MA60053 - Computational Linear Algebra Sensitivity analysis

M. Rajesh Kannan

Department of Mathematics, Indian Institute of Technology Kharagpur, email: rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ac.in

January 23, 2020

A closer look at linear systems

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m \times 1}$.

Observation

The linear system Ax = b has a solution if and only if b is a linear combination of columns, a_1, \ldots, a_n , of A,

 $b=a_1x_1+\cdots+a_nx_n,$

where

$$A = (a_1 \dots a_n), \quad x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Sensitivity

Example

Define the function $f : \mathbb{R} \to \mathbb{R}$ as $f(x) = 9^x$. Consider the effect of a small perturbation to the input of $f(50) = 9^{50}$, such as

$$f(50.5) = \sqrt{9} \times 9^{50} = 3f(50).$$

Here a 1 percent change in the input causes a 300 percent change of the output.

Example

The linear system Ax = b with

$$A = \left(\begin{array}{cc} 1/3 & 1/3 \\ 1/3 & 0.3 \end{array}\right), b = \left(\begin{array}{c} 1 \\ 0 \end{array}\right)$$

has the solution

$$x = \left(\begin{array}{c} -27\\ 30 \end{array}\right).$$

ヘロト 人間 とくほとう ほとう

3

Example cont.

Example

However, a small change of the $(2,2)^{th}$ element of the matrix *A* from 0.3 to 1/3 results in the total loss of the solution, because the system $\tilde{A}x = b$ with

$$\tilde{A} = \left(\begin{array}{cc} 1/3 & 1/3 \\ 1/3 & 1/3 \end{array}\right)$$

has no solution. Since,

$$b = \left(\begin{array}{c} 1 \\ 0 \end{array}\right)$$

- 日本 - 4 日本 - 4 日本 - 日本

does belong to range space of A.

Example

The linear system Ax = b with

$$\boldsymbol{A} = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 + \epsilon \end{array} \right), \boldsymbol{b} = \left(\begin{array}{c} -1 \\ 1 \end{array} \right), \boldsymbol{0} < \epsilon \ll 1,$$

has the solution

$$\mathbf{X} = \frac{1}{\epsilon} \left(\begin{array}{c} -\mathbf{2} - \epsilon \\ \mathbf{2} \end{array} \right).$$

Example

The linear system Ax = b with

$$\boldsymbol{A} = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1+\epsilon \end{array}\right), \boldsymbol{b} = \left(\begin{array}{c} -1 \\ 1 \end{array}\right), \boldsymbol{0} < \epsilon \ll 1,$$

has the solution

$$x=\frac{1}{\epsilon}\left(\begin{array}{c}-2-\epsilon\\2\end{array}\right).$$

But changing the $(2,2)^{th}$ element of A from $1 + \epsilon$ to 1 results in the loss of the solution, because the linear system $\tilde{A}x = b$ with

$$\tilde{A} = \left(\begin{array}{rrr} 1 & 1 \\ 1 & 1 \end{array}\right)$$

has no solution. This happens regardless of how small ϵ is.

Absolute and relative error

Definition

If the scalar \tilde{x} is an approximation to the scalar x, then we call $|x - \tilde{x}|$ an absolute error. If $x \neq 0$, then we call $\frac{|x - \tilde{x}|}{|x|}$ a relative error. If $\tilde{x} \neq 0$, then $\frac{|x - \tilde{x}|}{|\tilde{x}|}$ is also a relative error.

Absolute and relative error

Definition

If the scalar \tilde{x} is an approximation to the scalar x, then we call $|x - \tilde{x}|$ an absolute error. If $x \neq 0$, then we call $\frac{|x - \tilde{x}|}{|x|}$ a relative error. If $\tilde{x} \neq 0$, then $\frac{|x - \tilde{x}|}{|\tilde{x}|}$ is also a relative error.

- 日本 - 4 日本 - 4 日本 - 日本

How about matrices?

Absolute and relative errors(using norm)

Definition

If \tilde{x} is an approximation to a vector $x \in \mathbb{R}^n$, then $||x - \tilde{x}||$ is a normwise absolute error. If $x \neq 0$ or $\tilde{x} \neq 0$, then $\frac{||x - \tilde{x}||}{||x||}$ and $\frac{||x - \tilde{x}||}{||\tilde{x}||}$ are normwise relative errors.

Example

Consider the linear system
$$Ax = b$$
, where $A = \begin{pmatrix} 1000 & 999 \\ 999 & 998 \end{pmatrix}$ and $b = \begin{pmatrix} 1999 \\ 1997 \end{pmatrix}$.

ヘロト 人間 とくほとう ほとう

3

Example

Consider the linear system
$$Ax = b$$
, where $A = \begin{pmatrix} 1000 & 999 \\ 999 & 998 \end{pmatrix}$ and $b = \begin{pmatrix} 1999 \\ 1997 \end{pmatrix}$. Then, $x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is the unique solution to the above system.

Example

Consider the linear system
$$Ax = b$$
, where $A = \begin{pmatrix} 1000 & 999 \\ 999 & 998 \end{pmatrix}$ and $b = \begin{pmatrix} 1999 \\ 1997 \end{pmatrix}$. Then, $x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is the unique solution to the above system.
Now, let us consider a slightly perturbed linear system $Ax = b$, where $A = \begin{pmatrix} 1000 & 999 \\ 999 & 998 \end{pmatrix}$ and $b = \begin{pmatrix} 1998.99 \\ 1997.01 \end{pmatrix}$. Then $x = \begin{pmatrix} 20.97 \\ -18.99 \end{pmatrix}$ is the unique solution to the above system.

ヘロト 人間 とくほとう ほとう

3

Condition number

Definition

For an invertible matrix A, the condition number of A with respect to a norm $\|.\|$, denoted by $\kappa(A)$, is defined to be

 $k(A) = \|A\| \|A^{-1}\|.$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Condition number

Definition

For an invertible matrix A, the condition number of A with respect to a norm $\|.\|$, denoted by $\kappa(A)$, is defined to be

 $k(A) = \|A\| \|A^{-1}\|.$

Notation: For $1 \le p \le \infty$, $\kappa_p(A) = ||A||_p ||A^{-1}||_p$.

Condition number

Definition

For an invertible matrix A, the condition number of A with respect to a norm $\|.\|$, denoted by $\kappa(A)$, is defined to be

 $k(A) = ||A|| ||A^{-1}||.$

Notation: For
$$1 \le p \le \infty$$
, $\kappa_p(A) = \|A\|_p \|A^{-1}\|_p$.

Example

If
$$A = \begin{pmatrix} 1000 & 999 \\ 999 & 998 \end{pmatrix}$$
, then $A^{-1} = \begin{pmatrix} -998 & 999 \\ 999 & -1000 \end{pmatrix}$
Then, $||A||_1 = ||A||_{\infty} = 1999$, and $||A^{-1}||_1 = ||A^{-1}||_{\infty} = 1999$. Thus $\kappa_1(A) = \kappa_{\infty}(A) = 1999 \times 1999$.

Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix. Then

- $\kappa(A) = \kappa(A^{-1}).$
- $\kappa(A) = \kappa(cA)$ for any non zero real number c.
- $\kappa(A) \geq 1$.

Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix. Then

•
$$\kappa(A) = \kappa(A^{-1}).$$

•
$$\kappa(A) = \kappa(cA)$$
 for any non zero real number c.

κ(A) ≥ 1.

Remark

Condition number of a singular matrix is defined to be infinity.

In general, there is no relationship between the condition number and the determinant. E.g. For the matrix $A = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix}$, where $\alpha \neq 0$, $\det(A_{\alpha}) = \alpha^2$ and $\kappa(A_{\alpha}) = 1$.

Theorem

Let A be non-singular, and let x and $\tilde{x} = x + \Delta x$ be the solutions of Ax = band $A\tilde{x} = b + \delta b$. Then

$$\frac{|\Delta x||}{||x||} \le \kappa(A) \frac{||\Delta b||}{||b||}.$$

э

Theorem

Let A be non-singular, and let x and $\tilde{x} = x + \Delta x$ be the solutions of Ax = band $A\tilde{x} = b + \delta b$. Then

 $\frac{||\Delta x||}{||x||} \leq \kappa(A) \frac{||\Delta b||}{||b||}.$

Remark

If we perturb the coefficient matrix A, then, also, we can bound the error in the solution. Note that, perturbed matrix need not be invertible.

- 日本 - 4 日本 - 4 日本 - 日本

Theorem

Let A be an invertible matrix. If
$$\frac{\|\Delta A\|}{\|A\|} < \frac{1}{\kappa(A)}$$
, then $A + \Delta A$ is invertible.

Theorem

Let A be an invertible matrix. If x and $\tilde{x} = x + \Delta x$ are the solutions to the systems Ax = b and $(A + \Delta A)\tilde{x} = b$, and $\frac{\|\Delta A\|}{\|A\|} < \frac{1}{\kappa(A)}$, then

$$\frac{\|\Delta x\|}{\|x\|} \leq \frac{k(A)\frac{\|\Delta A\|}{\|A\|}}{1-\frac{\|\Delta A\|}{\|A\|}\kappa(A)}.$$

Theorem

Let A be an invertible matrix. If Ax = b and

$$(A + \Delta A)(x + \Delta x) = (b + \Delta b); \ b + \Delta b \neq 0,$$

then

$$\frac{\|\Delta x\|}{\|\tilde{x}\|} \leq \kappa(A) \left(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|b + \Delta b\|} + \frac{\|\Delta A\| \|\Delta b\|}{\|A\| \|b + \Delta b\|} \right)$$

Theorem

Let A be an invertible matrix, and
$$\frac{\|\Delta A\|}{\|A\|} < \frac{1}{\kappa(A)}$$
. If $Ax = b$ and
 $(A + \Delta A)(x + \Delta x) = (b + \Delta b); \ b \neq 0,$

then

$$\frac{\|\Delta x\|}{\|x\|} \leq \frac{\kappa(A) \left(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|b\|}\right)}{1 - \frac{\|\Delta A\|}{\|A\|}\kappa(A)}$$

14/22

Example

Example

If
$$A = \begin{pmatrix} 1000 & 999 \\ 999 & 998 \end{pmatrix}$$
, then $A^{-1} = \begin{pmatrix} -998 & 999 \\ 999 & -1000 \end{pmatrix}$
Then, $||A||_1 = ||A||_{\infty} = 1999$, and $||A^{-1}||_1 = ||A^{-1}||_{\infty} = 1999$. Thus $\kappa_1(A) = \kappa_{\infty}(A) = 1999 \times 1999$.

The condition number of the matrix *A* is high, so the solutions of the perturbed system in the previous example changed drastically.

Geometric meaning of condition number

Definition

The maximum and minimum magnification by the matrix A are defined, respectively, by

• maxmag(A) =
$$\max_{\|x\|=1} \|Ax\|$$
,

• minmag(A) = min ||x|| = 1 ||Ax||.

Geometric meaning of condition number

Definition

The maximum and minimum magnification by the matrix A are defined, respectively, by

• maxmag(A) =
$$\max_{\|x\|=1} \|Ax\|$$
,

• minmag(A) = min
$$||Ax||$$
.

Theorem

If A is nonsingular matrix, then

Geometric meaning of condition number

Theorem

If A is a nonsingular matrix, then

$$\kappa(A) = rac{\mathsf{maxmag}(A)}{\mathsf{minmag}(A)}.$$

ヘロン 人間 とくほど くほとう

э

• Consider
$$A = \begin{pmatrix} 1000 & 999 \\ 999 & 998 \end{pmatrix}$$
.

(日)

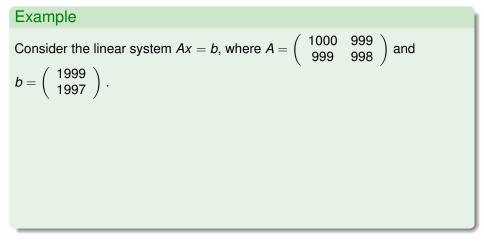
(日)

• Similarly for the matrix $A^{-1} = \begin{pmatrix} -998 & 999 \\ 999 & -1000 \end{pmatrix}$ the vector $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ is in a direction of maximum magnification of A^{-1} , and the vector $\begin{pmatrix} 1997 \\ -1999 \end{pmatrix}$ is in the direction of minimum magnification of *A*.

Using these observations, let us construct an interesting example.

19/22

Spectacular example(Watkins)



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Spectacular example(Watkins)

Example

Consider the linear system Ax = b, where $A = \begin{pmatrix} 1000 & 999 \\ 999 & 998 \end{pmatrix}$ and $b = \begin{pmatrix} 1999 \\ 1997 \end{pmatrix}$. Then, $x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is the unique solution to the above system.

Spectacular example(Watkins)

Example

Consider the linear system
$$Ax = b$$
, where $A = \begin{pmatrix} 1000 & 999 \\ 999 & 998 \end{pmatrix}$ and $b = \begin{pmatrix} 1999 \\ 1997 \end{pmatrix}$. Then, $x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is the unique solution to the above system.

Now, let us consider a slightly perturbed linear system $A(x + \Delta x) = b + \Delta b$, where $\Delta b = \begin{pmatrix} -0.01 \\ 0.01 \end{pmatrix}$, a vector in the direction of maximum magnification by A^{-1} . Then $x + \Delta x = A^{-1} \begin{pmatrix} 1999 \\ 1997 \end{pmatrix} + A^{-1}\Delta b = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 19.97 \\ -19.99 \end{pmatrix} = \begin{pmatrix} 20.97 \\ -18.99 \end{pmatrix}$.

Scaling

Example

Consider the linear system Ax = b, where $A = \begin{pmatrix} 1 & 0 \\ 0 & \epsilon \end{pmatrix}$, where $0 < \epsilon \ll 1$

and,
$$b = \begin{pmatrix} 1 \\ \epsilon \end{pmatrix}$$

Scaling

Example

Consider the linear system Ax = b, where $A = \begin{pmatrix} 1 & 0 \\ 0 & \epsilon \end{pmatrix}$, where $0 < \epsilon \ll 1$ and, $b = \begin{pmatrix} 1 \\ \epsilon \end{pmatrix}$. Then, $x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is the unique solution to the above

system.

Scaling

Example

Consider the linear system Ax = b, where $A = \begin{pmatrix} 1 & 0 \\ 0 & \epsilon \end{pmatrix}$, where $0 < \epsilon \ll 1$ and, $b = \begin{pmatrix} 1 \\ \epsilon \end{pmatrix}$. Then, $x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is the unique solution to the above system. $\kappa_1(A) = \kappa_{\infty}(A) = \frac{1}{\epsilon}$, so the matrix is ill-conditioned.

Take
$$\Delta b = \begin{pmatrix} 0 \\ \epsilon \end{pmatrix}$$
, then $x + \Delta x = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\frac{\|\Delta b\|_{\infty}}{\|b\|_{\infty}} = \epsilon$, and $\frac{\|\Delta x\|_{\infty}}{\|x\|_{\infty}} = 1$.
Multiply the second row of the system by $\frac{1}{\epsilon}$, then we get a well conditioned system, with $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Let A be any nonsingular matrix, and let a_1, a_2, \ldots, a_n be the columns of A. Then for any *i* and *j*,

$$\kappa_{p}(\boldsymbol{A}) \geq rac{\|\boldsymbol{a}_{i}\|_{p}}{\|\boldsymbol{a}_{j}\|_{p}},$$

for $1 \leq p \leq \infty$.

Let A be any nonsingular matrix, and let a_1, a_2, \ldots, a_n be the columns of A. Then for any *i* and *j*,

$$\kappa_{\mathcal{P}}(\mathcal{A}) \geq rac{\| \boldsymbol{a}_i \|_{\mathcal{P}}}{\| \boldsymbol{a}_j \|_{\mathcal{P}}},$$

for $1 \leq p \leq \infty$.

Remark

If the columns of the matrix A have different orders of magnitude, then A is ill-conditioned.

Let A be any nonsingular matrix, and let a_1, a_2, \ldots, a_n be the columns of A. Then for any *i* and *j*,

$$\kappa_{\mathcal{P}}(\mathcal{A}) \geq rac{\| \boldsymbol{a}_i \|_{\mathcal{P}}}{\| \boldsymbol{a}_j \|_{\mathcal{P}}},$$

for $1 \leq p \leq \infty$.

Remark

If the columns of the matrix A have different orders of magnitude, then A is ill-conditioned. Similarly for the rows.

Let A be any nonsingular matrix, and let a_1, a_2, \ldots, a_n be the columns of A. Then for any *i* and *j*,

$$\kappa_{p}(\boldsymbol{A}) \geq rac{\|\boldsymbol{a}_{i}\|_{p}}{\|\boldsymbol{a}_{j}\|_{p}},$$

for $1 \leq p \leq \infty$.

Remark

- If the columns of the matrix A have different orders of magnitude, then A is ill-conditioned. Similarly for the rows. s
- Necessary condition for a matrix to be well-conditioned is that all its rows and columns are of roughly the same magnitude.

Let A be any nonsingular matrix, and let a_1, a_2, \ldots, a_n be the columns of A. Then for any *i* and *j*,

$$\kappa_{\mathcal{P}}(\mathcal{A}) \geq rac{\|\mathcal{a}_i\|_{\mathcal{P}}}{\|\mathcal{a}_j\|_{\mathcal{P}}},$$

for $1 \leq p \leq \infty$.

Remark

- If the columns of the matrix A have different orders of magnitude, then A is ill-conditioned. Similarly for the rows. s
- Necessary condition for a matrix to be well-conditioned is that all its rows and columns are of roughly the same magnitude. It is not sufficient!

Let A be any nonsingular matrix, and let a_1, a_2, \ldots, a_n be the columns of A. Then for any *i* and *j*,

$$\kappa_{\mathcal{P}}(\mathcal{A}) \geq rac{\|\mathcal{a}_i\|_{\mathcal{P}}}{\|\mathcal{a}_j\|_{\mathcal{P}}},$$

for $1 \leq p \leq \infty$.

Remark

- If the columns of the matrix A have different orders of magnitude, then A is ill-conditioned. Similarly for the rows. s
- Necessary condition for a matrix to be well-conditioned is that all its rows and columns are of roughly the same magnitude. It is not sufficient! Example?