INDIAN INSTITUTE OF TECHNOLOGY HYDERABAD MA5010/MA1240 - Combinatorics and Graph Theory/Combinatorics Problem Sheet 1 Autumn 2023

Problem 1. Do there exist graphs with the following degree sequences:
(a) $2,3,4,4,5$.
(b) $0,1,2,3,4,5,6$.
(c) $1,1,1,1,1,1$
(d) $1,2,3,4,5,6$

Problem 2. Prove that if a graph G has at least two vertices, then G contains two vertices of the same degree.

Problem 3. Prove that if there is a walk in the graph G between the vertices u and v, then there is a path between the vertices u and v in G. Also, show that every circuit contains a cycle.

Problem 4. Let G be a graph and G^{c} be the complement of G. Show that either G or G^{c} is connected.

Problem 5. Show that in every connected graph $|V(G)|>2$ there exists a vertex so that $G \backslash v$ is connected.

Problem 6. Let G be a tree and v be a vertex in G. Then all the connected components of the graph $G-v$, the graph obtained from G by deleting v, are trees. These connected components are called the branches at the vertex v. Show that every tree contains a vertex such that every branch at this vertex contains at most half the vertices of the tree.

Problem 7. Give an example of a connected graph containing more cut-edges (bridges) than the cut-vertices

Problem 8. Let G be a connected graph on n vertices other than the complete graph. If e is a bridge of G, then show that e is incident with a cut-vertex in G.

Problem 9. Let G be a connected graph containing only even vertices. Prove that G cannot contain cut-edges.

Problem 10. If a tree G contains a vertex of degree d, then G contains at least d pendent vertices.

Problem 11. Let G be a tree. Show that any two maximum-paths in G must have a common vertex.

Problem 12. Let $n \geq 2$. Show that there is a tree with degree sequence $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ if and only if $d_{i}>0$ for all i and $\sum_{i=1}^{n} d_{i}=2(n-1)$.

Problem 13. Let G be a weighted graph. Consider the following algorithm to construct a minimum spanning tree: Choose v_{1} in G. Choose an edge incident with v_{1} with minimum weight. After picking $S=\left\{v_{1}, \ldots, v_{k}\right\}$, choose an edge with one endpoint in S and another in S^{c} and with the smallest weight among all such edges. Let v_{k+1} be the endpoint of this edge not in S, and add this vertex and the associated edge to T. Continue until all vertices of G are in T. Show that any tree obtained by the above algorithm is a minimum spanning tree.

Problem 14. Compute the number of spanning trees in the following graphs:
(a) Complete graph on n vertices minus one edge.
(b) The complete bipartite graph $K_{p, q}$.

