MA60053 - Computational Linear Algebra Matrix and vector norms

M. Rajesh Kannan

Department of Mathematics,
Indian Institute of Technology Kharagpur, email: rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ac.in

January 22, 2020

Definition

Let V be vector space over a field $\mathbb{F}(\mathbb{R}$ or $\mathbb{C})$. A function $\|\cdot\|: V \longrightarrow[0, \infty)$ is called a norm on V if it satisfies the following conditions:
(i) $\|\lambda x\|=|\lambda|\|x\|$ forall $\lambda \in \mathbb{F}$ and $x \in V$,
(ii) $\|x\|=0$ if and only if $x=0$,
(iii) $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in V$.

Example

- $V=\mathbb{R}^{n}$, for $1 \leq p<\infty,\|x\|_{p}=\left\{\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right\}^{\frac{1}{p}}$.
- $V=\mathbb{R}^{n},\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|$.
- $V=\mathbb{R}^{n}$ and A be an $n \times n$ positive definite matrix, $\|x\|_{A}=\sqrt{\langle\boldsymbol{A x}, x\rangle_{2}}$ (Exercise)

Definition

Let V be a vector space with a norm $\|$.$\| . A sequence of vectors \left\{x_{n}\right\} \in V$ converges to a vector in $x \in V$ with respect to the norm $\|$.$\| , if \left\|x_{n}-x\right\| \rightarrow 0$.

Definition

Let V be a vector space with a norm $\|$.$\| . A sequence of vectors \left\{x_{n}\right\} \in V$ converges to a vector in $x \in V$ with respect to the norm $\|$.$\| , if \left\|x_{n}-x\right\| \rightarrow 0$.

Theorem (Equivalence of norms)

If $\|.\|_{1}$ and $\|.\|_{2}$ are two norms on \mathbb{R}^{n}, then there exits positive constants c and d such that $c\|x\|_{1} \leq\|x\|_{2} \leq d\|x\|_{1}$ for all $x \in \mathbb{R}^{n}$.

Definition

Let V be a vector space with a norm $\|$.$\| . A sequence of vectors \left\{x_{n}\right\} \in V$ converges to a vector in $x \in V$ with respect to the norm $\|$.$\| , if \left\|x_{n}-x\right\| \rightarrow 0$.

Theorem (Equivalence of norms)

If $\|.\|_{1}$ and $\|.\|_{2}$ are two norms on \mathbb{R}^{n}, then there exits positive constants c and d such that $c\|x\|_{1} \leq\|x\|_{2} \leq d\|x\|_{1}$ for all $x \in \mathbb{R}^{n}$. This true for any finite dimensional vector space.

Definition

Let V be a vector space with a norm $\|$.$\| . A sequence of vectors \left\{x_{n}\right\} \in V$ converges to a vector in $x \in V$ with respect to the norm $\|$.$\| , if \left\|x_{n}-x\right\| \rightarrow 0$.

Theorem (Equivalence of norms)

If $\|.\|_{1}$ and $\|.\|_{2}$ are two norms on \mathbb{R}^{n}, then there exits positive constants c and d such that $c\|x\|_{1} \leq\|x\|_{2} \leq d\|x\|_{1}$ for all $x \in \mathbb{R}^{n}$. This true for any finite dimensional vector space.

Convergence in \mathbb{R}^{n} with respect to a norm implies convergence in any other norm on \mathbb{R}^{n}.

Theorem

Let $x \in \mathbb{R}^{n}$. If $1 \leq p \leq q \leq \infty$, and $\frac{1}{p}+\frac{1}{q}=1$, then

- $\|x\|_{p} \geq\|x\|_{q}$,
- $\|x\|_{p} \leq n^{\frac{1}{p}-\frac{1}{q}}\|x\|_{q}$.

Theorem

Let $x \in \mathbb{R}^{n}$. If $1 \leq p \leq q \leq \infty$, and $\frac{1}{p}+\frac{1}{q}=1$, then

- $\|x\|_{p} \geq\|x\|_{q}$,
- $\|x\|_{p} \leq n^{\frac{1}{p}-\frac{1}{q}}\|x\|_{q}$.

Corollary

$$
\|x\|_{\infty} \leq\|x\|_{1} \leq n\|x\|_{\infty} .
$$

Theorem

Let $x \in \mathbb{R}^{n}$. If $1 \leq p \leq q \leq \infty$, and $\frac{1}{p}+\frac{1}{q}=1$, then

- $\|x\|_{p} \geq\|x\|_{q}$,
- $\|x\|_{p} \leq n^{\frac{1}{p}-\frac{1}{q}}\|x\|_{q}$.

Corollary

$$
\|x\|_{\infty} \leq\|x\|_{1} \leq n\|x\|_{\infty} .
$$

Theorem

- $\|x\|_{2} \leq\|x\|_{1} \leq \sqrt{n}\|x\|_{2}$.
- $\|x\|_{\infty} \leq\|x\|_{2} \leq \sqrt{n}\|x\|_{\infty}$.

Theorem

$$
\lim _{p \rightarrow \infty}\|x\|_{p}=\|x\|_{\infty}
$$

Matrix norms

Definition (Matrix norms)
A matrix norm is a mapping $\|\cdot\|: \mathbb{R}^{n \times n} \longrightarrow[0, \infty)$ which satisfies the following:
(i) $\|$.$\| is a norm, and$
(ii) $\|A B\| \leq\|A\|\|B\|$ for all $A, B \in \mathbb{R}^{n \times n}$.

Note: $\|I\| \geq 1$.

Matrix norms

Definition (Matrix norms)

A matrix norm is a mapping $\|\cdot\|: \mathbb{R}^{n \times n} \longrightarrow[0, \infty)$ which satisfies the following:
(i) $\|\cdot\|$ is a norm, and
(ii) $\|A B\| \leq\|A\|\|B\|$ for all $A, B \in \mathbb{R}^{n \times n}$.

Note: $\|I\| \geq 1$. If A is invertible, then $1 \leq\left\|A A^{-1}\right\| \leq\|A\|\left\|A^{-1}\right\|$.

Example

- $\|A\|_{F}=\left(\sum_{i=1}^{n} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right)^{\frac{1}{2}}, A \in \mathbb{R}^{n \times n}$ is a norm on $\mathbb{R}^{n \times n}$. [Frobenius norm]
- NOT all norms on $\mathbb{R}^{n \times n}$ are matrix norms. For,

$$
\|A\|_{\infty}=\max _{1 \leq i, j \leq n}\left|a_{i j}\right|
$$

is a norm, but not a matrix norm.

Induced norm or operator norm

If $\|$.$\| is a norm on \mathbb{R}^{n}$, then

$$
\|A\|=\max _{x \neq 0} \frac{\|A x\|}{\|x\|}
$$

defines a norm on $\mathbb{R}^{n \times n}$. Equivalently,

$$
\|A\|=\max _{\|x\|=1}\|A x\| .
$$

Induced norm or operator norm

If $\|\cdot\|$ is a norm on \mathbb{R}^{n}, then

$$
\|A\|=\max _{x \neq 0} \frac{\|A x\|}{\|x\|}
$$

defines a norm on $\mathbb{R}^{n \times n}$. Equivalently,

$$
\|A\|=\max _{\|x\|=1}\|A x\| .
$$

Geometric meaning?

Example

On $\mathbb{R}^{n \times n}$, for each $1 \leq p \leq \infty$,

$$
\|A\|_{p}=\max _{\|x\|=1}\|A x\|_{p} .
$$

is an induced norm.

Induced norm or operator norm

If $\|\cdot\|$ is a norm on \mathbb{R}^{n}, then

$$
\|A\|=\max _{x \neq 0} \frac{\|A x\|}{\|x\|}
$$

defines a norm on $\mathbb{R}^{n \times n}$. Equivalently,

$$
\|A\|=\max _{\|x\|=1}\|A x\| .
$$

Geometric meaning?

Example

On $\mathbb{R}^{n \times n}$, for each $1 \leq p \leq \infty$,

$$
\|A\|_{p}=\max _{\|x\|=1}\|A x\|_{p}
$$

is an induced norm. What about Frobenius norm?

Induced norms vs Matrix norms

Theorem

If $\|$.$\| is an induced norm on \mathbb{R}^{n \times n}$, then $\|A x\| \leq\|A\|\|x\|$, for all $A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^{n}$. The inequality is sharp.

Induced norms vs Matrix norms

Theorem
 If $\|$.$\| is an induced norm on \mathbb{R}^{n \times n}$, then $\|A x\| \leq\|A\|\|x\|$, for all $A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^{n}$. The inequality is sharp.

Theorem

Induced norms are matrix norms.

Induced norms vs Matrix norms

Theorem
 If $\|$.$\| is an induced norm on \mathbb{R}^{n \times n}$, then $\|A x\| \leq\|A\|\|x\|$, for all $A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^{n}$. The inequality is sharp.

Theorem

Induced norms are matrix norms.

Remark

NOT all matrix norms are induced.

Induced norms vs Matrix norms

Theorem
 If $\|$.$\| is an induced norm on \mathbb{R}^{n \times n}$, then $\|A x\| \leq\|A\|\|x\|$, for all $A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^{n}$. The inequality is sharp.

Theorem

Induced norms are matrix norms.

Remark

NOT all matrix norms are induced. Frobenius norm.

Induced norms vs Matrix norms

Theorem

If $\|$.$\| is an induced norm on \mathbb{R}^{n \times n}$, then $\|A x\| \leq\|A\|\|x\|$, for all $A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^{n}$. The inequality is sharp.

Theorem

Induced norms are matrix norms.

Remark

NOT all matrix norms are induced. Frobenius norm. $\|I\|_{F}=\sqrt{n}$.

Induced norms vs Matrix norms

Theorem

If $\|$.$\| is an induced norm on \mathbb{R}^{n \times n}$, then $\|A x\| \leq\|A\|\|x\|$, for all $A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^{n}$. The inequality is sharp.

Theorem

Induced norms are matrix norms.

Remark

NOT all matrix norms are induced. Frobenius norm. $\|I\|_{F}=\sqrt{n}$.

Definition (Matrix p-norms)

For $1 \leq p \leq \infty$, the norm on $\mathbb{R}^{n \times n}$ by the p-norm on \mathbb{R}^{n} is called the matrix p-norm.

$$
\|A\|_{p}=\max _{x \neq 0} \frac{\|A X\|_{p}}{\|x\|_{p}}=
$$

Induced norms vs Matrix norms

Theorem

If $\|$.$\| is an induced norm on \mathbb{R}^{n \times n}$, then $\|A x\| \leq\|A\|\|x\|$, for all $A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^{n}$. The inequality is sharp.

Theorem

Induced norms are matrix norms.

Remark

NOT all matrix norms are induced. Frobenius norm. $\|I\|_{F}=\sqrt{n}$.

Definition (Matrix p-norms)

For $1 \leq p \leq \infty$, the norm on $\mathbb{R}^{n \times n}$ by the p-norm on \mathbb{R}^{n} is called the matrix p-norm.

$$
\|A\|_{p}=\max _{x \neq 0} \frac{\|A X\|_{p}}{\|x\|_{p}}=\max _{\|x\|_{p}=1}\|A x\|_{p}
$$

Computing p-norms are hard.

Theorem

- $\|A\|_{1}=\max _{1 \leq I \leq n} \sum_{i=1}^{n}\left|a_{i j}.\right|$ [Column sum norm]
- $\|A\|_{\infty}=\max _{1 \leq i \leq n} \sum_{i=1}^{n}\left|a_{i j}\right| \cdot[$ Row sum norm]
- $\|A\|_{2}=\left[\lambda_{\max }\left(A^{T} A\right)\right]^{\frac{1}{2}}$, where $\lambda_{\max }\left(A^{T} A\right)$ is the largest eigenvalue of $A^{\top} A$. [Spectral norm]
- $\|A\|_{F}=\left[\operatorname{Trace}\left(A^{T} A\right)\right]^{\frac{1}{2}}$, where $\operatorname{Trace}\left(A^{T} A\right)$ is the trace of the matrix $A^{T} A$.
- $\|A\|_{2} \leq\|A\|_{F} \leq \sqrt{n}\|A\|_{2}$.
- If A is symmetric positive semidefinite such that $A=C^{\top} C$, then $\|A\|_{2}=\|C\|_{2}^{2}$.

We will prove some more interesting properties of norms after doing SVD!

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then

$$
\|A\|_{2}=\max _{\|x\|=1}|\langle A x, x\rangle| .
$$

Theorem
Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive semidefinite matrix. Then,

$$
\lambda_{\max }(A)=\max _{\|x\|=1}\langle A x, x\rangle,
$$

and

$$
\lambda_{\text {min }}(A)=\min _{\|x\|=1}\langle A x, x\rangle .
$$

