# MA60053 - Computational Linear Algebra Matrix and vector norms

### M. Rajesh Kannan

Department of Mathematics, Indian Institute of Technology Kharagpur, email: rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ac.in



January 22, 2020

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let V be vector space over a field  $\mathbb{F}$  ( $\mathbb{R}$  or  $\mathbb{C}$ ). A function  $\|.\|: V \longrightarrow [0, \infty)$  is called a norm on V if it satisfies the following conditions:

(i) 
$$\|\lambda x\| = |\lambda| \|x\|$$
 for all  $\lambda \in \mathbb{F}$  and  $x \in V$ ,

(ii) 
$$||x|| = 0$$
 if and only if  $x = 0$ ,

(iii)  $||x + y|| \le ||x|| + ||y||$  for all  $x, y \in V$ .

### Example

• 
$$V = \mathbb{R}^n$$
, for  $1 \le p < \infty$ ,  $||x||_p = \{\sum_{i=1}^n |x_i|^p\}^{\frac{1}{p}}$ .

• 
$$V = \mathbb{R}^n$$
,  $\|X\|_{\infty} = \max_{1 \le i \le n} |X_i|$ .

•  $V = \mathbb{R}^n$  and A be an  $n \times n$  positive definite matrix,  $||x||_A = \sqrt{\langle Ax, x \rangle_2}$  (Exercise)

Let V be a vector space with a norm  $\|.\|$ . A sequence of vectors  $\{x_n\} \in V$  converges to a vector in  $x \in V$  with respect to the norm  $\|.\|$ , if  $||x_n - x|| \to 0$ .

Let V be a vector space with a norm ||.||. A sequence of vectors  $\{x_n\} \in V$  converges to a vector in  $x \in V$  with respect to the norm ||.||, if  $||x_n - x|| \to 0$ .

## Theorem (Equivalence of norms)

If  $\|.\|_1$  and  $\|.\|_2$  are two norms on  $\mathbb{R}^n$ , then there exits positive constants c and d such that  $c\|x\|_1 \le \|x\|_2 \le d\|x\|_1$  for all  $x \in \mathbb{R}^n$ .

Let V be a vector space with a norm ||.||. A sequence of vectors  $\{x_n\} \in V$  converges to a vector in  $x \in V$  with respect to the norm ||.||, if  $||x_n - x|| \to 0$ .

## Theorem (Equivalence of norms)

If  $\|.\|_1$  and  $\|.\|_2$  are two norms on  $\mathbb{R}^n$ , then there exits positive constants c and d such that  $c\|x\|_1 \le \|x\|_2 \le d\|x\|_1$  for all  $x \in \mathbb{R}^n$ . This true for any finite dimensional vector space.

Let V be a vector space with a norm ||.||. A sequence of vectors  $\{x_n\} \in V$  converges to a vector in  $x \in V$  with respect to the norm ||.||, if  $||x_n - x|| \to 0$ .

## Theorem (Equivalence of norms)

If  $\|.\|_1$  and  $\|.\|_2$  are two norms on  $\mathbb{R}^n$ , then there exits positive constants c and d such that  $c\|x\|_1 \le \|x\|_2 \le d\|x\|_1$  for all  $x \in \mathbb{R}^n$ . This true for any finite dimensional vector space.

Convergence in  $\mathbb{R}^n$  with respect to a norm implies convergence in any other norm on  $\mathbb{R}^n$ .

Let  $x \in \mathbb{R}^n$ . If  $1 \le p \le q \le \infty$ , and  $\frac{1}{p} + \frac{1}{q} = 1$ , then

- $\|x\|_{\rho} \geq \|x\|_{q}$ ,
- $||x||_p \le n^{\frac{1}{p}-\frac{1}{q}} ||x||_q.$

Let  $x \in \mathbb{R}^n$ . If  $1 \le p \le q \le \infty$ , and  $\frac{1}{p} + \frac{1}{q} = 1$ , then

•  $\|x\|_{\rho} \geq \|x\|_{q}$ ,

• 
$$||x||_p \le n^{\frac{1}{p}-\frac{1}{q}} ||x||_q.$$

## Corollary

### $\|x\|_{\infty} \leq \|x\|_1 \leq n\|x\|_{\infty}.$

Let  $x \in \mathbb{R}^n$ . If  $1 \le p \le q \le \infty$ , and  $\frac{1}{p} + \frac{1}{q} = 1$ , then

• 
$$\|x\|_p \geq \|x\|_q$$
,

• 
$$||x||_p \le n^{\frac{1}{p}-\frac{1}{q}} ||x||_q.$$

## Corollary

$$\|x\|_{\infty} \leq \|x\|_1 \leq n\|x\|_{\infty}.$$

#### Theorem

- $||x||_2 \le ||x||_1 \le \sqrt{n} ||x||_2$ .
- $\|x\|_{\infty} \leq \|x\|_2 \leq \sqrt{n} \|x\|_{\infty}$ .

## Theorem

$$\lim_{p\to\infty}\|x\|_p=\|x\|_{\infty}.$$

# Matrix norms

## Definition (Matrix norms)

A matrix norm is a mapping  $\|.\|: \mathbb{R}^{n \times n} \longrightarrow [0, \infty)$  which satisfies the following:

(i)  $\|.\|$  is a norm, and

(ii)  $\|AB\| \leq \|A\| \|B\|$  for all  $A, B \in \mathbb{R}^{n \times n}$ .

Note:  $||I|| \ge 1$ .

# Matrix norms

## Definition (Matrix norms)

A matrix norm is a mapping  $\|.\|: \mathbb{R}^{n \times n} \longrightarrow [0, \infty)$  which satisfies the following:

(i)  $\|.\|$  is a norm, and

(ii)  $\|AB\| \leq \|A\| \|B\|$  for all  $A, B \in \mathbb{R}^{n \times n}$ .

Note:  $||I|| \ge 1$ . If A is invertible, then  $1 \le ||AA^{-1}|| \le ||A|| ||A^{-1}||$ .

## Example

• 
$$\|A\|_F = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}}, A \in \mathbb{R}^{n \times n} \text{ is a norm on } \mathbb{R}^{n \times n}.$$
 [Frobenius norm]

• NOT all norms on  $\mathbb{R}^{n \times n}$  are matrix norms. For,

$$\|A\|_{\infty} = \max_{1 \le i,j \le n} |a_{ij}|$$

is a norm, but not a matrix norm.

# Induced norm or operator norm

If ||.|| is a norm on  $\mathbb{R}^n$ , then

$$\|\boldsymbol{A}\| = \max_{x \neq 0} \frac{\|\boldsymbol{A}x\|}{\|x\|}$$

defines a norm on  $\mathbb{R}^{n \times n}$ . Equivalently,

$$\|A\| = \max_{\|x\| = 1} \|Ax\|.$$

# Induced norm or operator norm

If  $\|.\|$  is a norm on  $\mathbb{R}^n$ , then

$$\|\boldsymbol{A}\| = \max_{x \neq 0} \frac{\|\boldsymbol{A}x\|}{\|x\|}$$

defines a norm on  $\mathbb{R}^{n \times n}$ . Equivalently,

$$\|A\| = \max_{\|x\| = 1} \|Ax\|.$$

#### Geometric meaning?

Example

On  $\mathbb{R}^{n \times n}$ , for each  $1 \le p \le \infty$ ,

$$\|A\|_p = \max_{\|x\| = 1} \|Ax\|_p.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

is an induced norm.

# Induced norm or operator norm

If  $\|.\|$  is a norm on  $\mathbb{R}^n$ , then

$$\|\boldsymbol{A}\| = \max_{x \neq 0} \frac{\|\boldsymbol{A}x\|}{\|x\|}$$

defines a norm on  $\mathbb{R}^{n \times n}$ . Equivalently,

$$||A|| = \max_{||x|| = 1} ||Ax||.$$

#### Geometric meaning?

Example

On  $\mathbb{R}^{n \times n}$ , for each  $1 \le p \le \infty$ ,

$$\|A\|_p = \max_{\|x\| = 1} \|Ax\|_p.$$

is an induced norm. What about Frobenius norm?

Theorem

If ||.|| is an induced norm on  $\mathbb{R}^{n \times n}$ , then  $||Ax|| \le ||A|| ||x||$ , for all  $A \in \mathbb{R}^{n \times n}$  and  $x \in \mathbb{R}^n$ . The inequality is sharp.

#### Theorem

If  $\|.\|$  is an induced norm on  $\mathbb{R}^{n \times n}$ , then  $\|Ax\| \le \|A\| \|x\|$ , for all  $A \in \mathbb{R}^{n \times n}$  and  $x \in \mathbb{R}^n$ . The inequality is sharp.

### Theorem

Induced norms are matrix norms.

#### Theorem

If  $\|.\|$  is an induced norm on  $\mathbb{R}^{n \times n}$ , then  $\|Ax\| \le \|A\| \|x\|$ , for all  $A \in \mathbb{R}^{n \times n}$  and  $x \in \mathbb{R}^n$ . The inequality is sharp.

#### Theorem

Induced norms are matrix norms.

### Remark

NOT all matrix norms are induced.

#### Theorem

If  $\|.\|$  is an induced norm on  $\mathbb{R}^{n \times n}$ , then  $\|Ax\| \le \|A\| \|x\|$ , for all  $A \in \mathbb{R}^{n \times n}$  and  $x \in \mathbb{R}^n$ . The inequality is sharp.

#### Theorem

Induced norms are matrix norms.

### Remark

NOT all matrix norms are induced. Frobenius norm.

#### Theorem

If  $\|.\|$  is an induced norm on  $\mathbb{R}^{n \times n}$ , then  $\|Ax\| \le \|A\| \|x\|$ , for all  $A \in \mathbb{R}^{n \times n}$  and  $x \in \mathbb{R}^n$ . The inequality is sharp.

#### Theorem

Induced norms are matrix norms.

## Remark

NOT all matrix norms are induced. Frobenius norm.  $||I||_F = \sqrt{n}$ .

#### Theorem

If  $\|.\|$  is an induced norm on  $\mathbb{R}^{n \times n}$ , then  $\|Ax\| \le \|A\| \|x\|$ , for all  $A \in \mathbb{R}^{n \times n}$  and  $x \in \mathbb{R}^n$ . The inequality is sharp.

#### Theorem

Induced norms are matrix norms.

### Remark

NOT all matrix norms are induced. Frobenius norm.  $||I||_F = \sqrt{n}$ .

## Definition (Matrix *p*-norms)

For  $1 \le p \le \infty$ , the norm on  $\mathbb{R}^{n \times n}$  by the p-norm on  $\mathbb{R}^n$  is called the matrix p-norm.

$$\|A\|_{
ho} = \max_{x 
eq 0} rac{\|AX\|_{
ho}}{\|x\|_{
ho}} =$$

#### Theorem

If  $\|.\|$  is an induced norm on  $\mathbb{R}^{n \times n}$ , then  $\|Ax\| \le \|A\| \|x\|$ , for all  $A \in \mathbb{R}^{n \times n}$  and  $x \in \mathbb{R}^n$ . The inequality is sharp.

### Theorem

Induced norms are matrix norms.

### Remark

NOT all matrix norms are induced. Frobenius norm.  $||I||_F = \sqrt{n}$ .

## Definition (Matrix *p*-norms)

For  $1 \le p \le \infty$ , the norm on  $\mathbb{R}^{n \times n}$  by the p-norm on  $\mathbb{R}^n$  is called the matrix p-norm.

$$\|A\|_{p} = \max_{x \neq 0} \frac{\|AX\|_{p}}{\|x\|_{p}} = \max_{\|x\|_{p}=1} \|Ax\|_{p}.$$

Computing *p*-norms are hard.

### Theorem

• 
$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$$
 [Column sum norm]

• 
$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$
. [Row sum norm]

- $||A||_2 = [\lambda_{max}(A^T A)]^{\frac{1}{2}}$ , where  $\lambda_{max}(A^T A)$  is the largest eigenvalue of  $A^T A$ . [Spectral norm]
- $||A||_F = [\text{Trace}(A^T A)]^{\frac{1}{2}}$ , where  $\text{Trace}(A^T A)$  is the trace of the matrix  $A^T A$ .
- $||A||_2 \le ||A||_F \le \sqrt{n} ||A||_2.$
- If A is symmetric positive semidefinite such that A = C<sup>T</sup>C, then ||A||<sub>2</sub> = ||C||<sub>2</sub><sup>2</sup>.

We will prove some more interesting properties of norms after doing SVD!

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix. Then

$$\|\boldsymbol{A}\|_{2} = \max_{\|\boldsymbol{x}\| = 1} |\langle \boldsymbol{A}\boldsymbol{x}, \boldsymbol{x} \rangle|.$$

#### Theorem

Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric positive semidefinite matrix. Then,

$$\lambda_{max}(\boldsymbol{A}) = \max_{\|\boldsymbol{x}\| = 1} \langle \boldsymbol{A}\boldsymbol{x}, \boldsymbol{x} \rangle,$$

and

$$\lambda_{\min}(\mathbf{A}) = \min_{\|\mathbf{x}\| = 1} \langle \mathbf{A}\mathbf{x}, \mathbf{x} \rangle.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで