MA60053 - Computational Linear Algebra Direct methods for linear system of equations (To be updated)

M. Rajesh Kannan

Department of Mathematics,
Indian Institute of Technology Kharagpur, email: rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ac.in

योग: कर्मसु कौशलम्

Definition

For $1 \leq k \leq n-1$, let $m \in \mathbb{R}^{n}$ be a vector with $e_{j}^{T} m=0$ for $1 \leq j \leq k$, meaning that m is of the form

$$
m=\left(0,0, \ldots, 0, m_{k+1}, \ldots, m_{n}\right)^{T}
$$

An elementary lower triangular matrix is a lower triangular matrix of the specific form

$$
L_{k}(m)=I-m e_{k}^{T}=\left[\begin{array}{cccccc}
1 & & & & & \\
& \ddots & & & & \\
& & 1 & & & \\
& & -m_{k+1} & 1 & & \\
& & \vdots & \ddots & \\
& & -m_{n} & & 1
\end{array}\right]
$$

Theorem

An elementary lower triangular matrix $L_{k}(m)$ has the following properties:
(1) $\operatorname{det} L_{k}(m)=1$.
(2) $L_{k}(m)^{-1}=L_{k}(-m)$.
(3) Multiplying a matrix A with $L_{k}(m)$ from the left leaves the first k rows unchanged and, starting from row $j=k+1$, subtracts the row $m_{j}\left(a_{k 1}, \ldots, a_{k n}\right)$ from row j of A.

Gaussian elimination method

Theorem
Let $A \in \mathbb{R}^{n \times n}$ be a non-singular matrix, and $b \in \mathbb{R}^{n}$. Set $A^{(1)}=A, b^{(1)}=b$,

Gaussian elimination method

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be a non-singular matrix, and $b \in \mathbb{R}^{n}$. Set $A^{(1)}=A, b^{(1)}=b$, and then iteratively

$$
A^{(k+1)}=L_{k} A^{(k)}, b^{(k+1)}=L_{k} b^{(k)}
$$

where

$$
L_{k}=I-m_{k} e_{k}^{T}
$$

and

$$
m_{k}=\left(0,0, \ldots, 0, \frac{a_{k+1, k}^{(k)}}{a_{k k}^{(k)}}, \frac{a_{k+2, k}^{(k)}}{a_{k k}^{(k)}}, \ldots, \frac{a_{n, k}^{(k)}}{a_{k k}^{(k)}}\right),
$$

provided $a_{k k}^{(k)} \neq 0$.

Gaussian elimination method

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be a non-singular matrix, and $b \in \mathbb{R}^{n}$. Set $A^{(1)}=A, b^{(1)}=b$, and then iteratively

$$
A^{(k+1)}=L_{k} A^{(k)}, b^{(k+1)}=L_{k} b^{(k)}
$$

where

$$
L_{k}=I-m_{k} e_{k}^{T}
$$

and

$$
m_{k}=\left(0,0, \ldots, 0, \frac{a_{k+1, k}^{(k)}}{a_{k k}^{(k)}}, \frac{a_{k+2, k}^{(k)}}{a_{k k}^{(k)}}, \ldots, \frac{a_{n, k}^{(k)}}{a_{k k}^{(k)}}\right),
$$

provided $a_{k k}^{(k)} \neq 0$.
Assuming that, the process does not end prematurely, it stops to the linear system $A^{(n)} x=b^{(n)}$, where $A^{(n)}$ is upper triangular, and it has the same solution as $A x=b$.

LU decomposition

Definition

A matrix $L=\left(l_{i j}\right) \in \mathbb{R}^{n \times n}$ is called a normalized lower triangular matrix if $l_{i j}=0$ for $i<j$ and $l_{i j}=1$.

LU decomposition

Definition

A matrix $L=\left(l_{i j}\right) \in \mathbb{R}^{n \times n}$ is called a normalized lower triangular matrix if $l_{i j}=0$ for $i<j$ and $l_{i j}=1$.

Definition

The $L U$ factorization of a matrix A is the decomposition $A=L U$ in to the product of a normalized lower triangular matrix L, and an upper triangular matrix U.

LU decomposition

Definition

A matrix $L=\left(l_{i j}\right) \in \mathbb{R}^{n \times n}$ is called a normalized lower triangular matrix if $l_{i j}=0$ for $i<j$ and $l_{i j}=1$.

Definition

The $L U$ factorization of a matrix A is the decomposition $A=L U$ in to the product of a normalized lower triangular matrix L, and an upper triangular matrix U.

Theorem
Let $A \in \mathbb{R}^{n \times n}$. Let $A_{p} \in \mathbb{R}^{p \times p}$ be the p-th principal submatrix of A, that is,

$$
A_{p}=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 p} \\
\vdots & \ddots & \vdots \\
a_{p 1} & \ldots & a_{p p}
\end{array}\right]
$$

If $\operatorname{det}\left(A_{p}\right) \neq 0$ for $1 \leq p \leq n$, then A has an $L U$ factorisation.

LU decomposition

Definition

A matrix $L=\left(l_{i j}\right) \in \mathbb{R}^{n \times n}$ is called a normalized lower triangular matrix if $l_{i j}=0$ for $i<j$ and $l_{i j}=1$.

Definition

The $L U$ factorization of a matrix A is the decomposition $A=L U$ in to the product of a normalized lower triangular matrix L, and an upper triangular matrix U.

Theorem
Let $A \in \mathbb{R}^{n \times n}$. Let $A_{p} \in \mathbb{R}^{p \times p}$ be the p-th principal submatrix of A, that is,

$$
A_{p}=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 p} \\
\vdots & \ddots & \vdots \\
a_{p 1} & \ldots & a_{p p}
\end{array}\right]
$$

If $\operatorname{det}\left(A_{p}\right) \neq 0$ for $1 \leq p \leq n$, then A has an $L U$ factorisation. In particular, every symmetric, positive definite matrix possesses an LU factorisation.

Definition

A matrix A is called strictly row diagonally dominant if

$$
\sum_{k=1, k \neq i}^{n}\left|a_{i k}\right|<\left|a_{i i}\right|, \quad 1 \leq i \leq n
$$

Theorem

A strictly row diagonally dominant matrix $A \in \mathbb{R}^{n \times n}$ is invertible and possesses an LU factorisation.

Theorem

The set of non-singular (normalised) lower (or upper) triangular matrices is a group with respect to matrix multiplication.

Theorem

If the invertible matrix A has an $L U$ factorisation then it is unique.

Remark

If $A=L U$ then the linear system $b=A x=L U x$ can be solved in two steps. First, we solve $L y=b$ by forward substitution and the $U x=y$ by back substitution. Both are possible in $O\left(n^{2}\right)$ time.

Remark

A numerically reasonable way of calculating the determinant of a matrix is to first compute the $L U$ factorisation and then use the fact that $\operatorname{det}(A)=\operatorname{det}(L U)=\operatorname{det}(L) \operatorname{det}(U)=\operatorname{det}(U)=u_{11} u_{22} \ldots u_{n n}$.

In the case of a tridiagonal matrix, there is an efficient way of constructing the $L U$ factorisation, at least under certain additional assumptions. Let the tridiagonal matrix be given by

$$
A=\left[\begin{array}{ccccc}
a_{1} & c_{1} & & & 0 \tag{1}\\
b_{2} & a_{2} & c_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & c_{n-1} \\
0 & & & b_{n} & a_{n}
\end{array}\right]
$$

Theorem

Assume A is a tridiagonal matrix of the form (1) with

$$
\begin{aligned}
& \left|a_{1}\right|>\left|c_{1}\right|>0, \\
& \left|a_{i}\right| \geq\left|b_{i}\right|+\left|c_{i}\right|, \quad b_{i}, c_{i} \neq 0, \quad 2 \leq i \leq n-1, \\
& \left|a_{n}\right| \geq\left|b_{n}\right|>0 .
\end{aligned}
$$

Then, A is invertible and has an $L U$ factorisation of the form

$$
A=\left[\begin{array}{cccc}
1 & & & 0 \\
I_{2} & 1 & & \\
& \ddots & \ddots & \\
0 & & I_{n} & 1
\end{array}\right]\left[\begin{array}{cccc}
u_{1} & c_{1} & & 0 \\
& u_{2} & \ddots & \\
& & \ddots & c_{n-1} \\
0 & & & u_{n}
\end{array}\right]
$$

The vectors $I \in \mathbb{R}^{n-1}$ and $u \in \mathbb{R}^{n}$ can be computed as follows:

$$
u_{1}=a_{1} \text { and } l_{i}=\frac{b_{i}}{u_{i-1}} \text { and } u_{i}=a_{i}-l_{i} c_{i-1} \text { for } 2 \leq i \leq n .
$$

Definition

A permutation matrix $P_{i j} \in \mathbb{R}^{n \times n}$ is called an elementary permutation matrix if it is of the form

$$
P_{i j}=I-\left(e_{i}-e_{j}\right)\left(e_{i}-e_{j}\right)^{T} .
$$

This means that the matrix $P_{i j}$ is an identity matrix with rows (columns) i and j exchanged.

Remark

An elementary permutation matrix has the properties

$$
P_{i j}^{-1}=P_{i j}=P_{j i}=P_{i j}^{T}
$$

and $\operatorname{det}\left(P_{i j}\right)=-1$, for $i \neq j$ and $P_{i i}=I$. Pre-multiplication of a matrix A by $P_{i j}$ exchanges rows i and j of A. Similarly post-multiplication exchanges columns i and j of A.

Theorem

Let A be an $n \times n$ matrix. There exists elementary lower triangular matrices $L_{i}=L_{i}\left(m_{i}\right)$ and elementary permutation matrices $P_{i}=P_{r_{i} i}$ with $r_{i} \geq i$, $i=1,2, \ldots, n-1$, such that

$$
U=L_{n-1} P_{n-1} L_{n-2} P_{n-2} \ldots L_{2} P_{2} L_{1} P_{1} A
$$

is upper triangular.

Theorem

Let A be an $n \times n$ matrix. There exists elementary lower triangular matrices $L_{i}=L_{i}\left(m_{i}\right)$ and elementary permutation matrices $P_{i}=P_{r_{i} i}$ with $r_{i} \geq i$,
$i=1,2, \ldots, n-1$, such that

$$
U=L_{n-1} P_{n-1} L_{n-2} P_{n-2} \ldots L_{2} P_{2} L_{1} P_{1} A
$$

is upper triangular.

Theorem

For every non-singular matrix $A \in \mathbb{R}^{n \times n}$ there is a permutation matrix P such that PA possesses an $L U$ factorisation $P A=L U$.

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be symmetric and positive definite, and let $C \in \mathbb{R}^{n \times m}$. Then,
(1) $C^{\top} A C$ is positive semidefinite.
(2) $\operatorname{rank}\left(C^{T} A C\right)=\operatorname{rank}(C)$.
(3) $C^{T} A C$ is positive definite if and only if $\operatorname{rank}(C)=m$.

Cholesky decomposition

Definition

A decomposition of a matrix A of the form $A=L L^{\top}$ with a lower triangular matrix L is called a Cholesky factorisation of A.

Cholesky decomposition

Definition
 A decomposition of a matrix A of the form $A=L L^{T}$ with a lower triangular matrix L is called a Cholesky factorisation of A.

Theorem
Suppose $A=A^{T}$ is positive definite. Then, A possesses a Cholesky factorisation.

Cholesky decomposition

Definition

A decomposition of a matrix A of the form $A=L L^{\top}$ with a lower triangular matrix L is called a Cholesky factorisation of A.

Theorem
Suppose $A=A^{T}$ is positive definite. Then, A possesses a Cholesky factorisation.

Theorem
If A is positive definite, then there exists a unique lower triangular matrix L such that the diagonal entries of L are positive, and $A=L L^{T}$.

Theorem
If Q is an orthogonal matrix, then
(1) $\langle Q x, Q y\rangle=\langle x, y\rangle$,
(2) $\|Q x\|_{2}=\|x\|_{2}$,
(3) $\|Q A\|_{2}=\|A\|_{2}$,
(4) If Q_{1} and Q_{2} are orthogonal, then so is $Q_{1} Q_{2}$,
(5) $\|Q\|_{2}^{2}=\left\|Q^{-1}\right\|_{2}^{2}=1=k_{2}(Q)$.

Givens rotator

A Given rotator (or Jacobi rotators, or plane rotator) is a matrix of the form:

Givens rotator

A Given rotator (or Jacobi rotators, or plane rotator) is a matrix of the form:

$$
Q=\left[\begin{array}{lllllllll}
1 & & & & & & & & \\
& \ddots & & & & & & & \\
& & 1 & & & & & & \\
& & & \cos \theta & & & & -\sin \theta & \\
& & & & 1 & & & & \\
& & & & & \ddots & & & \\
& & & & & 1 & & & \\
& & & \sin \theta & & & & \cos \theta & \\
& & & & & & & 1 & \\
& & & & & & & & \ddots
\end{array}\right]
$$

Theorem

The matrix Q is orthogonal.

Let $x \in \mathbb{R}^{n}$ be such that the coordinates x_{i} and x_{j} are non-zero. Then,

QR factorisation

Theorem

For every $A \in \mathbb{R}^{m \times n}, m \geq n$, there exists an orthogonal matrix $Q \in \mathbb{R}^{m \times m}$ and an upper triangular matrix $R \in \mathbb{R}^{m \times n}$ such that $A=Q R$.

QR factorisation

Theorem

For every $A \in \mathbb{R}^{m \times n}, m \geq n$, there exists an orthogonal matrix $Q \in \mathbb{R}^{m \times m}$ and an upper triangular matrix $R \in \mathbb{R}^{m \times n}$ such that $A=Q R$.

Theorem

The factorisation $A=Q R$ of a non-singular matrix $A \in \mathbb{R}^{n \times n}$ into the product of an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ and an upper triangular matrix $R \in \mathbb{R}^{n \times n}$ is unique, if the signs of the diagonal elements of R are prescribed.

QR factorisation

Theorem

For every $A \in \mathbb{R}^{m \times n}, m \geq n$, there exists an orthogonal matrix $Q \in \mathbb{R}^{m \times m}$ and an upper triangular matrix $R \in \mathbb{R}^{m \times n}$ such that $A=Q R$.

Theorem

The factorisation $A=Q R$ of a non-singular matrix $A \in \mathbb{R}^{n \times n}$ into the product of an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ and an upper triangular matrix $R \in \mathbb{R}^{n \times n}$ is unique, if the signs of the diagonal elements of R are prescribed.

Householder transformation(Reflectors)

Definition

A Householder matrix $H=H(w) \in \mathbb{R}^{m \times m}$ is a matrix of the form

$$
H(w)=I-2 w w^{T} \in \mathbb{R}^{m \times m}
$$

where $w \in \mathbb{R}^{m}$ satisfies either $\|w\|_{2}=1$ or $w=0$.

Householder transformation(Reflectors)

Definition

A Householder matrix $H=H(w) \in \mathbb{R}^{m \times m}$ is a matrix of the form

$$
H(w)=I-2 w w^{T} \in \mathbb{R}^{m \times m}
$$

where $w \in \mathbb{R}^{m}$ satisfies either $\|w\|_{2}=1$ or $w=0$.
A more general form of a Householder matrix is given by

$$
H(w)=I-2 \frac{w w^{\top}}{w^{\top} w}
$$

for an arbitrary vector $w \neq 0$.

Theorem

Let $H=H(w) \in \mathbb{R}^{m \times m}$ be a Householder matrix.
(1) H is symmetric.
(2) $H H=I$ so that H is orthogonal.
(3) $\operatorname{det}(H(w))=-1$ if $w \neq 0$.

4 Storing $H(w)$ only requires storing the m elements of w.
(5) The computation of the product H a of $H=H(w)$ with a vector $a \in \mathbb{R}^{m}$ requires only $O(m)$ time.

Theorem

Let $H=H(w) \in \mathbb{R}^{m \times m}$ be a Householder matrix.
(1) H is symmetric.
(2) $H H=I$ so that H is orthogonal.
(3) $\operatorname{det}(H(w))=-1$ if $w \neq 0$.

4 Storing $H(w)$ only requires storing the m elements of w.
(5) The computation of the product H a of $H=H(w)$ with a vector $a \in \mathbb{R}^{m}$ requires only $O(m)$ time.

Theorem

For every vector $a \in \mathbb{R}^{m}$, there is a vector $w \in \mathbb{R}^{m}$ with $w=0$ or $\|w\|_{2}=1$ such that $H(w) a=\|a\|_{2} e_{1}$.

Theorem
For every vector $a \in \mathbb{C}^{m}$, there is a vector $w \in \mathbb{C}^{m}$ with $w=0$ or $\|w\|_{2}=1$ such that $H(w) a=\|a\|_{2} e_{1}$.

Theorem (Schur factorisation)
Let $A \in \mathbb{C}^{n \times n}$. There exists a unitary matrix, $U \in \mathbb{C}^{n \times n}$, such that $R=U^{*} A U$ is an upper triangular matrix.

Theorem (Real Schur factorisation)

To $A \in \mathbb{C}^{n \times n}$ there is an orthogonal matrix $Q \in \mathbb{C}^{n \times n}$ such that

$$
Q^{T} A Q=\left[\begin{array}{cccc}
R_{11} & R_{12} & \ldots & R_{1 m} \\
0 & R_{22} & \ldots & R_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & R_{m m}
\end{array}\right]
$$

where the diagonal blocks $R_{i j}$ are either 1×1 or 2×2 matrices. A 1×1 block corresponds to a real eigenvalue, a 2×2 block corresponds to a pair of complex conjugate eigenvalues. If A has only real eigenvalues then it is orthogonal similar to an upper triangular matrix.

