INDIAN INSTITUTE OF TECHNOLOGY HYDERABAD
 MA5010/MA1240 - Combinatorics and Graph
 Theory/Combinatorics Problem Sheet 2 Autumn 2023

Problem 1. (a) Find the values of n such that K_{n} is Eulerian.
(b) Find the values of m and n such that $K_{m, n}$ is Eulerian.

Problem 2. (a) Find the values of n such that K_{n} is Hamiltonian.
(b) Find the values of m and n such that $K_{m, n}$ is Hamiltonian.

Problem 3. Show that the Petersen graph is not planer.
Problem 4. Consider the n-cube graph Q_{n} with the vertex set $\{0,1\}^{n}$ defined as follows: Two vertices $\left(u_{1}, \ldots, u_{n}\right)$ and $\left(v_{1}, \ldots, v_{n}\right)$ are adjacent if and only if they differ exactly in one coordinate.
(a) Find the order, the size and the degree sequence of Q_{n}.
(b) Find all the values of n such that Q_{n} is Eulerian.
(c) Find all the values of n such that Q_{n} is Hamiltonian.

Problem 5. Let G be a graph that has exactly two connected components, both of them Hamiltonian graphs. Find the minimum number of edges that one needs to add to G to obtain a Hamiltonian graph.

Problem 6. Find the trees that have the following Prüfer sequences:
(a) $(4,3,2,3,1)$.
(a) $(4,3,2,3,1)$.
(a) $(1,2,1,2,1)$.
(a) $(1,1,1,1,1)$.

Problem 7. Determine all the trees whose Prüfer sequences are constant.

Problem 8. Let G be a graph of odd order such that G and G^{c} are connected. Prove that G is Eulerian if and only if G^{c} is Eulerian.

Problem 9. Show that the graphs obtained from $K_{3,3}$ and K_{5} by removing one edge are planer.

Problem 10. Determine all m and n so that $K_{m, n}$ is planar.

