MA60053 - Computational Linear Algebra Lecture 2 - Revision of basics

M. Rajesh Kannan

Department of Mathematics, Indian Institute of Technology Kharagpur, email: rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ac.in

January 9, 2020

Notation

- $\mathbb{R}^n = \{(x_1, \ldots, x_n) : x_i \in \mathbb{R}\}$ and $\mathbb{C}^n = \{(x_1, \ldots, x_n) : x_i \in \mathbb{C}\}.$
- $\{e_1, \ldots, e_n\}$ standard basis.
- For x, y ∈ ℝⁿ, standard inner product ⟨x, y⟩₂ = ∑_{i=1}ⁿ x_iy_i, and for x, y ∈ ℂⁿ, standard inner product ⟨x, y⟩₂ = ∑_{i=1}ⁿ x_iy_i, y_i denotes the complex conjugate of y_i.
- ℝ^{m×n} denotes the set of all m × n matrices with real entries, and C^{m×n}
 denotes the set of all m × n matrices with complex entries.

Inner product space

Definition

Let *V* be a vector space over \mathbb{F} (\mathbb{R} or \mathbb{C}). An inner product is a function that assigns to every ordered pair of vector *x* and *y* in *V*, a scalar in \mathbb{F} , denoted by $\langle x, y \rangle$ such that $\forall x, y \in V$, $\alpha \in \mathbb{F}$, the following hold

イロト イポト イヨト イヨト

$$(x + z, y) = \langle x, y \rangle + \langle z, y \rangle$$

$$(\alpha \mathbf{x}, \mathbf{y}) = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$$

$$(x, y) = \overline{\langle y, x \rangle}$$

$$(x, x) > 0 \ \forall x \neq 0$$

Inner product space

Definition

Let *V* be a vector space over \mathbb{F} (\mathbb{R} or \mathbb{C}). An inner product is a function that assigns to every ordered pair of vector *x* and *y* in *V*, a scalar in \mathbb{F} , denoted by $\langle x, y \rangle$ such that $\forall x, y \in V$, $\alpha \in \mathbb{F}$, the following hold

$$(x + z, y) = \langle x, y \rangle + \langle z, y \rangle$$

$$(\alpha \mathbf{x}, \mathbf{y}) = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$$

$$(x, y) = \overline{\langle y, x \rangle}$$

$$(x, x) > 0 \ \forall x \neq 0$$

Definition

A vector space V is an inner product space if there is an inner product defined on it.

Norm

Let *V* be a vector space over \mathbb{F} , where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . A function $||.|| : V \times V \to [0, \infty)$ is a norm if for all $x, y \in V$ and $\lambda \in \mathbb{F}$, ||.|| satisfies the following conditions:

- ||x|| = 0 if and only if x = 0,
- $||\lambda \mathbf{x}|| = |\lambda|||\mathbf{x}||,$
- $||x + y|| \le ||x|| + ||y||.$

Example

• $V = \mathbb{R}$, ||x|| = |x|, the absolute values of x.

•
$$V = \mathbb{R}^n$$
, $||x|| = \sqrt{\langle x, x \rangle_2}$

• $V = \mathbb{R}^n$ and A be an $n \times n$ positive definite matrix, $||x||_A = \sqrt{\langle Ax, x \rangle_2}$ (Exercise)

Define $||x|| = \sqrt{\langle x, x \rangle}$

Theorem

Let V be an inner product space over $\mathbb F.$ Then $\forall x,y\in V,c\in\mathbb F,$ the following hold

$$\|cx\| = |c| \|x\|,$$

2
$$||x|| = 0$$
 if and only if $x = 0$, and

$$\|x+y\| \le \|x\| + \|y\|.$$

Define $||x|| = \sqrt{\langle x, x \rangle}$

Theorem

Let V be an inner product space over $\mathbb F.$ Then $\forall x,y\in V,c\in\mathbb F,$ the following hold

$$||cx|| = |c|||x||,$$

2
$$||x|| = 0$$
 if and only if $x = 0$, and

$$\|x+y\| \le \|x\| + \|y\|.$$

Theorem (Cauchy-Schwarz Inequality) $|\langle x, y \rangle| \le ||x||||y|| \ \forall x, y \in V$

Let *V* be an inner product space. Two vectors *x* and *y* are said to be *orthogonal* if $\langle x, y \rangle = 0$.

Let *V* be an inner product space. Two vectors *x* and *y* are said to be *orthogonal* if $\langle x, y \rangle = 0$. A subset *S* of *V* is said to be *orthogonal* if any two distinct elements of *S* are orthogonal.

Let *V* be an inner product space. Two vectors *x* and *y* are said to be *orthogonal* if $\langle x, y \rangle = 0$. A subset *S* of *V* is said to be *orthogonal* if any two distinct elements of *S* are orthogonal. An orthogonal set *S* in *V* is said to be *orthonormal* if norm of every element in *S* is equal to 1.

- 日本 - 4 日本 - 4 日本 - 日本

Let *V* be an inner product space. Two vectors *x* and *y* are said to be *orthogonal* if $\langle x, y \rangle = 0$. A subset *S* of *V* is said to be *orthogonal* if any two distinct elements of *S* are orthogonal. An orthogonal set *S* in *V* is said to be *orthonormal* if norm of every element in *S* is equal to 1.

Definition (Orthonormal basis)

An ordered basis B of an inner product space V is said to be orthonormal basis if B is orthonormal.

Theorem

Let V be an inner product space and $S = \{v_1, v_2, ..., v_k\}$ be an orthogonal subset of V consisting of non zero vectors. If $y \in \text{span}(S)$, then $y = \sum_{i=1}^{k} \frac{\langle y, v_i \rangle}{\|v_i\|^2} v_i$

Theorem

Let V be an inner product space and $S = \{v_1, v_2, ..., v_k\}$ be an orthogonal subset of V consisting of non zero vectors. If $y \in \text{span}(S)$, then $y = \sum_{i=1}^{k} \frac{\langle y, v_i \rangle}{\|v_i\|^2} v_i$

Remark

If $\{v_1, v_2, ..., v_n\}$ is an orthonormal set, then, for any $y \in$ span $\{v_1, v_2, ..., v_n\}$, we have $y = \sum_{i=1}^k \langle y, v_i \rangle v_i$

Theorem

Let V be an inner product space and $S = \{v_1, v_2, ..., v_k\}$ be an orthogonal subset of V consisting of non zero vectors. If $y \in \text{span}(S)$, then $y = \sum_{i=1}^{k} \frac{\langle y, v_i \rangle}{\|v_i\|^2} v_i$

Remark

If $\{v_1, v_2, ..., v_n\}$ is an orthonormal set, then, for any $y \in$ span $\{v_1, v_2, ..., v_n\}$, we have $y = \sum_{i=1}^k \langle y, v_i \rangle v_i$

Remark

If S is an orthonormal set in an inner product space V, consisting of non zero vectors, then S is linearly independent.

Definition (Gram-Schmidt Process)

Let *V* be an inner product space and $S = \{w_1, w_2, ..., w_n\}$ be a linearly independent set in *V*. Define $S' = \{v_1, v_2, ..., v_n\}$, where $v_1 = w_1$ and $v_k = w_k - \sum_{i=1}^{k-1} \frac{\langle w_k, v_i \rangle \cdot v_i}{\|v_i\|^2}, 2 \le k \le n$. Then S' is orthogonal and span(S) = span(S')

Definition (Gram-Schmidt Process)

Let *V* be an inner product space and $S = \{w_1, w_2, ..., w_n\}$ be a linearly independent set in *V*. Define $S' = \{v_1, v_2, ..., v_n\}$, where $v_1 = w_1$ and $v_k = w_k - \sum_{i=1}^{k-1} \frac{\langle w_k, v_i \rangle \cdot v_i}{\|v_i\|^2}, 2 \le k \le n$. Then S' is orthogonal and span(S) = span(S')

Theorem (Projection Theorem)

Let W be a finite dimensional subspace of an inner product space V and let $y \in V$. Then \exists unique vector $u \in W$, $z \in W^{\perp}$ such that y = u + z. Furthermore if $\{v_1, v_2, \ldots, v_n\}$ is an orthonormal basis for W, then $u = \sum_{i=1}^{n} \langle y, v_i \rangle \cdot v_i$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Definition (Gram-Schmidt Process)

Let *V* be an inner product space and $S = \{w_1, w_2, ..., w_n\}$ be a linearly independent set in *V*. Define $S' = \{v_1, v_2, ..., v_n\}$, where $v_1 = w_1$ and $v_k = w_k - \sum_{i=1}^{k-1} \frac{\langle w_k, v_i \rangle \cdot v_i}{\|v_i\|^2}, 2 \le k \le n$. Then S' is orthogonal and span(S) = span(S')

Theorem (Projection Theorem)

Let W be a finite dimensional subspace of an inner product space V and let $y \in V$. Then \exists unique vector $u \in W$, $z \in W^{\perp}$ such that y = u + z. Furthermore if $\{v_1, v_2, \ldots, v_n\}$ is an orthonormal basis for W, then $u = \sum_{i=1}^{n} \langle y, v_i \rangle \cdot v_i$

Theorem (Riesz Representation Theorem)

Let V be a finite dimensional inner product space and let $g : V \to \mathbb{F}$ is linear. Then \exists a unique vector $z \in V$ such that $g(x) = \langle x, z \rangle$

For an $m \times n$ matrix A, the following subspaces are called fundamental subspaces.

• **Range space of** A: $R(A) = \{x \in \mathbb{R}^m : x = Ay \text{ for some } y \in \mathbb{R}^n\}$. (span of columns of A)

For an $m \times n$ matrix A, the following subspaces are called fundamental subspaces.

- **Range space of** A: $R(A) = \{x \in \mathbb{R}^m : x = Ay \text{ for some } y \in \mathbb{R}^n\}$. (span of columns of A)
- Null space of A: $N(A) = \{x \in \mathbb{R}^n : Ax = 0\}.$

For an $m \times n$ matrix A, the following subspaces are called fundamental subspaces.

- **Range space of** A: $R(A) = \{x \in \mathbb{R}^m : x = Ay \text{ for some } y \in \mathbb{R}^n\}$. (span of columns of A)
- Null space of A: $N(A) = \{x \in \mathbb{R}^n : Ax = 0\}.$
- **Range space of** A^T : $R(A^T) = \{x \in \mathbb{R}^n : x = A^T y \text{ for some } y \in \mathbb{R}^m\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For an $m \times n$ matrix A, the following subspaces are called fundamental subspaces.

- **Range space of** A: $R(A) = \{x \in \mathbb{R}^m : x = Ay \text{ for some } y \in \mathbb{R}^n\}$. (span of columns of A)
- Null space of A: $N(A) = \{x \in \mathbb{R}^n : Ax = 0\}.$
- **Range space of** A^T : $R(A^T) = \{x \in \mathbb{R}^n : x = A^T y \text{ for some } y \in \mathbb{R}^m\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Null space of A^{T} : $N(A^{T}) = \{x \in \mathbb{R}^{m} : A^{T}x = 0\}.$

Definition

An $n \times n$ real matrix is said to be symmetric, if $A^T = A$.

Definition

An $n \times n$ real matrix is said to be symmetric, if $A^T = A$. An $n \times n$ matrix is said to be Hermitian, if $A^* = A$.

Definition

An $n \times n$ real matrix is said to be symmetric, if $A^T = A$. An $n \times n$ matrix is said to be Hermitian, if $A^* = A$. An $n \times n$ matrix is said to be normal, if $AA^* = A^*A$.

Definition

An $n \times n$ real matrix is said to be symmetric, if $A^T = A$. An $n \times n$ matrix is said to be Hermitian, if $A^* = A$. An $n \times n$ matrix is said to be normal, if $AA^* = A^*A$.

Theorem

Eigenvalues of any Hermitian matrix are real numbers. (Eigenvalues of any real symmetric matrix are real numbers)

イロト 不得 トイヨト イヨト 三日

Definition

An $n \times n$ real matrix is said to be symmetric, if $A^T = A$. An $n \times n$ matrix is said to be Hermitian, if $A^* = A$. An $n \times n$ matrix is said to be normal, if $AA^* = A^*A$.

Theorem

Eigenvalues of any Hermitian matrix are real numbers. (Eigenvalues of any real symmetric matrix are real numbers)

A real matrix A is said to be orthogonal if $AA^{T} = A^{T}A = I$, and a complex matrix A is said to be unitary if $AA^{*} = A^{*}A = I$.

イロト 不得 トイヨト イヨト 三日

Every complex matrix A is unitarily similar to an upper triangular matrix.

Every complex matrix A is unitarily similar to an upper triangular matrix.

Theorem (Spectral theorem for real symmetric matrices)

Any real symmetric matrix is orthogonally similar to a diagonal matrix.

Every complex matrix A is unitarily similar to an upper triangular matrix.

Theorem (Spectral theorem for real symmetric matrices) Any real symmetric matrix is orthogonally similar to a diagonal matrix.

Theorem (Spectral theorem for Hermitian matrices)

Any Hermitian matrix is unitarily similar to a real diagonal matrix.

Every complex matrix A is unitarily similar to an upper triangular matrix.

Theorem (Spectral theorem for real symmetric matrices) Any real symmetric matrix is orthogonally similar to a diagonal matrix.

Theorem (Spectral theorem for Hermitian matrices) Any Hermitian matrix is unitarily similar to a real diagonal matrix.

Theorem (Spectral theorem for Normal matrices)

An $n \times n$ matrix A is normal if and only if A is unitarily similar to a diagonal matrix.

Spectral decomposition

Theorem

Let A be an $n \times n$ Hermitian matrix with rank r. Then A can be represented in each of the following equivalent forms:

• There exists a unitary matrix *P* and a real diagonal nonsingular matrix Δ of rank *r* such that $A = P \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} P^*$.

Spectral decomposition

Theorem

Let A be an $n \times n$ Hermitian matrix with rank r. Then A can be represented in each of the following equivalent forms:

- There exists a unitary matrix P and a real diagonal nonsingular matrix Δ of rank r such that $A = P \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} P^*$.
- There exists non-zero real numbers $\lambda_1, \lambda_2, ..., \lambda_r$ and orthogonal vectors $u_1, ..., u_r$ such that $A = \sum_{i=1}^n \lambda_i u_i u_i^*$.

<ロト < 得 > < き > < き > … き

Spectral decomposition

Theorem

Let A be an $n \times n$ Hermitian matrix with rank r. Then A can be represented in each of the following equivalent forms:

- There exists a unitary matrix *P* and a real diagonal nonsingular matrix Δ of rank *r* such that $A = P \begin{pmatrix} \Delta & 0 \\ 0 & 0 \end{pmatrix} P^*$.
- There exists non-zero real numbers $\lambda_1, \lambda_2, ..., \lambda_r$ and orthogonal vectors $u_1, ..., u_r$ such that $\mathbf{A} = \sum_{i=1}^n \lambda_i u_i u_i^*$.
- There exists matrices R and Δ of orders n × r and r × r, respectively, such that Δ is real, diagonal and non-singular, R*R = I and A = RΔR*.

Positive Semidefinite Matrices(PSD)

Let S^n denote the subspace of symmetric matrices in $\mathbb{R}^{n \times n}$. $A \in S^n$ is *positive semidefinite*(PSD) if $x^T A x \ge 0$ for every $x \in \mathbb{R}^n$.

Theorem

TFAE for $A \in S^n$ *:*

- (a) A is PSD
- (b) All the eigenvalues of A are nonnegative,
- (c) All the principal minors of A are nonnegative,
- (d) There exists an $n \times k$ real matrix B such that $A = BB^T$,
- (e) There exists $C \in S^n$ such that $A = C^2$,
- (f) There exists an $n \times n$ lower triangular matrix L such that $A = LL^{T}$,
- (g) There exists a k-dimensional Euclidean vector space V and vectors $v_1, \ldots v_n \in V$ such that $a_{ij} = \langle v_i, v_j \rangle$,

(h) There exists k vectors $b_1, \ldots, b_k \in \mathbb{R}^n$ such that $A = \sum_{i=1}^k b_i b_i^k$.

Positive definite matrices

$A \in S^n$ is called *positive definite* (pd), if $x^T A x > 0$ for every non zero $x \in \mathbb{R}^n$.

Theorem

TFAE for $A \in S^n$:

- (a) A is pd,
- (b) All the eigenvalues of A are positive,
- (c) All the principal minors of A are positive,
- (d) $A = BB^T$ for some nonsingular matrix B,
- (e) $A = LL^T$, where L is a nonsingular lower triangular matrix,
- (f) $A = C^2$ where $C \in S^n$ is nonsingular,
- (g) A is the Gram matrix of n linearly independent vectors,
- (h) $A = \sum_{i=1}^{n} b_i b_i^T$, where $b_1, \ldots, b_n \in \mathbb{R}^n$ are linearly independent,
- (i) A has a set of n positive nested principal minors, for example

$$a_{11} > 0, det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} > 0, det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} > 0, \dots, det(A) > 0$$

・ロト ・ 雪 ト ・ ヨ ト ・

-

Schur complement

Definition

Let $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ be a block matrix such that D is invertible. The Schur complement of D in M is, denote by (M/D), defined by

 $A - BD^{-1}C$.

- 日本 - 4 日本 - 4 日本 - 日本

Schur complement

Definition

Let $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ be a block matrix such that D is invertible. The Schur complement of D in M is, denote by (M/D), defined by

 $A-BD^{-1}C$.

Motivation: Gaussian elimination for $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} c \\ d \end{pmatrix}$.[With (M/D) invertible]

▲ ■ ▶ ▲ ■ ▶ ▲ ■ ▶ ● ■

Properties

- det $M = \det(M/D) \det(D)$,
- rank $M = \operatorname{rank}(M/D) + \operatorname{rank} D$,
- Let *M* be symmetric, and *D* is nonsingular. Then, $M = \begin{pmatrix} A & B \\ B^T & D \end{pmatrix}$ is p.d. if and only if (M/D) and *D* are p.d.
- Let *M* be symmetric, and *D* is nonsingular. If *D* is p.d., then *M* is psd if and only if (*M*/*D*) are psd.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで