Adjacency matrices of graphs

M. Rajesh Kannan

Department of Mathematics, Indian Institute of Technology Kharagpur, email: rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ac.in

February 8, 2019

Graph

• A graph *G* is a pair (*V*, *E*), where $V = \{v_1, \ldots, v_n\}$ is the vertex set of *G*, and $E = \{e_1, \ldots, e_m\} \subseteq V \times V$ is the edge set *G*.

Graph

• A graph *G* is a pair (*V*, *E*), where $V = \{v_1, \ldots, v_n\}$ is the vertex set of *G*, and $E = \{e_1, \ldots, e_m\} \subseteq V \times V$ is the edge set *G*.

Graph

• A graph *G* is a pair (*V*, *E*), where $V = \{v_1, \ldots, v_n\}$ is the vertex set of *G*, and $E = \{e_1, \ldots, e_m\} \subseteq V \times V$ is the edge set *G*.

• We will work with simple, finite, undirected graphs.

• A subgraph *H* of *G* is such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

- A subgraph *H* of *G* is such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.
- A spanning subgraph *H* of *G* is subgraph with V(H) = V(G) and $E(H) \subseteq E(G)$.

- A subgraph *H* of *G* is such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.
- A spanning subgraph *H* of *G* is subgraph with V(H) = V(G) and $E(H) \subseteq E(G)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• A vertex v_i is incident with an edge e_k , if $v_i \cap e_k \neq \emptyset$.

- A subgraph *H* of *G* is such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.
- A spanning subgraph *H* of *G* is subgraph with V(H) = V(G) and $E(H) \subseteq E(G)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- A vertex v_i is incident with an edge e_k , if $v_i \cap e_k \neq \emptyset$.
- Two vertices v_i and v_j are adjacent, if $(v_i, v_j) \in E$.

- A subgraph *H* of *G* is such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.
- A spanning subgraph *H* of *G* is subgraph with V(H) = V(G) and $E(H) \subseteq E(G)$.
- A vertex v_i is incident with an edge e_k , if $v_i \cap e_k \neq \emptyset$.
- Two vertices v_i and v_j are adjacent, if $(v_i, v_j) \in E$.
- A walk in a graph G is a non-empty alternating sequence of vertices and edges v₁e₁...e_{k-1}v_k.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

3/15

- A subgraph *H* of *G* is such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.
- A spanning subgraph *H* of *G* is subgraph with V(H) = V(G) and $E(H) \subseteq E(G)$.
- A vertex v_i is incident with an edge e_k , if $v_i \cap e_k \neq \emptyset$.
- Two vertices v_i and v_j are adjacent, if $(v_i, v_j) \in E$.
- A walk in a graph G is a non-empty alternating sequence of vertices and edges v₁e₁...e_{k-1}v_k.
- A path is a walk in which all the vertices are distinct.

- A subgraph *H* of *G* is such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.
- A spanning subgraph *H* of *G* is subgraph with V(H) = V(G) and $E(H) \subseteq E(G)$.
- A vertex v_i is incident with an edge e_k , if $v_i \cap e_k \neq \emptyset$.
- Two vertices v_i and v_j are adjacent, if $(v_i, v_j) \in E$.
- A walk in a graph G is a non-empty alternating sequence of vertices and edges v₁e₁...e_{k-1}v_k.
- A path is a walk in which all the vertices are distinct.
- A graph *G* is connected, if between any two vertices of *G* there exist a path connecting them in *G*.

- A subgraph *H* of *G* is such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.
- A spanning subgraph *H* of *G* is subgraph with V(H) = V(G) and $E(H) \subseteq E(G)$.
- A vertex v_i is incident with an edge e_k , if $v_i \cap e_k \neq \emptyset$.
- Two vertices v_i and v_j are adjacent, if $(v_i, v_j) \in E$.
- A walk in a graph G is a non-empty alternating sequence of vertices and edges v₁e₁...e_{k-1}v_k.
- A path is a walk in which all the vertices are distinct.
- A graph *G* is connected, if between any two vertices of *G* there exist a path connecting them in *G*.
- A component is maximal connected subgraph of a graph G.

• A cycle is a path in which the starting and the ending vertices are the same.

- A cycle is a path in which the starting and the ending vertices are the same.
- A graph *G* is a tree, if there is exactly one path between any two vertices of *G*

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

- A cycle is a path in which the starting and the ending vertices are the same.
- A graph *G* is a tree, if there is exactly one path between any two vertices of *G* (equivalently, connected graph without cycles).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- A cycle is a path in which the starting and the ending vertices are the same.
- A graph *G* is a tree, if there is exactly one path between any two vertices of *G* (equivalently, connected graph without cycles).
- If v_i and v_j are vertices of a connected graph G, then the distance between the vertices v_i and v_j, denoted by d(v_i, v_j), defined as the length of a shortest path between them.

- A cycle is a path in which the starting and the ending vertices are the same.
- A graph *G* is a tree, if there is exactly one path between any two vertices of *G* (equivalently, connected graph without cycles).
- If v_i and v_j are vertices of a connected graph G, then the distance between the vertices v_i and v_j, denoted by d(v_i, v_j), defined as the length of a shortest path between them.
- The diameter of a graph G is $diam(G) = max\{d(v_i, v_j)\}$

Adjacency matrix

Definition (Adjacency matrix)

The adjacency matrix of a graph *G* with *n* vertices, $V(G) = \{v_1, ..., v_n\}$ is a $n \times n$ matrix, denoted by $A(G) = (a_{ij})$, and is defined by

$$\mathbf{a}_{ij} = egin{cases} 1 & \textit{if } \mathbf{v}_i \sim \mathbf{v}_j, \ 0 & \textit{otherwise.} \end{cases}$$

くロト (得) (ほ) (ほ)

Example

Consider the graph G

Example

Consider the graph G

The adjacency matrix of G is

$$A(G) = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Let *G* be a connected graph with vertices $\{v_1, v_2, ..., v_n\}$ and let A be the adjacency matrix of G. Then,

A is symmetric.

Let *G* be a connected graph with vertices $\{v_1, v_2, ..., v_n\}$ and let A be the adjacency matrix of G. Then,

- A is symmetric.
- Sum of the 2 \times 2 principal minors of A equals to -|E(G)|.

Let *G* be a connected graph with vertices $\{v_1, v_2, ..., v_n\}$ and let A be the adjacency matrix of G. Then,

- A is symmetric.
- Sum of the 2 \times 2 principal minors of A equals to -|E(G)|.
- Sum of the 3 × 3 principal minors of A equals to twice the number of triangles in the graph.

Let *G* be a connected graph with vertices $\{v_1, v_2, ..., v_n\}$ and let A be the adjacency matrix of G. Then,

- A is symmetric.
- Sum of the 2 \times 2 principal minors of A equals to -|E(G)|.
- Sum of the 3 × 3 principal minors of A equals to twice the number of triangles in the graph.
- (*i*, *j*)th entry of the matrix A^k equals the number of walks of length k from the vertex *i* to the vertex *j*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let *G* be a connected graph with vertices $\{v_1, v_2, ..., v_n\}$ and let A be the adjacency matrix of G. Then,

- A is symmetric.
- Sum of the 2 \times 2 principal minors of A equals to -|E(G)|.
- Sum of the 3 × 3 principal minors of A equals to twice the number of triangles in the graph.
- (*i*, *j*)th entry of the matrix A^k equals the number of walks of length k from the vertex *i* to the vertex *j*.
- So If v_i and v_j are vertices of G with $d(v_i, v_j) = m$, then the matrices I, A, \ldots, A^m are linearly independent.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Let *G* be a connected graph with vertices $\{v_1, v_2, ..., v_n\}$ and let A be the adjacency matrix of G. Then,

- A is symmetric.
- Sum of the 2 \times 2 principal minors of A equals to -|E(G)|.
- Sum of the 3 × 3 principal minors of A equals to twice the number of triangles in the graph.
- (*i*, *j*)th entry of the matrix A^k equals the number of walks of length k from the vertex *i* to the vertex *j*.
- So If v_i and v_j are vertices of G with $d(v_i, v_j) = m$, then the matrices I, A, \ldots, A^m are linearly independent.
- Solution Let *G* be a connected graph with *k* distinct eigenvalues and let *d* be the diameter of *G*. Then k > d.

On adjacency matrix

Definition (Spanning elementary subgraph)

An elementary graph is a graph such that every component is an edge or a cycle.

On adjacency matrix

Definition (Spanning elementary subgraph)

An elementary graph is a graph such that every component is an edge or a cycle. A **spanning elementary subgraph** of a graph G is an elementary subgraph such that it contains all the vertices of G.

On adjacency matrix

Definition (Spanning elementary subgraph)

An elementary graph is a graph such that every component is an edge or a cycle. A **spanning elementary subgraph** of a graph G is an elementary subgraph such that it contains all the vertices of G.

Notation

• $\mathcal{H}(G)$ denote the collection of all spanning elementary subgraphs of a graph *G*.

Notation

- $\mathcal{H}(G)$ denote the collection of all spanning elementary subgraphs of a graph *G*.
- For *H* ∈ *H*(*G*), let *c*(*H*) and *c*₁(*H*) denotes the number of components in *H* which are cycles and edges, respectively.

Determinant of adjacency matrix

Theorem

Let G be a simple graph with $V(G) = \{v_1, v_2, ..., v_n\}$ and A be its adjacency matrix. Then,

$$det(A) = \sum (-1)^{n-c_1(H)-c(H)} 2^{c(H)},$$

where the summation is over all spanning elementary subgraphs H of G.

Determinant of A(G), where

$$A(G) = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Determinant of A(G), where

$$\mathcal{A}(G) = \left(egin{array}{cccc} 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 1 \ 0 & 1 & 0 & 1 \ 1 & 1 & 1 & 0 \end{array}
ight)$$

Determinant of A(G), where

$$A(G) = \left(egin{array}{cccc} 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 1 \ 0 & 1 & 0 & 1 \ 1 & 1 & 1 & 0 \end{array}
ight)$$

$$\det(A) = (-1)^{4-0-1}2^1 + (-1)^{4-2} + (-1)^{4-2} = 0$$

11/15

Nonsingular trees

Definition

A matching in a graph is a set of edges, no two of which have a common vertex.

Nonsingular trees

Definition

A matching in a graph is a set of edges, no two of which have a common vertex. A matching is perfect if every vertex in the graph is incident to an edge in the matching.

ヘロト ヘ戸ト ヘヨト・

Nonsingular trees

Definition

A matching in a graph is a set of edges, no two of which have a common vertex. A matching is perfect if every vertex in the graph is incident to an edge in the matching.

Theorem

Let T be a tree with $V(T) = \{1, 2, ..., n\}$, and let A be the adjacency matrix of T. Then, A is nonsingular if and only if T has a perfect matching.

<ロト < 同ト < 回ト < 回ト = 三

Graph theoretical interpretation of inverse of a tree

Definition

Let T be a tree with a perfect matching \mathcal{M} . A path $P(v_i, v_j)$ is called an alternating path, if the edges are alternately in \mathcal{M} and \mathcal{M}^c , and the first and last edges are in \mathcal{M} .

Theorem

Let T be a nonsingular tree with $V(T) = \{1, 2, ..., n\}$ and let A be the adjacency matrix of T. Let \mathcal{M} be the perfect matching of T. Let $B = [b_{ij}]$ be the $n \times n$ matrix define as follows: $b_{ij} = 0$ if i = j or if P(i, j) is not alternating. If P(i, j) is alternating, then set

$$b_{ij} = (-1)^{rac{d(i,j)-1}{2}}.$$

(日) (四) (王) (日) (日)

Then $B = A^{-1}$ *.*

Interested?

Interested?

http://www.facweb.iitkgp.ac.in/~rkannan/cpandcop.html

Interested?

http://www.facweb.iitkgp.ac.in/~rkannan/cpandcop.html

To join the group on "Graphs, matrices and their applications" mail to: rajeshkannan1.m@gmail.com

References

- R. B. Bapat, Graphs and Matrices, second ed., Universitext, Springer, London; Hindustan Book Agency, New Delhi, 2014.
- Andries E. Brouwer and Willem H. Haemers, Spectra of graphs, Universitext, Springer, New York, 2012.
- Dragoš Cvetković, Peter Rowlinson and Slobodan Simić, An introduction to the theory of graph spectra, London Mathematical Society Student Texts, vol. 75, Cambridge University Press, Cambridge, 2010.
- Richard A. Brualdi, and Dragoš Cvetković, A combinatorial approach to matrix theory and its applications, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2009.