

Problem 1. Do there exist graphs with the following degree sequences:

- (a) 2, 3, 4, 4, 5.
- (b) 0, 1, 2, 3, 4, 5, 6.
- (c) 1, 1, 1, 1, 1, 1
- (d) 1, 2, 3, 4, 5, 6

Problem 2. Prove that if a graph G has at least two vertices, then G contains two vertices of the same degree.

Problem 3. Prove that if there is a walk in the graph G between the vertices u and v, then there is a path between the vertices u and v in G. Also, show that every circuit contains a cycle.

Problem 4. Let G be a graph and G^c be the complement of G. Show that either G or G^c is connected.

Problem 5. Show that in every connected graph |V(G)| > 2 there exists a vertex so that $G \setminus v$ is connected.

Problem 6. Let G be a tree and v be a vertex in G. Then all the connected components of the graph G - v, the graph obtained from G by deleting v, are trees. These connected components are called the branches at the vertex v. Show that every tree contains a vertex such that every branch at this vertex contains at most half the vertices of the tree.

Problem 7. Give an example of a connected graph containing more cut-edges (bridges) than the cut-vertices

Problem 8. Let G be a connected graph on n vertices other than the complete graph. If e is a bridge of G, then show that e is incident with a cut-vertex in G.

Problem 9. Let G be a connected graph containing only even vertices. Prove that G cannot contain cut-edges.

Problem 10. If a tree G contains a vertex of degree d, then G contains at least d pendent vertices.

Problem 11. Let G be a tree. Show that any two maximum-paths in G must have a common vertex.

Problem 12. Let $n \ge 2$. Show that there is a tree with degree sequence (d_1, d_2, \ldots, d_n) if and only if $d_i > 0$ for all i and $\sum_{i=1}^n d_i = 2(n-1)$.

Problem 13. Let G be a weighted graph. Consider the following algorithm to construct a minimum spanning tree: Choose v_1 in G. Choose an edge incident with v_1 with minimum weight. After picking $S = \{v_1, \ldots, v_k\}$, choose an edge with one endpoint in S and another in S^c and with the smallest weight among all such edges. Let v_{k+1} be the endpoint of this edge not in S, and add this vertex and the associated edge to T. Continue until all vertices of G are in T. Show that any tree obtained by the above algorithm is a minimum spanning tree.

Problem 14. Compute the number of spanning trees in the following graphs:

- (a) Complete graph on n vertices minus one edge.
- (b) The complete bipartite graph $K_{p,q}$.