MA60053 - Computational Linear Algebra Problem Sheet 3

Problem 1. Let A be a symmetric positive definite matrix. Two vectors u and v are said to be Aorthogonal if $u_1^T A u_2 = 0$. Show that every subspace has an A-orthonormal basis.

Problem 2. Let $x \in \mathbb{R}^n$ and let P be a Householder matrix such that $Px = \pm ||x||_2 e_1$. Let $G_{1,2}, \ldots, G_{n-1,n}$ be Givens rotations, and let $Q = G_{1,2} \ldots G_{n-1,n}$. Suppose $Qx = \pm ||x||_2 e_1$. Must P equals to Q?

Problem 3. Let A be an $n \times m$ real matrix. Show that $X = A^{\dagger}$ minimizes $||AX - I||_F$ over all $m \times n$ matrices X. What is the value of this minimum?

Problem 4. Let $H = \begin{pmatrix} 0 & A^T \\ A & 0 \end{pmatrix}$, where $A = U\Sigma V^T$ is the SVD of an $n \times n$ matrix A. Let $\Sigma = diag(\sigma_1, \ldots, \sigma_n), U = [u_1, \ldots, u_n]$ and $V = [v_1, \ldots, v_n]$. Then the 2n eigenvalues of H are $\pm \sigma_i$, with corresponding unit eigenvectors $\frac{1}{\sqrt{2}} \begin{pmatrix} v_i \\ \pm u_i \end{pmatrix}$.

Problem 5. Let $B \in \mathbb{R}^{n \times m}$ be any matrix such that R(A) = R(B). Show that x is a solution of the least squares problem for the overdetermined system Ax = b if and only if $B^T Ax = B^T x$.

Problem 6. Show that if A has full rank, then R(A) = R(B) if and only if there exists a nonsingular matrix $C \in \mathbb{R}^{m \times m}$ such that A = BC. What happens if we drop the assumption that A has full rank.

Problem 7. Show that the function $f(x_1, ..., x_n) = ||b - Ax||_2^2$ is a differentiable function on m variables. Compute $\nabla f = (\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_m})^T$ and, using this, derive the normal equation for the least squares problem.

Problem 8. Let $A \in \mathbb{R}^{n \times m}$ with singular values $\sigma_1 \geq \ldots, \geq \sigma_m$ and right singular vectors v_1, \ldots, v_m . Show that for $k = 1, \ldots, m$, $\sigma_k = \max\{\frac{||Ax||_2}{||x||_2} : x \neq 0, x \in span\{v_1, v_2, \ldots, v_{k-1}\}^{\perp}\} = \min\{\frac{||Ax||_2}{||x||_2} : x \neq 0, x \in span\{v_{k+1}, \ldots, v_m\}^{\perp}\}.$

Problem 9. Let $A \in \mathbb{R}^{n \times m}$. Then B is the Pseudoinverse of A if and only if B satisfies the following four equations(Moore-Penrose equations):

- 1. ABA = A
- 2. BAB = B
- 3. $(BA)^T = BA$
- 4. $(AB)^T = AB$.