# Adjacency matrices of graphs 

M. Rajesh Kannan

Department of Mathematics, Indian Institute of Technology Kharagpur, email: rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ac.in


February 8, 2019

## Graph

- A graph $G$ is a pair $(V, E)$, where $V=\left\{v_{1}, \ldots, v_{n}\right\}$ is the vertex set of $G$, and $E=\left\{e_{1}, \ldots, e_{m}\right\} \subseteq V \times V$ is the edge set $G$.


## Graph

- A graph $G$ is a pair $(V, E)$, where $V=\left\{v_{1}, \ldots, v_{n}\right\}$ is the vertex set of $G$, and $E=\left\{e_{1}, \ldots, e_{m}\right\} \subseteq V \times V$ is the edge set $G$.



## Graph

- A graph $G$ is a pair $(V, E)$, where $V=\left\{v_{1}, \ldots, v_{n}\right\}$ is the vertex set of $G$, and $E=\left\{e_{1}, \ldots, e_{m}\right\} \subseteq V \times V$ is the edge set $G$.

- We will work with simple, finite, undirected graphs.


## Definitions

- A subgraph $H$ of $G$ is such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.


## Definitions

- A subgraph $H$ of $G$ is such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.
- A spanning subgraph $H$ of $G$ is subgraph with $V(H)=V(G)$ and $E(H) \subseteq E(G)$.


## Definitions

- A subgraph $H$ of $G$ is such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.
- A spanning subgraph $H$ of $G$ is subgraph with $V(H)=V(G)$ and $E(H) \subseteq E(G)$.
- A vertex $v_{i}$ is incident with an edge $e_{k}$, if $v_{i} \cap e_{k} \neq \emptyset$.


## Definitions

- A subgraph $H$ of $G$ is such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.
- A spanning subgraph $H$ of $G$ is subgraph with $V(H)=V(G)$ and $E(H) \subseteq E(G)$.
- A vertex $v_{i}$ is incident with an edge $e_{k}$, if $v_{i} \cap e_{k} \neq \emptyset$.
- Two vertices $v_{i}$ and $v_{j}$ are adjacent, if $\left(v_{i}, v_{j}\right) \in E$.


## Definitions

- A subgraph $H$ of $G$ is such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.
- A spanning subgraph $H$ of $G$ is subgraph with $V(H)=V(G)$ and $E(H) \subseteq E(G)$.
- A vertex $v_{i}$ is incident with an edge $e_{k}$, if $v_{i} \cap e_{k} \neq \emptyset$.
- Two vertices $v_{i}$ and $v_{j}$ are adjacent, if $\left(v_{i}, v_{j}\right) \in E$.
- A walk in a graph $G$ is a non-empty alternating sequence of vertices and edges $v_{1} e_{1} \ldots e_{k-1} v_{k}$.


## Definitions

- A subgraph $H$ of $G$ is such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.
- A spanning subgraph $H$ of $G$ is subgraph with $V(H)=V(G)$ and $E(H) \subseteq E(G)$.
- A vertex $v_{i}$ is incident with an edge $e_{k}$, if $v_{i} \cap e_{k} \neq \emptyset$.
- Two vertices $v_{i}$ and $v_{j}$ are adjacent, if $\left(v_{i}, v_{j}\right) \in E$.
- A walk in a graph $G$ is a non-empty alternating sequence of vertices and edges $v_{1} e_{1} \ldots e_{k-1} v_{k}$.
- A path is a walk in which all the vertices are distinct.


## Definitions

- A subgraph $H$ of $G$ is such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.
- A spanning subgraph $H$ of $G$ is subgraph with $V(H)=V(G)$ and $E(H) \subseteq E(G)$.
- A vertex $v_{i}$ is incident with an edge $e_{k}$, if $v_{i} \cap e_{k} \neq \emptyset$.
- Two vertices $v_{i}$ and $v_{j}$ are adjacent, if $\left(v_{i}, v_{j}\right) \in E$.
- A walk in a graph $G$ is a non-empty alternating sequence of vertices and edges $v_{1} e_{1} \ldots e_{k-1} v_{k}$.
- A path is a walk in which all the vertices are distinct.
- A graph $G$ is connected, if between any two vertices of $G$ there exist a path connecting them in $G$.


## Definitions

- A subgraph $H$ of $G$ is such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.
- A spanning subgraph $H$ of $G$ is subgraph with $V(H)=V(G)$ and $E(H) \subseteq E(G)$.
- A vertex $v_{i}$ is incident with an edge $e_{k}$, if $v_{i} \cap e_{k} \neq \emptyset$.
- Two vertices $v_{i}$ and $v_{j}$ are adjacent, if $\left(v_{i}, v_{j}\right) \in E$.
- A walk in a graph $G$ is a non-empty alternating sequence of vertices and edges $v_{1} e_{1} \ldots e_{k-1} v_{k}$.
- A path is a walk in which all the vertices are distinct.
- A graph $G$ is connected, if between any two vertices of $G$ there exist a path connecting them in $G$.
- A component is maximal connected subgraph of a graph $G$.


## Definitions

- A cycle is a path in which the starting and the ending vertices are the same.


## Definitions

- A cycle is a path in which the starting and the ending vertices are the same.
- A graph $G$ is a tree, if there is exactly one path between any two vertices of $G$


## Definitions

- A cycle is a path in which the starting and the ending vertices are the same.
- A graph $G$ is a tree, if there is exactly one path between any two vertices of $G$ (equivalently, connected graph without cycles).


## Definitions

- A cycle is a path in which the starting and the ending vertices are the same.
- A graph $G$ is a tree, if there is exactly one path between any two vertices of $G$ (equivalently, connected graph without cycles).
- If $v_{i}$ and $v_{j}$ are vertices of a connected graph $\mathcal{G}$, then the distance between the vertices $v_{i}$ and $v_{j}$, denoted by $d\left(v_{i}, v_{j}\right)$, defined as the length of a shortest path between them.


## Definitions

- A cycle is a path in which the starting and the ending vertices are the same.
- A graph $G$ is a tree, if there is exactly one path between any two vertices of $G$ (equivalently, connected graph without cycles).
- If $v_{i}$ and $v_{j}$ are vertices of a connected graph $\mathcal{G}$, then the distance between the vertices $v_{i}$ and $v_{j}$, denoted by $d\left(v_{i}, v_{j}\right)$, defined as the length of a shortest path between them.
- The diameter of a graph $G$ is $\operatorname{diam}(G)=\max \left\{d\left(v_{i}, v_{j}\right)\right\}$


## Adjacency matrix

## Definition (Adjacency matrix)

The adjacency matrix of a graph $G$ with $n$ vertices, $V(G)=\left\{v_{1}, \ldots v_{n}\right\}$ is a $n \times n$ matrix, denoted by $A(G)=\left(a_{i j}\right)$, and is defined by

$$
a_{i j}= \begin{cases}1 & \text { if } v_{i} \sim v_{j}, \\ 0 & \text { otherwise. }\end{cases}
$$

## Example

## Example

Consider the graph $G$


## Example

## Example

Consider the graph $G$


The adjacency matrix of $G$ is

$$
A(G)=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

## Properties

Let $G$ be a connected graph with vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let $A$ be the adjacency matrix of G . Then,
(1) $A$ is symmetric.

## Properties

Let $G$ be a connected graph with vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let A be the adjacency matrix of G . Then,
(1) $A$ is symmetric.
(2) Sum of the $2 \times 2$ principal minors of $A$ equals to $-|E(G)|$.

## Properties

Let $G$ be a connected graph with vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let $A$ be the adjacency matrix of G . Then,
(1) $A$ is symmetric.
(2) Sum of the $2 \times 2$ principal minors of $A$ equals to $-|E(G)|$.
(3) Sum of the $3 \times 3$ principal minors of $A$ equals to twice the number of triangles in the graph.

## Properties

Let $G$ be a connected graph with vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let $A$ be the adjacency matrix of G . Then,
(1) $A$ is symmetric.
(2) Sum of the $2 \times 2$ principal minors of $A$ equals to $-|E(G)|$.
(3) Sum of the $3 \times 3$ principal minors of $A$ equals to twice the number of triangles in the graph.
(4) $(i, j)^{t h}$ entry of the matrix $A^{k}$ equals the number of walks of length $k$ from the vertex $i$ to the vertex $j$.

## Properties

Let $G$ be a connected graph with vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let A be the adjacency matrix of G . Then,
(1) $A$ is symmetric.
(2) Sum of the $2 \times 2$ principal minors of $A$ equals to $-|E(G)|$.
(3) Sum of the $3 \times 3$ principal minors of $A$ equals to twice the number of triangles in the graph.
(4) $(i, j)^{t h}$ entry of the matrix $A^{k}$ equals the number of walks of length $k$ from the vertex $i$ to the vertex $j$.
(5) If $v_{i}$ and $v_{j}$ are vertices of $G$ with $d\left(v_{i}, v_{j}\right)=m$, then the matrices $I, A, \ldots, A^{m}$ are linearly independent.

## Properties

Let $G$ be a connected graph with vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let A be the adjacency matrix of G . Then,
(1) $A$ is symmetric.
(2) Sum of the $2 \times 2$ principal minors of $A$ equals to $-|E(G)|$.
(3) Sum of the $3 \times 3$ principal minors of $A$ equals to twice the number of triangles in the graph.
(4) $(i, j)^{t h}$ entry of the matrix $A^{k}$ equals the number of walks of length $k$ from the vertex $i$ to the vertex $j$.
(5) If $v_{i}$ and $v_{j}$ are vertices of $G$ with $d\left(v_{i}, v_{j}\right)=m$, then the matrices $I, A, \ldots, A^{m}$ are linearly independent.
(6) Let $G$ be a connected graph with $k$ distinct eigenvalues and let $d$ be the diameter of $G$. Then $k>d$.

## On adjacency matrix

Definition (Spanning elementary subgraph)
An elementary graph is a graph such that every component is an edge or a cycle.

## On adjacency matrix

Definition (Spanning elementary subgraph)
An elementary graph is a graph such that every component is an edge or a cycle. A spanning elementary subgraph of a graph $G$ is an elementary subgraph such that it contains all the vertices of $G$.

## On adjacency matrix

Definition (Spanning elementary subgraph)
An elementary graph is a graph such that every component is an edge or a cycle. A spanning elementary subgraph of a graph $G$ is an elementary subgraph such that it contains all the vertices of $G$.



G


## Notation

- $\mathcal{H}(G)$ denote the collection of all spanning elementary subgraphs of a graph $G$.


## Notation

- $\mathcal{H}(G)$ denote the collection of all spanning elementary subgraphs of a graph $G$.
- For $H \in \mathcal{H}(G)$, let $c(H)$ and $c_{1}(H)$ denotes the number of components in $H$ which are cycles and edges, respectively.


## Determinant of adjacency matrix

## Theorem

Let $G$ be a simple graph with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $A$ be its adjacency matrix. Then,

$$
\operatorname{det}(A)=\sum(-1)^{n-c_{1}(H)-c(H)} 2^{c(H)},
$$

where the summation is over all spanning elementary subgraphs $H$ of G.

## Example

Determinant of $A(G)$, where

$$
A(G)=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

## Example

Determinant of $A(G)$, where

$$
A(G)=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$



## Example

Determinant of $A(G)$, where

$$
A(G)=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$


$\operatorname{det}(A)=(-1)^{4-0-1} 2^{1}+(-1)^{4-2}+(-1)^{4-2}=0$

## Nonsingular trees

## Definition

A matching in a graph is a set of edges, no two of which have a common vertex.

## Nonsingular trees

## Definition

A matching in a graph is a set of edges, no two of which have a common vertex. A matching is perfect if every vertex in the graph is incident to an edge in the matching.

## Nonsingular trees

## Definition <br> A matching in a graph is a set of edges, no two of which have a common vertex. A matching is perfect if every vertex in the graph is incident to an edge in the matching.

## Theorem <br> Let $T$ be a tree with $V(T)=\{1,2, . ., n\}$, and let $A$ be the adjacency matrix of $T$. Then, $A$ is nonsingular if and only if $T$ has a perfect matching.

## Graph theoretical interpretation of inverse of a tree

## Definition

Let $T$ be a tree with a perfect matching $\mathcal{M}$. A path $P\left(v_{i}, v_{j}\right)$ is called an alternating path, if the edges are alternately in $\mathcal{M}$ and $\mathcal{M}^{c}$, and the first and last edges are in $\mathcal{M}$.

## Theorem

Let $T$ be a nonsingular tree with $V(T)=\{1,2, \ldots, n\}$ and let $A$ be the adjacency matrix of $T$. Let $\mathcal{M}$ be the perfect matching of $T$. Let $B=\left[b_{i j}\right]$ be the $n \times n$ matrix define as follows: $b_{i j}=0$ if $i=j$ or if $P(i, j)$ is not alternating. If $P(i, j)$ is alternating, then set

$$
b_{i j}=(-1)^{\frac{d(i, j)-1}{2}} .
$$

Then $B=A^{-1}$.

When the inverse of a tree of again a tree?

# When the inverse of a tree of again a tree? 

Interested?

# When the inverse of a tree of again a tree? 

Interested?
http://www.facweb.iitkgp.ac.in/~rkannan/cpandcop.html

## When the inverse of a tree of again a tree?

Interested?
http://www.facweb.iitkgp.ac.in/~rkannan/cpandcop.html

To join the group on "Graphs, matrices and their applications" mail to: rajeshkannan1.m@gmail.com

## References

© R. B. Bapat, Graphs and Matrices, second ed., Universitext, Springer, London; Hindustan Book Agency, New Delhi, 2014.
(2) Andries E. Brouwer and Willem H. Haemers, Spectra of graphs, Universitext, Springer, New York, 2012.
(3) Dragoš Cvetković, Peter Rowlinson and Slobodan Simić , An introduction to the theory of graph spectra, London Mathematical Society Student Texts, vol. 75, Cambridge University Press, Cambridge, 2010.
(9) Richard A. Brualdi, and Dragoš Cvetković, A combinatorial approach to matrix theory and its applications, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2009.

