MA60053 - Computational Linear Algebra Lecture 2-Revision of basics

M. Rajesh Kannan

Department of Mathematics, Indian Institute of Technology Kharagpur, email: rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ac.in

January 9, 2020

Notation

- $\mathbb{R}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in \mathbb{R}\right\}$ and $\mathbb{C}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in \mathbb{C}\right\}$.
- $\left\{e_{1}, \ldots, e_{n}\right\}$ - standard basis.
- For $x, y \in \mathbb{R}^{n}$, standard inner product $\langle x, y\rangle_{2}=\sum_{i=1}^{n} x_{i} y_{i}$, and for $x, y \in \mathbb{C}^{n}$, standard inner product $\langle x, y\rangle_{2}=\sum_{i=1}^{n} x_{i} \bar{y}_{i}, \bar{y}_{i}$ denotes the complex conjugate of y_{i}.
- $\mathbb{R}^{m \times n}$ denotes the set of all $m \times n$ matrices with real entries, and $\mathbb{C}^{m \times n}$ denotes the set of all $m \times n$ matrices with complex entries.

Inner product space

Definition

Let V be a vector space over \mathbb{F} (\mathbb{R} or \mathbb{C}). An inner product is a function that assigns to every ordered pair of vector x and y in V, a scalar in \mathbb{F}, denoted by $\langle x, y\rangle$ such that $\forall x, y \in V, \alpha \in \mathbb{F}$, the following hold
(1) $\langle x+z, y\rangle=\langle x, y\rangle+\langle z, y\rangle$
(2) $\langle\alpha x, y\rangle=\alpha\langle x, y\rangle$
(3) $\langle x, y\rangle=\overline{\langle y, x\rangle}$
(4) $\langle x, x\rangle>0 \forall x \neq 0$

Inner product space

Definition

Let V be a vector space over \mathbb{F} (\mathbb{R} or \mathbb{C}). An inner product is a function that assigns to every ordered pair of vector x and y in V, a scalar in \mathbb{F}, denoted by $\langle x, y\rangle$ such that $\forall x, y \in V, \alpha \in \mathbb{F}$, the following hold
(1) $\langle x+z, y\rangle=\langle x, y\rangle+\langle z, y\rangle$
(2) $\langle\alpha x, y\rangle=\alpha\langle x, y\rangle$
(3) $\langle x, y\rangle=\overline{\langle y, x\rangle}$
(4) $\langle x, x\rangle>0 \forall x \neq 0$

Definition

A vector space V is an inner product space if there is an inner product defined on it.

Norm

Let V be a vector space over \mathbb{F}, where $\mathbb{F}=\mathbb{R}$ or \mathbb{C}. A function
$\|\|:. V \times V \rightarrow[0, \infty)$ is a norm if for all $x, y \in V$ and $\lambda \in \mathbb{F},\|$.$\| satisfies the$ following conditions:

- $\|x\|=0$ if and only if $x=0$,
- $\|\lambda x\|=|\lambda|\|x\|$,
- $\|x+y\| \leq\|x\|+\|y\|$.

Example

- $V=\mathbb{R},\|x\|=|x|$, the absolute values of x.
- $V=\mathbb{R}^{n},\|x\|=\sqrt{\langle x, x\rangle_{2}}$.
- $V=\mathbb{R}^{n}$ and A be an $n \times n$ positive definite matrix, $\|x\|_{A}=\sqrt{\langle A x, x\rangle_{2}}$ (Exercise)

Define $\|x\|=\sqrt{\langle x, x\rangle}$
Theorem
Let V be an inner product space over \mathbb{F}. Then $\forall x, y \in V, c \in \mathbb{F}$, the following hold
(1) $\|c x\|=|c|\|x\|$,
(2) $\|x\|=0$ if and only if $x=0$, and
(3) $\|x+y\| \leq\|x\|+\|y\|$.

Define $\|x\|=\sqrt{\langle x, x\rangle}$
Theorem
Let V be an inner product space over \mathbb{F}. Then $\forall x, y \in V, c \in \mathbb{F}$, the following hold
(1) $\|c x\|=|c|\|x\|$,
(2) $\|x\|=0$ if and only if $x=0$, and
(3) $\|x+y\| \leq\|x\|+\|y\|$.

Theorem (Cauchy-Schwarz Inequality)
$|\langle x, y\rangle| \leq\|x|\|| | y\| \forall x, y \in V$

Definition

Let V be an inner product space. Two vectors x and y are said to be orthogonal if $\langle x, y\rangle=0$.

Definition

Let V be an inner product space. Two vectors x and y are said to be orthogonal if $\langle x, y\rangle=0$. A subset S of V is said to be orthogonal if any two distinct elements of S are orthogonal.

Definition

Let V be an inner product space. Two vectors x and y are said to be orthogonal if $\langle x, y\rangle=0$. A subset S of V is said to be orthogonal if any two distinct elements of S are orthogonal. An orthogonal set S in V is said to be orthonormal if norm of every element in S is equal to 1.

Definition

Let V be an inner product space. Two vectors x and y are said to be orthogonal if $\langle x, y\rangle=0$. A subset S of V is said to be orthogonal if any two distinct elements of S are orthogonal. An orthogonal set S in V is said to be orthonormal if norm of every element in S is equal to 1.

Definition (Orthonormal basis)

An ordered basis B of an inner product space V is said to be orthonormal basis if B is orthonormal.

Theorem

Let V be an inner product space and $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be an orthogonal subset of V consisting of non zero vectors. If $y \in \operatorname{span}(S)$, then
$y=\sum_{i=1}^{k} \frac{\left\langle y, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}} v_{i}$

Theorem

Let V be an inner product space and $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be an orthogonal subset of V consisting of non zero vectors. If $y \in \operatorname{span}(S)$, then $y=\sum_{i=1}^{k} \frac{\left\langle y, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}} v_{i}$

Remark

If $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an orthonormal set, then, for any $y \in$ span $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, we have $y=\sum_{i=1}^{k}\left\langle y, v_{i}\right\rangle v_{i}$

Theorem

Let V be an inner product space and $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be an orthogonal subset of V consisting of non zero vectors. If $y \in \operatorname{span}(S)$, then $y=\sum_{i=1}^{k} \frac{\left\langle y, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}} v_{i}$

Remark

If $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an orthonormal set, then, for any $y \in$ span $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, we have $y=\sum_{i=1}^{k}\left\langle y, v_{i}\right\rangle v_{i}$

Remark

If S is an orthonormal set in an inner product space V, consisting of non zero vectors, then S is linearly independent.

Definition (Gram-Schmidt Process)

Let V be an inner product space and $S=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be a linearly independent set in V. Define $S^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, where $v_{1}=w_{1}$ and $v_{k}=w_{k}-\sum_{i=1}^{k-1} \frac{\left\langle w_{k}, v_{i}\right\rangle, v_{i}}{\left\|v_{i}\right\|^{2}}, 2 \leq k \leq n$. Then S^{\prime} is orthogonal and $\operatorname{span}(S)=$ $\operatorname{span}\left(S^{\prime}\right)$

Definition (Gram-Schmidt Process)

Let V be an inner product space and $S=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be a linearly independent set in V. Define $S^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, where $v_{1}=w_{1}$ and $v_{k}=w_{k}-\sum_{i=1}^{k-1} \frac{\left\langle w_{k}, v_{i}\right\rangle, v_{i}}{\left\|v_{i}\right\|^{2}}, 2 \leq k \leq n$. Then S^{\prime} is orthogonal and $\operatorname{span}(S)=$ $\operatorname{span}\left(S^{\prime}\right)$

Theorem (Projection Theorem)

Let W be a finite dimensional subspace of an inner product space V and let $y \in V$. Then \exists unique vector $u \in W, z \in W^{\perp}$ such that $y=u+z$. Furthermore if $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an orthonormal basis for W, then $u=\sum_{i=1}^{n}\left\langle y, v_{i}\right\rangle . v_{i}$

Definition (Gram-Schmidt Process)

Let V be an inner product space and $S=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be a linearly independent set in V. Define $S^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, where $v_{1}=w_{1}$ and $v_{k}=w_{k}-\sum_{i=1}^{k-1} \frac{\left\langle w_{k}, v_{i}\right\rangle . v_{i}}{\left\|v_{i}\right\|^{2}}, 2 \leq k \leq n$. Then S^{\prime} is orthogonal and $\operatorname{span}(S)=$ $\operatorname{span}\left(S^{\prime}\right)$

Theorem (Projection Theorem)

Let W be a finite dimensional subspace of an inner product space V and let $y \in V$. Then \exists unique vector $u \in W, z \in W^{\perp}$ such that $y=u+z$. Furthermore if $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an orthonormal basis for W, then $u=\sum_{i=1}^{n}\left\langle y, v_{i}\right\rangle . v_{i}$

Theorem (Riesz Representation Theorem)

Let V be a finite dimensional inner product space and let $g: V \rightarrow \mathbb{F}$ is linear.
Then \exists a unique vector $z \in V$ such that $g(x)=\langle x, z\rangle$

Four fundamental subspaces

For an $m \times n$ matrix A, the following subspaces are called fundamental subspaces.

- Range space of $A: R(A)=\left\{x \in \mathbb{R}^{m}: x=A y\right.$ for some $\left.y \in \mathbb{R}^{n}\right\}$. (span of columns of A)

Four fundamental subspaces

For an $m \times n$ matrix A, the following subspaces are called fundamental subspaces.

- Range space of A : $R(A)=\left\{x \in \mathbb{R}^{m}: x=A y\right.$ for some $\left.y \in \mathbb{R}^{n}\right\}$. (span of columns of A)
- Null space of $A: N(A)=\left\{x \in \mathbb{R}^{n}: A x=0\right\}$.

Four fundamental subspaces

For an $m \times n$ matrix A, the following subspaces are called fundamental subspaces.

- Range space of A : $R(A)=\left\{x \in \mathbb{R}^{m}: x=A y\right.$ for some $\left.y \in \mathbb{R}^{n}\right\}$. (span of columns of A)
- Null space of $A: N(A)=\left\{x \in \mathbb{R}^{n}: A x=0\right\}$.
- Range space of $A^{T}: R\left(A^{T}\right)=\left\{x \in \mathbb{R}^{n}: x=A^{T} y\right.$ for some $\left.y \in \mathbb{R}^{m}\right\}$.

Four fundamental subspaces

For an $m \times n$ matrix A, the following subspaces are called fundamental subspaces.

- Range space of A : $R(A)=\left\{x \in \mathbb{R}^{m}: x=A y\right.$ for some $\left.y \in \mathbb{R}^{n}\right\}$. (span of columns of A)
- Null space of A : $N(A)=\left\{x \in \mathbb{R}^{n}: A x=0\right\}$.
- Range space of $A^{T}: R\left(A^{T}\right)=\left\{x \in \mathbb{R}^{n}: x=A^{T} y\right.$ for some $\left.y \in \mathbb{R}^{m}\right\}$.
- Null space of $A^{T}: N\left(A^{T}\right)=\left\{x \in \mathbb{R}^{m}: A^{T} x=0\right\}$.

Symmetric and Hermitian matrices

Definition

An $n \times n$ real matrix is said to be symmetric, if $A^{T}=A$.

Symmetric and Hermitian matrices

Definition

An $n \times n$ real matrix is said to be symmetric, if $A^{T}=A$. An $n \times n$ matrix is said to be Hermitian, if $A^{*}=A$.

Symmetric and Hermitian matrices

Definition

An $n \times n$ real matrix is said to be symmetric, if $A^{T}=A$. An $n \times n$ matrix is said to be Hermitian, if $A^{*}=A$. An $n \times n$ matrix is said to be normal, if $A A^{*}=A^{*} A$.

Symmetric and Hermitian matrices

Definition

An $n \times n$ real matrix is said to be symmetric, if $A^{T}=A$. An $n \times n$ matrix is said to be Hermitian, if $A^{*}=A$. An $n \times n$ matrix is said to be normal, if $A A^{*}=A^{*} A$.

Theorem

Eigenvalues of any Hermitian matrix are real numbers. (Eigenvalues of any real symmetric matrix are real numbers)

Symmetric and Hermitian matrices

Definition

An $n \times n$ real matrix is said to be symmetric, if $A^{T}=A$. An $n \times n$ matrix is said to be Hermitian, if $A^{*}=A$. An $n \times n$ matrix is said to be normal, if $A A^{*}=A^{*} A$.

Theorem

Eigenvalues of any Hermitian matrix are real numbers. (Eigenvalues of any real symmetric matrix are real numbers)

A real matrix A is said to be orthogonal if $A A^{T}=A^{T} A=I$, and a complex matrix A is said to be unitary if $A A^{*}=A^{*} A=I$.

Theorem (Schur, Jacobi)
Every complex matrix A is unitarily similar to an upper triangular matrix.

Theorem (Schur, Jacobi)
Every complex matrix A is unitarily similar to an upper triangular matrix.
Theorem (Spectral theorem for real symmetric matrices) Any real symmetric matrix is orthogonally similar to a diagonal matrix.

Theorem (Schur, Jacobi)
Every complex matrix A is unitarily similar to an upper triangular matrix.
Theorem (Spectral theorem for real symmetric matrices) Any real symmetric matrix is orthogonally similar to a diagonal matrix.

Theorem (Spectral theorem for Hermitian matrices)
Any Hermitian matrix is unitarily similar to a real diagonal matrix.

Theorem (Schur, Jacobi)

Every complex matrix A is unitarily similar to an upper triangular matrix.
Theorem (Spectral theorem for real symmetric matrices)
Any real symmetric matrix is orthogonally similar to a diagonal matrix.
Theorem (Spectral theorem for Hermitian matrices)
Any Hermitian matrix is unitarily similar to a real diagonal matrix.
Theorem (Spectral theorem for Normal matrices)
An $n \times n$ matrix A is normal if and only if A is unitarily similar to a diagonal matrix.

Spectral decomposition

Theorem

Let A be an $n \times n$ Hermitian matrix with rank r. Then A can be represented in each of the following equivalent forms:

- There exists a unitary matrix P and a real diagonal nonsingular matrix Δ of rank r such that $A=P\left(\begin{array}{cc}\Delta & 0 \\ 0 & 0\end{array}\right) P^{*}$.

Spectral decomposition

Theorem

Let A be an $n \times n$ Hermitian matrix with rank r. Then A can be represented in each of the following equivalent forms:

- There exists a unitary matrix P and a real diagonal nonsingular matrix Δ of rank r such that $A=P\left(\begin{array}{cc}\Delta & 0 \\ 0 & 0\end{array}\right) P^{*}$.
- There exists non-zero real numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ and orthogonal vectors u_{1}, \ldots, u_{r} such that $A=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{*}$.

Spectral decomposition

Theorem

Let A be an $n \times n$ Hermitian matrix with rank r. Then A can be represented in each of the following equivalent forms:

- There exists a unitary matrix P and a real diagonal nonsingular matrix Δ of rank r such that $A=P\left(\begin{array}{cc}\Delta & 0 \\ 0 & 0\end{array}\right) P^{*}$.
- There exists non-zero real numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ and orthogonal vectors u_{1}, \ldots, u_{r} such that $A=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{*}$.
- There exists matrices R and Δ of orders $n \times r$ and $r \times r$, respectively, such that Δ is real, diagonal and non-singular, $R^{*} R=I$ and $A=R \Delta R^{*}$.

Positive Semidefinite Matrices(PSD)

Let \mathcal{S}^{n} denote the subspace of symmetric matrices in $\mathbb{R}^{n \times n}$. $A \in \mathcal{S}^{n}$ is positive semidefinite(PSD) if $x^{\top} A x \geq 0$ for every $x \in \mathbb{R}^{n}$.

Theorem

TFAE for $A \in \mathcal{S}^{n}$:
(a) A is $P S D$
(b) All the eigenvalues of A are nonnegative,
(c) All the principal minors of A are nonnegative,
(d) There exists an $n \times k$ real matrix B such that $A=B B^{T}$,
(e) There exists $C \in \mathcal{S}^{n}$ such that $A=C^{2}$,
(f) There exists an $n \times n$ lower triangular matrix L such that $A=L L^{\top}$,
(g) There exists a k-dimensional Euclidean vector space V and vectors $v_{1}, \ldots v_{n} \in V$ such that $a_{i j}=\left\langle v_{i}, v_{j}\right\rangle$,
(h) There exists k vectors $b_{1}, \ldots, b_{k} \in \mathbb{R}^{n}$ such that $A=\sum_{i=1}^{k} b_{i} b_{i}^{k}$.

Positive definite matrices

$A \in \mathcal{S}^{n}$ is called positive definite (pd), if $x^{T} A x>0$ for every non zero $x \in \mathbb{R}^{n}$.

Theorem

TFAE for $A \in \mathcal{S}^{n}$:
(a) A is $p d$,
(b) All the eigenvalues of A are positive,
(c) All the principal minors of A are positive,
(d) $A=B B^{\top}$ for some nonsingular matrix B,
(e) $A=L L^{T}$, where L is a nonsingular lower triangular matrix,
(f) $A=C^{2}$ where $C \in \mathcal{S}^{n}$ is nonsingular,
(g) A is the Gram matrix of n linearly independent vectors,
(h) $A=\sum_{i=1}^{n} b_{i} b_{i}^{T}$, where $b_{1}, \ldots, b_{n} \in \mathbb{R}^{n}$ are linearly independent,
(i) A has a set of n positive nested principal minors, for example

$$
a_{11}>0, \operatorname{det}\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)>0, \operatorname{det}\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)>0, \ldots, \operatorname{det}(A)>0
$$

Schur complement

Definition

Let $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ be a block matrix such that D is invertible. The Schur complement of D in M is, denote by (M / D), defined by

$$
A-B D^{-1} C .
$$

Schur complement

Definition

Let $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ be a block matrix such that D is invertible. The Schur complement of D in M is, denote by (M / D), defined by

$$
A-B D^{-1} C
$$

Motivation: Gaussian elimination for $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)\binom{x}{y}=\binom{c}{d}$.[With (M / D) invertible]

Properties

- $\operatorname{det} M=\operatorname{det}(M / D) \operatorname{det}(D)$,
- rank $M=\operatorname{rank}(M / D)+\operatorname{rank} D$,
- Let M be symmetric, and D is nonsingular. Then, $M=\left(\begin{array}{cc}A & B \\ B^{T} & D\end{array}\right)$ is p.d. if and only if (M / D) and D are p.d.
- Let M be symmetric, and D is nonsingular. If D is p.d., then M is psd if and only if (M / D) are psd.

