Graph Theory

M. Rajesh Kannan

Department of Mathematics, Indian Institute of Technology Kharagpur, email: rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ac.in

September 18, 2024

[Basics](#page-2-0)

- 2 [Isomorphism](#page-8-0)
- 3 [Adjacency matrices of graphs](#page-15-0)
	- 4 [Automorphism group](#page-21-0)
- 5 [Trees](#page-24-0)
	- [Minimal Spanning Trees](#page-28-0)
	- [Counting labeled trees](#page-31-0)
- 6 [Bipartite graphs](#page-34-0)
	- **[Matching](#page-35-0)**
- 8 [Eulerian graphs](#page-38-0)
	- 9 [Graph decomposition](#page-39-0)
- 10 [Hamiltonian graphs](#page-40-0)
- 11 [Planar graphs](#page-41-0)
-
- [Chromatic number](#page-42-0)

KORK ERKERK EI VAN

A graph $G = (V, E)$ consists of a finite set V of vertices and a set E of 2-elements subsets of V, whose members are called edges. The number of edges in V, denoted by $|V|$, is the order of the graph G and the number of edges in E is the size of the graph G .

Let $V = \{v_1, \ldots, v_n\}$ and $E = \{e_1, \ldots, e_m\}$ be the vertex and edge set of G, respectively.

• If $e = v_i v_i \in E(G)$, then we say the vertices v_i and v_i are adjacent, and the vertices v_i and v_i are incident with the edge e.

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

Example

In this graph: the vertices v_1 and v_2 are adjacenct, but the vertices v_5 and v_8 are not adjacent. The edge e_1 is incident to the vertices v_1 and v_2 , but it is not incidnet with the vertex v_3 .

The *degree* of a vertex v of G, denoted by $deg(v)$, is the number of vertices adjacent to it. Equivalently, $deg(v)$ is the number of edges incident with the vertex v in G .

Theorem

For any graph G, the sum of the degrees of the vertices of G equals to twice the number of edges in G. That is, if the graph G has n vertices and m edges, then

$$
\sum_{i=1}^n \deg(v_i)=2m.
$$

Proof.

Proof by double counting.

A vertex v of G is said to be an even vertex if $deg(v)$ is even. A vertex v of G is said to be an odd vertex if $deg(v)$ is odd.

Corollary

Every graph contains an even number of odd vertices.

- A graph G is said to be *complete graph* if every two vertices are adjacent in G. The complete graph on *n* vertices is denoted by K_n .
- A graph G is said to be null graph is no two vertices are adjacent in G, that is there is no edge in G.

KORK EXTERNE PROVIDE

The complement of a graph G on n vertices, denoted by G^c , is defined as follows:

$$
V(G^c) = V(G), E(G^c) = E(K_n) \setminus E(G)
$$

Example

$$
\sqrt{G}
$$

Let G_1 and G_2 be two graphs. A function $\phi: V(G_1) \to V(G_2)$ is said to be an isomorphism if:

- $\bullet \phi$ is a bijection,
- two vertices v_i and v_j in G_1 are adjacent if and only if $\phi(\mathsf{v}_i)$ and $\phi(\mathsf{v}_j)$ are adjacent in G_2 .

Two graphs G_1 and G_2 are *isomorphic*, if there exists an isomorphism between them.

イロト イ部 トイをトイをトーを

 299

Remark

1 "is isomorphic to" is an equivalence relation.

2 If G_1 and G_2 are isomorphic, then $|V(G_1)| = |V(G_2)|$. The converse need not be true. Construct an example.

Definition

Let G be a graph with $V(G) = \{v_1, \ldots, v_n\}$. The degree sequence of the graph G is defined as:

$$
(\deg(v_1), \deg(v_2), \ldots, \deg(v_n)).
$$

Theorem

If G_1 and G_2 are isomorphic graphs, then the degrees of the vertices of G_1 are exactly the degrees of the vertices of G_2 . That is, the degree sequence of G_1 and G_2 are the same.

Remark

The converse of the Theorem [3.4](#page-10-0) need not be true. Construct a counter example.

Definition

Let G be a graph. A graph H is a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 $2Q$

Let G be a graph, and let $u, v \in V(G)$.

- \bullet A (u, v)-walk is an alternating sequence of vertices and edges of G beginning at u and ending at v .
- \bullet A (u, v)-trail is a (u, v)-walk which does not repeat any edge.
- \bullet A (u, v)-path is a (u, v)-walk which does not repeat any vertex.

Let G be a graph, and $u, v \in V(G)$.

- \bullet The vertices u and v are said to be connected in G if there exists a (u, v) -path in G.
- The graph G is said to be connected, if any two vertices of G are connected. G is disconnected if it is not connected.
- \bullet A connected subgraph H of a graph G is called a component of G if H is not contained in any connected subgraph of G having more edges or vertices than H.

Definition

Let G be a graph, and $u, v \in V(G)$.

- A (u, v) -trial with $u = v$ with at least three edges is called a circuit.
- (v, v) -path with $u = v$ is called a cycle.

Let v be a vertex of G , and e be an edge of G .

- The subgraph obtained by deleting the edge from G, denoted by $G - e$, is the graph with $V(G \setminus e) = V(G)$ and $E(G \setminus e) = E(G) \setminus \{e\}.$
- The subgraph $G \setminus v$ is defined as follows: $V(G \setminus v) = V(G) \setminus \{v\},\$ and the edge set of $G \setminus v$ consists of all edges of G except those incident with v.

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

Let G be a graph with $V(G) = \{1, 2, ..., n\}$ and $E(G) = \{e_1, ..., e_m\}$. The adjacency matrix of G, denoted by $A(G) = (a_{ii})$, is the $n \times n$ matrix whose rows and the columns are indexed by $V(G)$ defined as follow:

$$
a_{ij} = \left\{ \begin{array}{ll} 1 & \text{if } i \sim j \\ 0 & \text{if otherwise} \end{array} \right.
$$

Let G be a connected graph with vertices $\{v_1, v_2, \ldots, v_n\}$ and let A be the adjacency matrix of G. Then,

- \bullet A is symmetric.
- 2 Sum of the 2 \times 2 principal minors of A equals to $-|E(G)|$.
- **3** Sum of the 3 \times 3 principal minors of A equals to twice the number of triangles in the graph.

Theorem

The (i, j) th entry of the matrix A^k equals the number of walks of length k from the vertex i to the vertex j.

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

Corollary

The number of edges in G is
$$
\frac{\lambda_1^2 + \dots + \lambda_n^2}{2}
$$
.

Let G be a connected graph. For $u, v \in V(G)$, the distance between the vertices u and v, denoted by $d(u, v)$, is defined as the length of a shortest path between the vertices u and v . The diameter of the graph G , denoted by diam (G) , is defined as follows:

$$
diam(G) = \max_{u,v \in V(G)} d(u,v).
$$

 $\qquad \qquad \exists \quad \mathbf{1} \in \mathbb{R} \rightarrow \mathbf{1} \in \mathbb{R} \rightarrow \mathbf{1} \oplus \mathbf{1} \math$

Example

 If G is the complete graph on *n* vertices, then diam(G) = 1. If $G = C_n$, then diam $(G) = \lfloor \frac{n}{2} \rfloor$ $\frac{n}{2}$. If $G = P_n$, then diam(G) = $n - 1$.

Theorem

If v_i and v_j are vertices of G with $d(v_i, v_j) = m$, then the matrices I, A, \ldots, A^m are linearly independent.

Corollary

Let G be a connected graph with k distinct eigenvalues and let d be the diameter of G. Then $k > d$.

Let G be a graph with adjacency matrix A. Often we refer to the eigenvalues of A as the eigenvalues of G.

Theorem

- **1** For any positive integer n, the eigenvalues of K_n are $n-1$ with multiplicity 1 and -1 with multiplicity $n-1$.
- 2 For any positive integers p and q, the eigenvalues of $K_{p,q}$ are \sqrt{pq} , $-\sqrt{pq}$ and 0 with multiplicity $p + q - 2$.
- \bullet For any positive integer n, the eigenvalues of C_n are given by the set { $2 \cos \frac{2k\pi}{n}$: $1 \leq k \leq n$ }.

Two graphs G_1 and G_2 are cospectral if the spectrum of $A(G_1)$ and $A(G_2)$ are the same.

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4

Theorem

Let G_1 and G_2 be two cospectral graphs. Then

- the number of vertices in G_1 and G_2 are the same,
- the number edges in G_1 and G_2 are the same.

Theorem

If G_1 and G_2 are isomorphic, then they are cospectral.

Remark

If G_1 and G_2 are cospectral, then they need not be isomorphic.

An isomorphism from a graph G to itself is called an automorphism on G. Consider the set

Aut(G) = { φ : $V(G) \rightarrow V(G)$ | φ is an automorphism.}

(a) As the identity map is an automorphism $Aut(G) \neq \phi$. (b) It is easy to see that $\phi_1, \phi_2 \in \text{Aut}(G) \Rightarrow \phi_1 \circ \phi_2 \in \text{Aut}(X)$ (c) It is also easy to see that $\phi \in$ Aut(G) $\Rightarrow \phi^{-1} \in$ Aut(G)

Theorem

The set of all automorphisms of a graph G , $Aut(G)$, forms a subgroup of $(Sym(n), \circ)$, the group of all permutations on n letters.

KORKARA REPASA DE VOQO

 $(Aut(G), \circ)$ is called the automorphism group of the graph G.

Remark

(a)
$$
\text{Aut}(G) = \text{Aut}(G^c)
$$
.

(b) If $X \cong Y$, then Aut $(X) \cong$ Aut (Y) . For, if ψ is an isomorphism from X to Y then $\phi:$ Aut $(X)\to$ Aut (Y) defined by $\phi(g)=\psi g\psi^{-1}$ defines an isomorphism from $Aut(X)$ to $Aut(Y)$.

(c) Converse of the above remark need not be true. For $\mathsf{Aut}(K_n) \cong \mathsf{Aut}(K_n^c) \cong \mathsf{Sym}(n)$, but $K_n \ncong K_n^c$.

Lemma

If v is a vertex of graph G and $g \in Aut(G)$, then the vertices v and $g(v)$ have same degree.

Remark

Lemma [5.3](#page-22-0) provides a necessary condition for a vertex v_1 to be mapped under an automorphism to another vertex v_2 . This is possible only if both v_1 and v_2 have the same degree.

Example

•
$$
\text{Aut}(K_n) = \text{Sym}(n)
$$
.

• For
$$
m \neq n
$$
, $\text{Aut}(K_{m,n}) = \text{Sym}(n) \times \text{Sym}(m)$

•
$$
Aut(C_n)=D_n.
$$

•
$$
Aut(P_n) = Sym(2)
$$

Lemma

Let
$$
u, v \in V(G)
$$
, $g \in Aut(G)$. Then $d(u, v) = d(g(u), g(v))$.

Remark

Aut(G) = Aut(\overline{G}) (as automorphisms preserve adjacency as well as non-adjacency.)

- A vertex v of G is called a cut-vertex of G, if the number of components in $G \setminus v$ is more than that of G.
- An edge e of G is called a cut-edge or bridge if the number of components in $G \setminus e$ is more than that of G.

Remark

If v is a cut-vertex of a connected graph G, then $G \setminus e$ contains two or more components. However, if e is a bridge of G, then $G \setminus e$ has exactly two components.

Theorem

Let G be a connected graph. An edge e of G is a bridge if and only if e does not lie on any cycle of G.

Definition

A graph G is called a tree if G is connected and it does not contain cycles. A graph that has no cycles is called a forest. A graph G is acyclic if it does not contain cycles.

イロト イ押 トイヨ トイヨト

Theorem

If G is a tree on n vertices and m edges, then $m = n - 1$.

Theorem

Let G be a graph on n vertices. Then the following are equivalent:

- **(a)** G is connected and acyclic.
- \bigcirc G is connected and has n 1 edges.
- \bigcirc G is connected, and every edge of G is a bridge.
- \bullet If u and v are two distinct vertices of G, then there is exactly one (u, v) -path in G.
- \odot G contains no cycles, and adding an edge between any two vertices produces exactly one cycle.

A vertex v of a graph G is said to be *pendant vertex* if $deg(v) = 1$, and is said to be a *quasi-pendant vertex* if it is adjacent to a pendant vertex.

Theorem

Every tree with at least two vertices has at least one pendent vertex.

A subgraph H of a graph G is said to be a spanning subgraph of G if $V(G) = V(H)$. A spanning subgraph which is also a tree is called a spanning tree. In this subsection, we consider graphs with weighted edges. For weighted graph G, the weight of G, denoted by $w(G)$, is the sum of the weights of the edges of G.

Problem: Find a spanning tree T of G with the sum of the weights of its edges $w(T)$ is minimum.

Krushkal's algorthm (Greedy algorithm):

- Step 1 : Choose the first edge e_1 of T from G so that $w(e_1)$ is minimum among all the edges of G.
- Step 2 : Choose the second edge e_2 of T from $G \setminus \{e_1\}$ so that $w(e_2)$ is minimum among all the edges of $G \setminus \{e_1\}$.
- Step 3 : Choose the third edge e_3 of T from $G \setminus \{e_1, e_2\}$ so that $w(e_3)$ is minimum among all the edges of $G \setminus \{e_1, e_2\}.$
- Step 4 : Continue this process until we obtain a spanning tree T .

KORKARRA ERKER SAGA

A spanning tree obtained in the above algorithm is called a minimal spanning tree (MST).

Theorem

Let G be a connected graph on n vertices with weighted edges. If T is a minimal spanning tree, then $w(T)$ is minimum among all the spanning trees of G.

We want to count the number of labelled trees on n vertices.

Remark

The following two labelled trees considered to be different.

メロトメ 御 トメ 重 トメ 差 トッ 差

 $2Q$

A Prüfer sequence of length $(n-2)$, for $n \geq 2$, is any sequence of integers between 1 and n , with repetitions allowed.

Lemma

There are n^{n-2} Prüfer sequences of length $n-2$.

Theorem

The number of labelled trees on n vertices is n^{n-2} .

Remark

The number of non-isomorphic trees on *n* vertices is less than n^{n-2} .

KOD KAR KED KED E YOUN

Let G be a connected simple graph with vertex set $\{1, 2, \ldots, n\}$, and let $M = (m_{ii})$ be the $n \times n$ matrix in which $m_{ii} = \deg(v_i)$, for $1 \le i \le n$, and $m_{ii} = -1$ if the vertices v_i and v_i are adjacent, and $m_{ii} = 0$ otherwise.

Theorem (Matrix-Tree theorem)

The number of spanning trees of G equals to the cofactor of any element of M.

Let $G = (V, E)$ be a graph. The graph G is said to be *bipartite* if the vertex set V can be partitioned into two nonempty disjoint sets A and B such that every edge of G has one end vertex in A and the other end in B .

Theorem

A graph G is bipartite if and only if the vertices of G can be colored using 2 colors so that no two adjacent vertices receives same color.

Theorem

A graph G is bipartite if and only if G contains no odd cycles.

Theorem

Let G be a simple bipartite graph on n vertices. Then G has at most $\frac{n^2}{4}$ 4 edges if n edges, and at most $\frac{n^2-1}{4}$ $\frac{-1}{4}$ edges if n is odd.

- • Two edges are said to be *adjacent* if they are incident with a common vertex.
- A matching in a graph is a set of nonadjacent edges.
- \bullet Two ends of each edge of a matching M are said to be matched under M. Each vertex incident with an edge of M is said to be covered by M.
- \bullet A perfect matching is a matching which covers all the vertices of G.
- For a nonempty subset S of vertices, define $N(S)$, the neighborhood of S , is the collection of neighbors of the set S .

 $N(S) := \{u \in V : uv$ is an edge for some $v \in S\}$

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

Theorem (Hall's theorem)

Let $G = A \cup B$ be a bipartite graph. Then G has a perfect matching if and only if $|A| = |B|$ and $|N(S)| \ge |S|$ for all $S \subseteq A$.

Corollary

Let $k \in \mathbb{N}$. Then a k-regular bipartite graph $G = A \cup B$, then G has the following properties:

- $|A| = |B|$
- **2** G contains a perfect matching.

Let A_1, A_2, \ldots, A_n be finite sets. Choose *n* distinct elements a_1, a_2, \ldots, a_n so that $a_i \in A_i$ for all i Such a set of objects is called a system of distinct representatives (SDR).

Theorem

Let A_1, A_2, \ldots, A_n be a collection of finite sets. Then there exists an SDR for A_1, A_2, \ldots, A_n if and only if $|\cup_{i\in I}|\geq |I|$ for all $I\subseteq \{1,\ldots,n\}$.

A connected graph G is Eulerian graph if there exists a closed trail containing every edge of G. Such a trial is an Eulerian trail.

Theorem

Let G be a graph such that for every vertex v of G, $deg(v) \geq 2$. Then G contains a cycle.

Theorem (Euler, 1736)

A connected graph G is Eulerian if and only if the degree of each vertex of G is even.

A decomposition of a graph G is a family F of edge-disjoint subgraphs of G so that

$$
\cup_{F\in\mathcal{F}}E(F)=E(G).
$$

Remark

If a graph G has a cycle decomposition, then degree of every vertex of G is even.

Definition

A graph G is said to be even if every vertex ν of G has even degree.

Theorem (Veblen's theorem(1912/13))

A graph G admits a cycle decomposition if and only G is even.

Theorem (Graham-Pollack Theorem (1971))

Let $\mathcal{F} = \{F_1, \ldots, F_k\}$ be a decomposition of K_n into complete bipartite graphs. Then $k > n-1$.

A graph G is said to be Hamiltonian, if there exists a cycle exists in G containing all the vertices of G. A cylce containing all the vertices of G is called a Hamiltonian cycle.

Theorem (Ore's theorem)

If G is a simple graph with $n \geq 3$ vertices, and if $deg(u) + deg(v) \geq n$ for all pairs of non-adjacent vertices u and v, then G is Hamiltonian.

Corollary

If G is a simple graph with $n \geq 3$ vertices, and if deg(v) $\geq \frac{n}{2}$ $\frac{n}{2}$ for each vertex v of G, then G is Hamiltonian.

A planer graph is a graph that can be drawn in the plane in such a way that no two edges intersect except a vertex. A planar graph already drawn in the plane so that no two edges intersect is refereed to as a plane graph.

Theorem

Let G be a connected plane graph. Then $n - m + r = 2$.

Theorem

Let G be a connected planer graph with at least three vertices. Then $m < 3n - 6$.

Theorem

The graphs K_5 and $K_{3,3}$ are non-planer.

A coloring of a graph G is an assignment of colors to the vertices of the graph such that no two adjacent vertices receive same color. A k -coloring of a graph is a coloring of G using k-colors.

Definition

The chromatic number of a graph G, denoted by $\chi(G)$, is the minimum number k for which the graph has a k -coloring.

 $\qquad \qquad \exists \quad \mathbf{1} \in \mathbb{R} \rightarrow \mathbf{1} \in \mathbb{R} \rightarrow \mathbf{1} \oplus \mathbf{1} \math$

Notation: $\Delta(G)$ - maximum vertex degree of G.

Theorem For any graph G, $\chi(G) \leq 1 + \Delta(G)$.

Theorem (Five color theorem)

If G is a planer graph, then $\chi(G) \leq 5$.

Theorem (Four color theorem)

If G is a planer graph, then $\chi(G) \leq 4$.