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A closer look at linear systems

Let A ∈ Rm×n and b ∈ Rm×1.

Observation
The linear system Ax = b has a solution if and only if b is a linear
combination of columns, a1, . . . ,an, of A,

b = a1x1 + · · ·+ anxn,

where

A = (a1 . . . an), x =

 x1
...

xn

 .
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Sensitivity

Example
Define the function f : R→ R as f (x) = 9x . Consider the effect of a small
perturbation to the input of f (50) = 950, such as

f (50.5) =
√

9× 950 = 3f (50).

Here a 1 percent change in the input causes a 300 percent change of the
output.
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Sensitivity of linear systems

Example
The linear system Ax = b with

A =

(
1/3 1/3
1/3 0.3

)
,b =

(
1
0

)
has the solution

x =

(
−27
30

)
.
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Example cont.

Example
However, a small change of the (2,2)th element of the matrix A from 0.3 to
1/3 results in the total loss of the solution, because the system Ãx = b with

Ã =

(
1/3 1/3
1/3 1/3

)
has no solution. Since,

b =

(
1
0

)
does belong to range space of A.
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Example
The linear system Ax = b with

A =

(
1 1
1 1 + ε

)
,b =

(
−1
1

)
,0 < ε� 1,

has the solution

x = 1
ε

(
−2− ε

2

)
.

But changing the (2,2)th element of A from 1 + ε to 1 results in the loss of the
solution, because the linear system Ãx = b with

Ã =

(
1 1
1 1

)
has no solution. This happens regardless of how small ε is.
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Absolute and relative error

Definition
If the scalar x̃ is an approximation to the scalar x, then we call |x − x̃ | an
absolute error. If x 6= 0, then we call |x−x̃|

|x| a relative error. If x̃ 6= 0, then |x−x̃|
|x̃|

is also a relative error.

How about matrices?
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Absolute and relative errors(using norm)

Definition
If x̃ is an approximation to a vector x ∈ Rn, then ‖x − x̃‖ is a normwise
absolute error. If x 6= 0 or x̃ 6= 0, then ‖x−x̃‖

‖x‖ and ‖x−x̃‖
‖x̃‖ are normwise relative

errors.
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Sensitivity of linear systems

Example

Consider the linear system Ax = b, where A =

(
1000 999
999 998

)
and

b =

(
1999
1997

)
.

Then, x =

(
1
1

)
is the unique solution to the above system.

Now, let us consider a slightly perturbed linear system Ax = b, where

A =

(
1000 999
999 998

)
and b =

(
1998.99
1997.01

)
. Then x =

(
20.97
−18.99

)
is the

unique solution to the above system.

9/22



Sensitivity of linear systems

Example

Consider the linear system Ax = b, where A =

(
1000 999
999 998

)
and

b =

(
1999
1997

)
. Then, x =

(
1
1

)
is the unique solution to the above system.

Now, let us consider a slightly perturbed linear system Ax = b, where

A =

(
1000 999
999 998

)
and b =

(
1998.99
1997.01

)
. Then x =

(
20.97
−18.99

)
is the

unique solution to the above system.

9/22



Sensitivity of linear systems

Example

Consider the linear system Ax = b, where A =

(
1000 999
999 998

)
and

b =

(
1999
1997

)
. Then, x =

(
1
1

)
is the unique solution to the above system.

Now, let us consider a slightly perturbed linear system Ax = b, where

A =

(
1000 999
999 998

)
and b =

(
1998.99
1997.01

)
. Then x =

(
20.97
−18.99

)
is the

unique solution to the above system.

9/22



Condition number

Definition
For an invertible matrix A, the condition number of A with respect to a norm
‖.‖, denoted by κ(A), is defined to be

k(A) = ‖A‖‖A−1‖.

Notation: For 1 ≤ p ≤ ∞, κp(A) = ‖A‖p‖A−1‖p.

Example

If A =

(
1000 999
999 998

)
, then A−1 =

(
−998 999
999 −1000

)
Then, ||A||1 = ||A||∞ = 1999, and ||A−1||1 = ||A−1||∞ = 1999. Thus
κ1(A) = κ∞(A) = 1999× 1999.
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Theorem
Let A ∈ Rn×n be an invertible matrix. Then

κ(A) = κ(A−1).

κ(A) = κ(cA) for any non zero real number c.

κ(A) ≥ 1.

Remark
1 Condition number of a singular matrix is defined to be infinity.

2 In general, there is no relationship between the condition number and

the determinant. E.g. For the matrix A =

(
α 0
0 α

)
, where α 6= 0,

det(Aα) = α2 and κ(Aα) = 1.
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Condition number - measure of sensitivity of linear
systems

Theorem
Let A be non-singular, and let x and x̃ = x + ∆x be the solutions of Ax = b
and Ax̃ = b + δb. Then

||∆x ||
||x ||

≤ κ(A)
||∆b||
||b||

.

Remark
If we perturb the coefficient matrix A, then, also, we can bound the error in
the solution. Note that, perturbed matrix need not be invertible.
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Condition number - measure of sensitivity of linear
systems

Theorem

Let A be an invertible matrix. If
‖∆A‖
‖A‖

<
1

κ(A)
, then A + ∆A is invertible.

Theorem
Let A be an invertible matrix. If x and x̃ = x + ∆x are the solutions to the

systems Ax = b and (A + ∆A)x̃ = b, and
‖∆A‖
‖A‖

<
1

κ(A)
, then

‖∆x‖
‖x‖

≤
k(A)‖∆A‖

‖A‖

1− ‖∆A‖
‖A‖ κ(A)

.
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Condition number - measure of sensitivity of linear
systems
Theorem
Let A be an invertible matrix. If Ax = b and

(A + ∆A)(x + ∆x) = (b + ∆b); b + ∆b 6= 0,

then
‖∆x‖
‖x̃‖

≤ κ(A)

(
‖∆A‖
‖A‖

+
‖∆b‖
‖b + ∆b‖

+
‖∆A‖‖∆b‖
‖A‖‖b + ∆b‖

)
.

Theorem

Let A be an invertible matrix, and
‖∆A‖
‖A‖

<
1

κ(A)
. If Ax = b and

(A + ∆A)(x + ∆x) = (b + ∆b); b 6= 0,

then

‖∆x‖
‖x‖

≤
κ(A)

(
‖∆A‖
‖A‖ + ‖∆b‖

‖b‖

)
1− ‖∆A‖

‖A‖ κ(A)
.
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Example

Example

If A =

(
1000 999
999 998

)
, then A−1 =

(
−998 999
999 −1000

)
Then, ||A||1 = ||A||∞ = 1999, and ||A−1||1 = ||A−1||∞ = 1999. Thus
κ1(A) = κ∞(A) = 1999× 1999.

The condition number of the matrix A is high, so the solutions of the
perturbed system in the previous example changed drastically.
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Geometric meaning of condition number

Definition
The maximum and minimum magnification by the matrix A are defined,
respectively, by

maxmag(A) = max
‖x‖ = 1

‖Ax‖,

minmag(A) = min
‖x‖ = 1

‖Ax‖.

Theorem
If A is nonsingular matrix, then

1 maxmag(A) =
1

minmag(A−1)
, and

2 minmag(A) =
1

maxmag(A−1)
.
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Geometric meaning of condition number

Theorem
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Observations

Consider A =

(
1000 999
999 998

)
.

As, maxmag(A) = ‖A‖∞, so maxmag(A) = 1999. For the vector
(

1
1

)
, it

is easy to see that,
(

1000 999
999 998

)(
1
1

)
=

(
1999
1997

)
.

So, with respect ‖.‖∞ , the vector
(

1
1

)
is magnified maximally by A,

and hence it gives a direction of maximum magnification. Also, the

vector
(

1999
1997

)
is in the direction of minimum magnification A−1.
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Observations

Similarly for the matrix A−1 =

(
−998 999
999 −1000

)
the vector

(
−1
1

)
is

in a direction of maximum magnification of A−1, and the vector(
1997
−1999

)
is in the direction of minimum magnification of A.

Using these observations, let us construct an interesting example.
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Spectacular example(Watkins)

Example

Consider the linear system Ax = b, where A =

(
1000 999
999 998

)
and

b =

(
1999
1997

)
.

Then, x =

(
1
1

)
is the unique solution to the above system.

Now, let us consider a slightly perturbed linear system A(x + ∆x) = b + ∆b,

where ∆b =

(
−0.01
0.01

)
, a vector in the direction of maximum magnification

by A−1. Then

x + ∆x = A−1
(

1999
1997

)
+ A−1∆b =

(
1
1

)
+

(
19.97
−19.99

)
=

(
20.97
−18.99

)
.

20/22



Spectacular example(Watkins)

Example

Consider the linear system Ax = b, where A =

(
1000 999
999 998

)
and

b =

(
1999
1997

)
. Then, x =

(
1
1

)
is the unique solution to the above system.

Now, let us consider a slightly perturbed linear system A(x + ∆x) = b + ∆b,

where ∆b =

(
−0.01
0.01

)
, a vector in the direction of maximum magnification

by A−1. Then

x + ∆x = A−1
(

1999
1997

)
+ A−1∆b =

(
1
1

)
+

(
19.97
−19.99

)
=

(
20.97
−18.99

)
.

20/22



Spectacular example(Watkins)

Example

Consider the linear system Ax = b, where A =

(
1000 999
999 998

)
and

b =

(
1999
1997

)
. Then, x =

(
1
1

)
is the unique solution to the above system.

Now, let us consider a slightly perturbed linear system A(x + ∆x) = b + ∆b,

where ∆b =

(
−0.01
0.01

)
, a vector in the direction of maximum magnification

by A−1. Then

x + ∆x = A−1
(

1999
1997

)
+ A−1∆b =

(
1
1

)
+

(
19.97
−19.99

)
=

(
20.97
−18.99

)
.

20/22



Scaling

Example

Consider the linear system Ax = b, where A =

(
1 0
0 ε

)
, where 0 < ε� 1

and, b =

(
1
ε

)
.

Then, x =

(
1
1

)
is the unique solution to the above

system. κ1(A) = κ∞(A) = 1
ε , so the matrix is ill-conditioned.

Take ∆b =

(
0
ε

)
, then x + ∆x =

(
1
2

)
, ‖∆b‖∞
‖b‖∞ = ε, and ‖∆x‖∞

‖x‖∞ = 1.

Multiply the second row of the system by 1
ε , then we get a well conditioned

system, with
(

1 0
0 1

)(
x1
x2

)
=

(
1
1

)
.
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Theorem
Let A be any nonsingular matrix, and let a1,a2, . . . ,an be the columns of A.
Then for any i and j,

κp(A) ≥
‖ai‖p

‖aj‖p
,

for 1 ≤ p ≤ ∞.

Remark
1 If the columns of the matrix A have different orders of magnitude, then A

is ill-conditioned. Similarly for the rows. s

2 Necessary condition for a matrix to be well-conditioned is that all its rows
and columns are of roughly the same magnitude. It is not sufficient!
Example?
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