columns are indexed by the elements of X = {1, 2, · · · , n} and Y = {1, 2, · · · , p} respectively. Let α be a subset of X and β be a subset of Y.
- The submatrix of *M*, whose rows are indexed by elements of *α* and columns are indexed by elements of *β*, is denoted by *M*[*α* : *β*].
- We denote the same matrix by $M[\alpha]$, $M[\alpha :]$ and $M[: \beta]$ according as $\alpha = \beta$, $\beta = Y$ and $\alpha = X$ respectively.
- By P^T we denote the transpose of the matrix P and by X^c we denote the complement of the set X.
- The spectrum of the matrix A is denoted by Spec(A). $J_{m \times n}$ is the all ones matrix of order $m \times n$.

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨー のへで

• We consider a square matrix *A* whose rows and columns are indexed by elements of $X = \{1, 2, \dots, n\}$. Let $\pi = \{X_1, X_2, \dots, X_m\}$ be a partition of *X*.

- We consider a square matrix A whose rows and columns are indexed by elements of X = {1,2,..., n}. Let π = {X₁, X₂,..., X_m} be a partition of X.
- The *characteristic matrix* $C = (c_{ij})$ of π is an $n \times m$ order matrix such that $c_{ij} = 1$ if $i \in X_i$ and 0 otherwise.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- We consider a square matrix A whose rows and columns are indexed by elements of X = {1,2,..., n}. Let π = {X₁, X₂,..., X_m} be a partition of X.
- The *characteristic matrix* $C = (c_{ij})$ of π is an $n \times m$ order matrix such that $c_{ij} = 1$ if $i \in X_i$ and 0 otherwise.

We partition the matrix A according to π as

s
$$\begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1m} \\ A_{21} & A_{22} & \cdots & A_{2m} \\ \cdots & \cdots & \cdots & \cdots \\ A_{m1} & A_{m2} & \cdots & A_{mm} \end{pmatrix}$$
, where

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

$$A_{ij} = A[X_i : X_j] \text{ and } i, j = 1, 2, \cdots, m.$$

- We consider a square matrix A whose rows and columns are indexed by elements of X = {1,2,..., n}. Let π = {X₁, X₂,..., X_m} be a partition of X.
- The *characteristic matrix* $C = (c_{ij})$ of π is an $n \times m$ order matrix such that $c_{ij} = 1$ if $i \in X_i$ and 0 otherwise.
- We partition the matrix A according to π as $\begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1m} \\ A_{21} & A_{22} & \cdots & A_{2m} \\ \cdots & \cdots & \cdots & \cdots \\ A_{m1} & A_{m2} & \cdots & A_{mm} \end{pmatrix}$, where
 - $A_{ij} = A[X_i : X_j]$ and $i, j = 1, 2, \cdots, m$.
- If q_{ij} denotes the average row sum of A_{ij} then the matrix Q = (q_{ij}) is called a quotient matrix of A. If the row sum of each block A_{ij} is a constant then the partition π is called equitable.

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨー のへで

- We consider a square matrix A whose rows and columns are indexed by elements of X = {1, 2, · · · , n}. Let π = {X₁, X₂, · · · , X_m} be a partition of X.
- The *characteristic matrix* $C = (c_{ij})$ of π is an $n \times m$ order matrix such that $c_{ij} = 1$ if $i \in X_i$ and 0 otherwise.
- We partition the matrix A according to π as $\begin{pmatrix}
 A_{11} & A_{12} & \cdots & A_{1m} \\
 A_{21} & A_{22} & \cdots & A_{2m} \\
 \cdots & \cdots & \cdots & \cdots \\
 A_{m1} & A_{m2} & \cdots & A_{mm}
 \end{pmatrix}$, where
 - $A_{ij} = A[X_i : X_j]$ and $i, j = 1, 2, \cdots, m$.
- If q_{ij} denotes the average row sum of A_{ij} then the matrix Q = (q_{ij}) is called a quotient matrix of A. If the row sum of each block A_{ij} is a constant then the partition π is called equitable.

۲

$$A = \begin{bmatrix} 2 & -2 & 1 & 1 & 0 & 1 \\ -1 & 2 & 1 & 1 & 1 & 2 \\ -1 & 0 & 3 & 1 & 2 & 1 \\ 2 & 1 & -1 & 1 & -1 & 1 \\ 2 & 0 & 0 & 0 & 2 & -1 \\ 2 & -2 & 2 & -2 & 0 & 3 \end{bmatrix}$$

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨー のへで

- Let $X = \{1, 2, \dots, 6\}$ and $\pi = \{X_1, X_2, X_3\}$ be a partition of X, where $X_1 = \{1\}, X_2 = \{2, 3\}$ and $X_3 = \{4, 5, 6\}$.
- We consider the following matrix A whose rows and columns are indexed by elements of X.

<i>A</i> =	2	-2 1	101
	-1	21	1 1 2
	-1	03	121
	2	1 –1	1 –1 1
	2	0 0	0 2 -1
	2	-2 2	-2 0 3

 Here the matrix A is partitioned according to π. Then the quotient matrix is given by

$$Q = \begin{bmatrix} 2 & -1 & 2 \\ -1 & 3 & 4 \\ 2 & 0 & 1 \end{bmatrix}$$

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨー のへで

• Here the partition π is equitable partition for the matrix *A*.

The following are well known results on an equitable partition of a matrix.

Theorem 1 (Brouwer and Haemers [4])

Let Q be a quotient matrix of any square matrix A corresponding to an equitable partition. Then the spectrum of A contains the spectrum of Q.

<ロ> (四) (四) (三) (三) (三) (三)

The following are well known results on an equitable partition of a matrix.

Theorem 1 (Brouwer and Haemers [4])

Let Q be a quotient matrix of any square matrix A corresponding to an equitable partition. Then the spectrum of A contains the spectrum of Q.

Theorem 2 (Atik and Panigrahi, 2018)

The spectral radius of a nonnegative square matrix A is the same as the spectral radius of a quotient matrix corresponding to an equitable partition.

(日) (四) (三) (三) (三) (三)

The following are well known results on an equitable partition of a matrix.

Theorem 1 (Brouwer and Haemers [4])

Let Q be a quotient matrix of any square matrix A corresponding to an equitable partition. Then the spectrum of A contains the spectrum of Q.

Theorem 2 (Atik and Panigrahi, 2018)

The spectral radius of a nonnegative square matrix A is the same as the spectral radius of a quotient matrix corresponding to an equitable partition.

Stochastic matrix:

A square matrix whose entries are nonnegative and for which each row sum equals to one is known as a *stochastic matrix*. Therefore stochastic matrices can be considered to have an equitable partition with one partition set and by previous theorem 1 is the spectral radius of a stochastic matrix.

Let *A* be a square matrix having an equitable partition. Then the theorem below finds some matrices whose eigenvalues are the eigenvalues of *A* other than the eigenvalues of the quotient matrix Q.

Theorem 3

Let *Q* be a quotient matrix of any square matrix A corresponding to an equitable partition $\pi = \{X_1, X_2, \dots, X_k\}$. Also let *C* be the characteristic matrix of π and α be an index set which contains exactly one element from each X_i , $i = 1, 2, \dots, k$. Then the spectrum of *A* is equal to the union of spectrum of *Q* and spectrum of Q^* , where $Q^* = A[\alpha^c] - C[\alpha^c :]A[\alpha : \alpha^c]$.

We consider the partition $\pi = \{X_1, X_2\}$ for the matrix *S*, where $X_1 = \{1, 2\}$ and $X_2 = \{3, 4, 5\}$:

	0.21	0.32	0.12	0	0.35
i	0.23	0.3	0.17	0.2	0.1
S =	0.15	0.2	0.21	0.2	0.24
	0.3	0.05	0.3	0.35	0
	0.17	0.18	0.15	0.2	0.3

Then π is also an equitable partition for the matrix *S*. For this π corresponding quotient matrix is

$$Q = \left[\begin{array}{rrr} 0.53 & 0.47 \\ 0.35 & 0.65 \end{array} \right]$$

and we have $|X_1||X_2| = 6$ choice of α as in Theorem 3. For each α corresponding Q^* are as follows:

$$\begin{split} \alpha &= \{1,3\}, \, \mathcal{Q}^{*}_{\alpha} = \begin{bmatrix} -0.02 & 0.2 & -0.25 \\ -0.15 & 0.15 & -0.24 \\ -0.02 & 0. & 0.06 \end{bmatrix}, \, \alpha = \{1,4\}, \, \mathcal{Q}^{*}_{\alpha} = \begin{bmatrix} -0.02 & 0.05 & -0.25 \\ 0.15 & -0.09 & 0.24 \\ 0.13 & -0.15 & 0.3 \end{bmatrix}, \\ \alpha &= \{1,5\}, \, \mathcal{Q}^{*}_{\alpha} = \begin{bmatrix} -0.02 & 0.05 & 0.2 \\ 0.02 & 0.06 & 0. \\ -0.13 & 0.15 & 0.15 \end{bmatrix}, \, \alpha = \{2,3\}, \, \mathcal{Q}^{*}_{\alpha} = \begin{bmatrix} -0.02 & -0.2 & 0.25 \\ 0.15 & 0.15 & -0.24 \\ 0.02 & 0. & 0.06 \end{bmatrix}, \\ \alpha &= \{2,4\}, \, \mathcal{Q}^{*}_{\alpha} = \begin{bmatrix} -0.02 & -0.05 & 0.25 \\ -0.15 & -0.09 & 0.24 \\ -0.13 & -0.15 & 0.3 \end{bmatrix}, \, \alpha = \{2,5\}, \, \mathcal{Q}^{*}_{\alpha} = \begin{bmatrix} -0.02 & -0.05 & -0.22 \\ 0.02 & 0. & 0.06 \\ -0.02 & 0.06 & 0. \\ 0.13 & 0.15 & 0.15 \end{bmatrix} \end{split}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 _ のへで

One more observation

• We consider the following matrix

A =	2	-2 -	-2	1	1	1
	-1	2 -	-1	1.5	1	2
	-1	-1	2	1.5	2	1
	2	1 .	1	1	1	1
	2	1 .	1	0	2	1
	2	1	1	2	0	1

.

< □ > < //>

One more observation

We consider the following matrix

<i>A</i> =	2	-2 -2	1 1 1 1
	-1	2 –1	1.5 1 2
	-1	-1 2	1.5 2 1
	2	1 1	1 1 1
	2	1 1	021
	2	1 1	201

•

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

• Then the quotient matrices corresponding to the rows and columns are given by

$$Q = \begin{bmatrix} 2 & -4 & 3 \\ -1 & 1 & 4.5 \\ 2 & 2 & 3 \end{bmatrix} \text{ and } P = \begin{bmatrix} 2 & -2 & 1 \\ -2 & 1 & 3 \\ 6 & 3 & 3 \end{bmatrix} \text{ respectively.}$$

We consider the following matrix

<i>A</i> =	2	-2 -2	1 1 1
	-1	2 –1	1.5 1 2
	-1	-1 2	1.5 2 1
	2	1 1	1 1 1
	2	1 1	0 2 1
	2	1 1	201

• Then the quotient matrices corresponding to the rows and columns are given by

	2	-4	3]		2	-2	1]	
Q =	-1	1	4.5	and $P =$	-2	1	3	respectively.
	2	2	3]		6	3	3	

One may expect that the matrices P and Q have different eigenvalues. But observe that P and Q have same eigenvalues. Then the question is whether this situation holds for all such P and Q or not. This is answered in the next result.

< ロ > < 四 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We consider the following matrix

<i>A</i> =	2	-2	-2	1	1	1
	-1	2	-1	1.5	1	2
	-1	-1	2	1.5	2	1
	2	1	1	1	1	1
	2	1	1	0	2	1
	2	1	1	2	0	1

• Then the quotient matrices corresponding to the rows and columns are given by

$$Q = \begin{bmatrix} 2 & -4 & 3 \\ -1 & 1 & 4.5 \\ 2 & 2 & 3 \end{bmatrix} \text{ and } P = \begin{bmatrix} 2 & -2 & 1 \\ -2 & 1 & 3 \\ 6 & 3 & 3 \end{bmatrix} \text{ respectively.}$$

One may expect that the matrices P and Q have different eigenvalues. But observe that P and Q have same eigenvalues. Then the question is whether this situation holds for all such P and Q or not. This is answered in the next result.

Theorem 4

Let Q and P be quotient matrices for rows and columns of any square matrix A corresponding to the equitable partition $\pi = \{X_1, X_2, \dots, X_k\}$. Then P and Q have same eigenvalues.

Theorem 5 (Geršgorin[5])

Let $A = [a_{ij}] \in M_n$ and consider the n Geršgorin discs

$$\{z \in \mathbb{C} : |z - a_{ii}| \le \sum_{j \ne i} |a_{ij}|\}, i = 1, 2, ..., n.$$

Then the eigenvalues of A are in the union of Geršgorin discs

$$G(\mathcal{A}) = igcup_{i=1}^n \{z \in \mathbb{C} : |z - a_{ii}| \leq \sum_{j \neq i} |a_{ij}|\}.$$

Figure: Geršgorin discs for any square matrix

For the matrix $A = [a_{ij}] \in M_n$, we hereby denote as $\mathcal{G}(A)$ the intersection of two regions as follows:

$$\mathcal{G}(A) = \left(\bigcup_{i=1}^{n} \{z \in \mathbb{C} : |z - a_{ii}| \le \sum_{j \ne i} |a_{ij}|\}\right) \bigcap \left(\bigcup_{i=1}^{n} \{z \in \mathbb{C} : |z - a_{ii}| \le \sum_{j \ne i} |a_{ji}|\}\right). \quad (1)$$

Theorem 6

Let *Q* be a quotient matrix of any square matrix *A* corresponding to an equitable partition $\pi = \{X_1, X_2, \dots, X_k\}$. Also let *C* be the characteristic matrix of π and $\mathcal{I} = \{\alpha : \alpha \text{ contains exactly one element from each } X_i, i = 1, 2, \dots, k\}$. Let $\mathcal{G}(A)$ be the region defined as in (1). Then the eigenvalues of *A* lie in

$$\left[\bigcap_{\alpha \in \mathcal{I}} \mathcal{G}(Q_{\alpha})\right] \bigcup Spec(Q), \text{ where } Q_{\alpha} = A[\alpha^{c}] - C[\alpha^{c}:]A[\alpha:\alpha^{c}].$$

Here we state some of the earlier results for eigenvalue localization for stochastic matrices

Theorem 7 (Cvetković et al., 2011)

Let $S = (s_{ij})$ be a stochastic matrix, and let s_i be the minimal element among the offdiagonal entries of the *i*th column of *S*. Taking $\gamma = \max_{i \in [n]} (s_{ii} - s_i)$, for any $\lambda \in \sigma(S) \setminus \{1\}$, we have

$$|\lambda - \gamma| \leq 1 - trace(S) + (n-1)\gamma.$$

Theorem 8 (Li and Li, 2014)

Let $S = (s_{ij})$ be a stochastic matrix, and let $S_i = \max_{j \neq i} s_{ji}$. Taking $\gamma' = \max_{i \in [n]} (S_i - s_{ii})$, for any $\lambda \in \sigma(S) \setminus \{1\}$, we have

$$|\lambda + \gamma'| \leq trace(S) + (n-1)\gamma' - 1.$$

Theorem 9 (Banerjee and Mehatari, 2016)

Let S be a stochastic matrix of order n. Then the eigenvalues of S lie in the region

$$\left[\bigcap_{i=1}^{n} G_{S(i)} \cup \{1\}\right], \text{ where } G_{S(i)} = \bigcup_{k \neq i} \{z \in \mathbb{C} : |z - s_{kk} + s_{ik}| \le \sum_{j \neq k} |s_{kj} - s_{ij}|\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Theorem 10

Let S be a stochastic matrix of order n. Then the eigenvalues of S lie in the region

$$\begin{split} \left[\bigcap_{i=1}^{n} \mathcal{G}_{i} \cup \{1\} \right], \text{ where} \\ \mathcal{G}_{i} &= \left(\bigcup_{k \neq i} \{z \in \mathbb{C} : |z - s_{kk} + s_{ik}| \leq \sum_{j \neq k} |s_{kj} - s_{ij}| \} \right) \bigcap \\ & \left(\bigcup_{k \neq i} \{z \in \mathbb{C} : |z - s_{kk} + s_{ik}| \leq \sum_{j \neq k} |s_{jk} - s_{ik}| \} \right). \end{split}$$

Corollary 11

Let S be a stochastic matrix of order n and $p \in [0, 1]$. Then the eigenvalues of S lie in the region

$$\left[\bigcap_{i=1}^{n} \mathcal{O}_{i} \cup \{1\}\right], \text{ where}$$
$$\mathcal{O}_{i} = \left(\bigcup_{k \neq i} \{z \in \mathbb{C} : |z - s_{kk} + s_{ik}| \le (\sum_{j \neq k} |s_{kj} - s_{ij}|)^{p} (\sum_{j \neq k} |s_{jk} - s_{ik}|)^{1-p}\}\right).$$

In the following we give an example of a stochastic matrix for which this fact has been described graphically. We consider the following stochastic matrix:

	0.21	0.32	0.12	0	0.35]
	0.23	0.3	0.17	0.2	0.1	l
S =	0.15	0.2	0.21	0.2	0.24	
	0.3	0.05	0.3	0.35	0	
	0.17	0.18	0.15	0.2	0.3	

The eigenvalues of S other than one are 0.18, 0.0878717, 0.0510641 + 0.134975i and 0.0510641 - 0.134975i which are plotted in figure (a).

Note that the above stochastic matrix has two quotient matrix corresponding to two

different equitable partitions as follows: Q = [1] and Q' = [1]

$$\mathbf{F} = \begin{bmatrix} 0.53 & 0.47 \\ 0.35 & 0.65 \end{bmatrix}$$

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ ─ 臣…

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○日 - のへで

We notice that in case of distance regular graph [3], the equitable partition concept has been used to find the eigenvalues of adjacency [3] and distance [2] matrices. In each case some quotient matrix corresponding to an equitable partition contain all the distinct eigenvalues of the corresponding adjacency and distance matrices.

Problem to think

- We notice that in case of distance regular graph [3], the equitable partition concept has been used to find the eigenvalues of adjacency [3] and distance [2] matrices. In each case some quotient matrix corresponding to an equitable partition contain all the distinct eigenvalues of the corresponding adjacency and distance matrices.
- Again consider the following matrix:

$$J = \left[\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right]$$

Again $Q_1 = [3]$ and $Q_2 = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$ are quotient matrices of *J* corresponding

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨー のへで

to two different equitable partitions. One can observe that Q_2 contains all the distinct eigenvalues of J where as Q_1 does not.

Problem to think

- We notice that in case of distance regular graph [3], the equitable partition concept has been used to find the eigenvalues of adjacency [3] and distance [2] matrices. In each case some quotient matrix corresponding to an equitable partition contain all the distinct eigenvalues of the corresponding adjacency and distance matrices.
- Again consider the following matrix:

$$V = \left[\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right]$$

L

Again $Q_1 = [3]$ and $Q_2 = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$ are quotient matrices of *J* corresponding

to two different equitable partitions. One can observe that Q_2 contains all the distinct eigenvalues of J where as Q_1 does not.

 Thus it is an interesting problem to find the condition when a quotient matrix contains all the distinct eigenvalues of the original matrix. Formally, we impose the following problem:

Problem 12

Let Q be a quotient matrix of a matrix A corresponding to an equitable partition. Then what is the necessary and sufficient condition on Q to contain all the distinct eigenvalues of A ?

ヘロン 人間と 人間と 人間と

On equitable partition of matrices and its applications, Linear and Multilinear Algebra, F. Atik DOI: 10.1080/03081087.2019.1572708

- F. Atik and P. Panigrahi, On the distance spectrum of distance regular graphs, Linear Algebra Appl. 478 (2015) 256-273.
- A. E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
- A. E. Brouwer and W. H. Haemers, Spectra of graphs. Springer Science and Business Media; 2011.
- R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university press; 2013.

(日) (图) (문) (문) (문)

- A. Banerjee and R. Mehatari, An eigenvalue localization theorem for stochastic matrices and its application to randic matrices, Linear Algebra Appl. 505 (2016) 85-96.
- L. Cvetkovic, V. Kostic, J. Pena, Eigenvalue localization refinements for matrices related to positivity, SIAM Journal on Matrix Analysis and Applications, 32(3) (2011) 771-784.
- C. Li and Y. Li, A modification of eigenvalue localization for stochastic matrices, Linear Algebra Appl. 460 (2014) 231-241.

- H. Q. Lin, Y. Hong, J. F. Wang, J. L. Shu, On the distance spectrum of graphs, Linear Algebra Appl. 439 (2013), 1662-1669.
- Hui Zhou, The inverse of the distance matrix of a distance well-defined graph, Linear Algebra Appl. 517 (2017) 11-29.

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ ─ 臣…

