MA60053 - Computational Linear Algebra Sensitivity analysis

M. Rajesh Kannan

Department of Mathematics, Indian Institute of Technology Kharagpur, email: rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ac.in

योगः कर्मसु कौशलम्

January 23, 2020

A closer look at linear systems

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m \times 1}$.

Observation

The linear system $A x=b$ has a solution if and only if b is a linear combination of columns, a_{1}, \ldots, a_{n}, of A,

$$
b=a_{1} x_{1}+\cdots+a_{n} x_{n},
$$

where

$$
A=\left(a_{1} \ldots a_{n}\right), \quad x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) .
$$

Sensitivity

Example

Define the function $f: \mathbb{R} \rightarrow \mathbb{R}$ as $f(x)=9^{x}$. Consider the effect of a small perturbation to the input of $f(50)=9^{50}$, such as

$$
f(50.5)=\sqrt{9} \times 9^{50}=3 f(50)
$$

Here a 1 percent change in the input causes a 300 percent change of the output.

Sensitivity of linear systems

Example

The linear system $A x=b$ with

$$
A=\left(\begin{array}{ll}
1 / 3 & 1 / 3 \\
1 / 3 & 0.3
\end{array}\right), b=\binom{1}{0}
$$

has the solution

$$
x=\binom{-27}{30}
$$

Example cont.

Example

However, a small change of the $(2,2)^{\text {th }}$ element of the matrix A from 0.3 to $1 / 3$ results in the total loss of the solution, because the system $\tilde{A} x=b$ with

$$
\tilde{A}=\left(\begin{array}{ll}
1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3
\end{array}\right)
$$

has no solution. Since,

$$
b=\binom{1}{0}
$$

does belong to range space of A.

Example

The linear system $A x=b$ with

$$
A=\left(\begin{array}{cc}
1 & 1 \\
1 & 1+\epsilon
\end{array}\right), b=\binom{-1}{1}, 0<\epsilon \ll 1
$$

has the solution

$$
x=\frac{1}{\epsilon}\binom{-2-\epsilon}{2} .
$$

Example

The linear system $A x=b$ with

$$
A=\left(\begin{array}{cc}
1 & 1 \\
1 & 1+\epsilon
\end{array}\right), b=\binom{-1}{1}, 0<\epsilon \ll 1,
$$

has the solution

$$
x=\frac{1}{\epsilon}\binom{-2-\epsilon}{2} .
$$

But changing the $(2,2)^{\text {th }}$ element of A from $1+\epsilon$ to 1 results in the loss of the solution, because the linear system $\tilde{A} x=b$ with

$$
\tilde{A}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

has no solution. This happens regardless of how small ϵ is.

Absolute and relative error

Definition

If the scalar \tilde{x} is an approximation to the scalar x, then we call $|x-\tilde{x}|$ an absolute error. If $x \neq 0$, then we call $\frac{|x-\tilde{x}|}{|x|}$ a relative error. If $\tilde{x} \neq 0$, then $\frac{|x-\tilde{x}|}{|\tilde{x}|}$ is also a relative error.

Absolute and relative error

Definition

If the scalar \tilde{x} is an approximation to the scalar x, then we call $|x-\tilde{x}|$ an absolute error. If $x \neq 0$, then we call $\frac{|x-\tilde{x}|}{|x|}$ a relative error. If $\tilde{x} \neq 0$, then $\frac{|x-\tilde{x}|}{|\tilde{x}|}$ is also a relative error.

How about matrices?

Absolute and relative errors(using norm)

Definition

If \tilde{x} is an approximation to a vector $x \in \mathbb{R}^{n}$, then $\|x-\tilde{x}\|$ is a normwise absolute error. If $x \neq 0$ or $\tilde{x} \neq 0$, then $\frac{\|x-\tilde{x}\|}{\|x\|}$ and $\frac{\|x-\tilde{x}\|}{\|\tilde{x}\|}$ are normwise relative errors.

Sensitivity of linear systems

Example

Consider the linear system $A x=b$, where $A=\left(\begin{array}{cc}1000 & 999 \\ 999 & 998\end{array}\right)$ and $b=\binom{1999}{1997}$.

Sensitivity of linear systems

Example

Consider the linear system $A x=b$, where $A=\left(\begin{array}{cc}1000 & 999 \\ 999 & 998\end{array}\right)$ and
$b=\binom{1999}{1997}$. Then, $x=\binom{1}{1}$ is the unique solution to the above system.

Sensitivity of linear systems

Example

Consider the linear system $A x=b$, where $A=\left(\begin{array}{rr}1000 & 999 \\ 999 & 998\end{array}\right)$ and $b=\binom{1999}{1997}$. Then, $x=\binom{1}{1}$ is the unique solution to the above system. Now, let us consider a slightly perturbed linear system $A x=b$, where $A=\left(\begin{array}{cc}1000 & 999 \\ 999 & 998\end{array}\right)$ and $b=\binom{1998.99}{1997.01}$. Then $x=\binom{20.97}{-18.99}$ is the unique solution to the above system.

Condition number

Definition

For an invertible matrix A, the condition number of A with respect to a norm $\|$.$\| , denoted by \kappa(A)$, is defined to be

$$
k(A)=\|A\|\left\|A^{-1}\right\| .
$$

Condition number

Definition

For an invertible matrix A, the condition number of A with respect to a norm $\|$.$\| , denoted by \kappa(A)$, is defined to be

$$
k(A)=\|A\|\left\|A^{-1}\right\| .
$$

Notation: For $1 \leq p \leq \infty, \kappa_{p}(A)=\|A\|_{p}\left\|A^{-1}\right\|_{p}$.

Condition number

Definition

For an invertible matrix A, the condition number of A with respect to a norm $\|$.$\| , denoted by \kappa(A)$, is defined to be

$$
k(A)=\|A\|\left\|A^{-1}\right\| .
$$

Notation: For $1 \leq p \leq \infty, \kappa_{p}(A)=\|A\|_{p}\left\|A^{-1}\right\|_{p}$.

Example

If $A=\left(\begin{array}{cc}1000 & 999 \\ 999 & 998\end{array}\right)$, then $A^{-1}=\left(\begin{array}{cc}-998 & 999 \\ 999 & -1000\end{array}\right)$
Then, $\|A\|_{1}=\|A\|_{\infty}=1999$, and $\left\|A^{-1}\right\|_{1}=\left\|A^{-1}\right\|_{\infty}=1999$. Thus
$\kappa_{1}(A)=\kappa_{\infty}(A)=1999 \times 1999$.

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix. Then

- $\kappa(A)=\kappa\left(A^{-1}\right)$.
- $\kappa(A)=\kappa(c A)$ for any non zero real number c.
- $\kappa(A) \geq 1$.

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix. Then

- $\kappa(A)=\kappa\left(A^{-1}\right)$.
- $\kappa(A)=\kappa(c A)$ for any non zero real number c.
- $\kappa(A) \geq 1$.

Remark

(1) Condition number of a singular matrix is defined to be infinity.
(2) In general, there is no relationship between the condition number and the determinant. E.g. For the matrix $A=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \alpha\end{array}\right)$, where $\alpha \neq 0$, $\operatorname{det}\left(\boldsymbol{A}_{\alpha}\right)=\alpha^{2}$ and $\kappa\left(\boldsymbol{A}_{\alpha}\right)=1$.

Condition number - measure of sensitivity of linear systems

Theorem

Let A be non-singular, and let x and $\tilde{x}=x+\Delta x$ be the solutions of $A x=b$ and $A \tilde{x}=b+\delta b$. Then

$$
\frac{\|\Delta x\|}{\|x\|} \leq \kappa(A) \frac{\|\Delta b\|}{\|b\|}
$$

Condition number - measure of sensitivity of linear systems

Theorem

Let A be non-singular, and let x and $\tilde{x}=x+\Delta x$ be the solutions of $A x=b$ and $A \tilde{x}=b+\delta b$. Then

$$
\frac{\|\Delta x\|}{\|x\|} \leq \kappa(A) \frac{\|\Delta b\|}{\|b\|} .
$$

Remark

If we perturb the coefficient matrix A, then, also, we can bound the error in the solution. Note that, perturbed matrix need not be invertible.

Condition number - measure of sensitivity of linear systems

Theorem

Let A be an invertible matrix. If $\frac{\|\Delta A\|}{\|A\|}<\frac{1}{\kappa(A)}$, then $A+\Delta A$ is invertible.

Theorem

Let A be an invertible matrix. If x and $\tilde{x}=x+\Delta x$ are the solutions to the systems $A x=b$ and $(A+\Delta A) \tilde{x}=b$, and $\frac{\|\Delta A\|}{\|A\|}<\frac{1}{\kappa(A)}$, then

$$
\frac{\|\Delta x\|}{\|x\|} \leq \frac{k(A) \frac{\|\Delta A\|}{\|A\|}}{1-\frac{\|\Delta A\|}{\|A\|} \kappa(A)} .
$$

Condition number - measure of sensitivity of linear systems

Theorem
Let A be an invertible matrix. If $A x=b$ and

$$
(A+\Delta A)(x+\Delta x)=(b+\Delta b) ; b+\Delta b \neq 0
$$

then

$$
\frac{\|\Delta x\|}{\|\tilde{x}\|} \leq \kappa(A)\left(\frac{\|\Delta A\|}{\|A\|}+\frac{\|\Delta b\|}{\|b+\Delta b\|}+\frac{\|\Delta A\|\|\Delta b\|}{\|A\|\|b+\Delta b\|}\right) .
$$

Theorem

Let A be an invertible matrix, and $\frac{\|\Delta A\|}{\|A\|}<\frac{1}{\kappa(A)}$. If $A x=b$ and

$$
(A+\Delta A)(x+\Delta x)=(b+\Delta b) ; b \neq 0
$$

then

$$
\frac{\|\Delta x\|}{\|x\|} \leq \frac{\kappa(A)\left(\frac{\|\Delta A\|}{\|A\|}+\frac{\|\Delta b\|}{\|b\|}\right)}{1-\frac{\|\Delta A\|}{\|A\|} \kappa(A)} .
$$

Example

Example

If $A=\left(\begin{array}{cc}1000 & 999 \\ 999 & 998\end{array}\right)$, then $A^{-1}=\left(\begin{array}{cc}-998 & 999 \\ 999 & -1000\end{array}\right)$
Then, $\|A\|_{1}=\|A\|_{\infty}=1999$, and $\left\|A^{-1}\right\|_{1}=\left\|A^{-1}\right\|_{\infty}=1999$. Thus $\kappa_{1}(A)=\kappa_{\infty}(A)=1999 \times 1999$.

The condition number of the matrix A is high, so the solutions of the perturbed system in the previous example changed drastically.

Geometric meaning of condition number

Definition

The maximum and minimum magnification by the matrix A are defined, respectively, by

- maxmag $(A)=\max _{\|x\|=1}\|A x\|$,
- $\operatorname{minmag}(A)=\min _{\|x\|=1}\|A x\|$.

Geometric meaning of condition number

Definition

The maximum and minimum magnification by the matrix A are defined, respectively, by

- $\operatorname{maxmag}(A)=\max _{\|x\|=1}\|A x\|$,
- $\operatorname{minmag}(A)=\min _{\|x\|=1}\|A x\|$.

Theorem

If A is nonsingular matrix, then
(1) $\operatorname{maxmag}(A)=\frac{1}{\operatorname{minmag}\left(A^{-1}\right)}$, and
(2) $\operatorname{minmag}(A)=\frac{1}{\operatorname{maxmag}\left(A^{-1}\right)}$.

Geometric meaning of condition number

Theorem

If A is a nonsingular matrix, then

$$
\kappa(A)=\frac{\operatorname{maxmag}(A)}{\operatorname{minmag}(A)} .
$$

Observations

- Consider $A=\left(\begin{array}{cc}1000 & 999 \\ 999 & 998\end{array}\right)$.

Observations

- Consider $A=\left(\begin{array}{cc}1000 & 999 \\ 999 & 998\end{array}\right)$.
- As, $\operatorname{maxmag}(A)=\|A\|_{\infty}$, so $\operatorname{maxmag}(A)=$ 1999. For the vector $\binom{1}{1}$, it is easy to see that, $\left(\begin{array}{cc}1000 & 999 \\ 999 & 998\end{array}\right)\binom{1}{1}=\binom{1999}{1997}$.

Observations

- Consider $A=\left(\begin{array}{cc}1000 & 999 \\ 999 & 998\end{array}\right)$.
- As, $\operatorname{maxmag}(A)=\|A\|_{\infty}$, so $\operatorname{maxmag}(A)=$ 1999. For the vector $\binom{1}{1}$, it is easy to see that, $\left(\begin{array}{cc}1000 & 999 \\ 999 & 998\end{array}\right)\binom{1}{1}=\binom{1999}{1997}$.
- So, with respect $\|\cdot\|_{\infty}$, the vector $\binom{1}{1}$ is magnified maximally by A, and hence it gives a direction of maximum magnification. Also, the vector $\binom{1999}{1997}$ is in the direction of minimum magnification A^{-1}.

Observations

- Similarly for the matrix $A^{-1}=\left(\begin{array}{cc}-998 & 999 \\ 999 & -1000\end{array}\right)$ the vector $\binom{-1}{1}$ is in a direction of maximum magnification of A^{-1}, and the vector $\binom{1997}{-1999}$ is in the direction of minimum magnification of A.

Using these observations, let us construct an interesting example.

Spectacular example(Watkins)

Example

Consider the linear system $A x=b$, where $A=\left(\begin{array}{cc}1000 & 999 \\ 999 & 998\end{array}\right)$ and $b=\binom{1999}{1997}$.

Spectacular example(Watkins)

Example

Consider the linear system $A x=b$, where $A=\left(\begin{array}{cc}1000 & 999 \\ 999 & 998\end{array}\right)$ and $b=\binom{1999}{1997}$. Then, $x=\binom{1}{1}$ is the unique solution to the above system.

Spectacular example(Watkins)

Example

Consider the linear system $A x=b$, where $A=\left(\begin{array}{cc}1000 & 999 \\ 999 & 998\end{array}\right)$ and $b=\binom{1999}{1997}$. Then, $x=\binom{1}{1}$ is the unique solution to the above system.

Now, let us consider a slightly perturbed linear system $A(x+\Delta x)=b+\Delta b$, where $\Delta b=\binom{-0.01}{0.01}$, a vector in the direction of maximum magnification by A^{-1}. Then

$$
x+\Delta x=A^{-1}\binom{1999}{1997}+A^{-1} \Delta b=\binom{1}{1}+\binom{19.97}{-19.99}=\binom{20.97}{-18.99} .
$$

Scaling

Example

Consider the linear system $A x=b$, where $A=\left(\begin{array}{ll}1 & 0 \\ 0 & \epsilon\end{array}\right)$, where $0<\epsilon \ll 1$ and, $b=\binom{1}{\epsilon}$.

Scaling

Example

Consider the linear system $A x=b$, where $A=\left(\begin{array}{cc}1 & 0 \\ 0 & \epsilon\end{array}\right)$, where $0<\epsilon \ll 1$ and, $b=\binom{1}{\epsilon}$. Then, $x=\binom{1}{1}$ is the unique solution to the above system.

Scaling

Example

Consider the linear system $A x=b$, where $A=\left(\begin{array}{cc}1 & 0 \\ 0 & \epsilon\end{array}\right)$, where $0<\epsilon \ll 1$ and, $b=\binom{1}{\epsilon}$. Then, $x=\binom{1}{1}$ is the unique solution to the above system. $\kappa_{1}(A)=\kappa_{\infty}(A)=\frac{1}{\epsilon}$, so the matrix is ill-conditioned.

Take $\Delta b=\binom{0}{\epsilon}$, then $x+\Delta x=\binom{1}{2}, \frac{\|\Delta b\|_{\infty}}{\|b\|_{\infty}}=\epsilon$, and $\frac{\|\Delta x\|_{\infty}}{\left\|\left\|\|_{\infty}\right.\right.}=1$. Multiply the second row of the system by $\frac{1}{\epsilon}$, then we get a well conditioned
system, with $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{1}{1}$.

Theorem

Let A be any nonsingular matrix, and let $a_{1}, a_{2}, \ldots, a_{n}$ be the columns of A. Then for any i and j,

$$
\kappa_{p}(A) \geq \frac{\left\|a_{i}\right\|_{p}}{\left\|a_{j}\right\|_{p}}
$$

for $1 \leq p \leq \infty$.

Theorem

Let A be any nonsingular matrix, and let $a_{1}, a_{2}, \ldots, a_{n}$ be the columns of A. Then for any i and j,

$$
\kappa_{p}(A) \geq \frac{\left\|a_{i}\right\|_{p}}{\left\|a_{j}\right\|_{p}}
$$

for $1 \leq p \leq \infty$.

Remark

(1) If the columns of the matrix A have different orders of magnitude, then A is ill-conditioned.

Theorem

Let A be any nonsingular matrix, and let $a_{1}, a_{2}, \ldots, a_{n}$ be the columns of A. Then for any i and j,

$$
\kappa_{p}(A) \geq \frac{\left\|a_{i}\right\|_{p}}{\left\|a_{j}\right\|_{p}}
$$

for $1 \leq p \leq \infty$.

Remark

(1) If the columns of the matrix A have different orders of magnitude, then A is ill-conditioned. Similarly for the rows.

Theorem

Let A be any nonsingular matrix, and let $a_{1}, a_{2}, \ldots, a_{n}$ be the columns of A. Then for any i and j,

$$
\kappa_{p}(A) \geq \frac{\left\|a_{i}\right\|_{p}}{\left\|a_{j}\right\|_{p}}
$$

for $1 \leq p \leq \infty$.

Remark

(1) If the columns of the matrix A have different orders of magnitude, then A is ill-conditioned. Similarly for the rows. s
(2) Necessary condition for a matrix to be well-conditioned is that all its rows and columns are of roughly the same magnitude.

Theorem

Let A be any nonsingular matrix, and let $a_{1}, a_{2}, \ldots, a_{n}$ be the columns of A. Then for any i and j,

$$
\kappa_{p}(A) \geq \frac{\left\|a_{i}\right\|_{p}}{\left\|a_{j}\right\|_{p}}
$$

for $1 \leq p \leq \infty$.

Remark

(1) If the columns of the matrix A have different orders of magnitude, then A is ill-conditioned. Similarly for the rows. s
(2) Necessary condition for a matrix to be well-conditioned is that all its rows and columns are of roughly the same magnitude. It is not sufficient!

Theorem

Let A be any nonsingular matrix, and let $a_{1}, a_{2}, \ldots, a_{n}$ be the columns of A. Then for any i and j,

$$
\kappa_{p}(A) \geq \frac{\left\|a_{i}\right\|_{p}}{\left\|a_{j}\right\|_{p}}
$$

for $1 \leq p \leq \infty$.

Remark

(1) If the columns of the matrix A have different orders of magnitude, then A is ill-conditioned. Similarly for the rows. s
(2) Necessary condition for a matrix to be well-conditioned is that all its rows and columns are of roughly the same magnitude. It is not sufficient! Example?

