MA60053 - Computational Linear Algebra Problem Sheet 3

Problem 1. Let A be a symmetric positive definite matrix. Two vectors u and v are said to be A orthogonal if $u_{1}^{T} A u_{2}=0$. Show that every subspace has an A-orthonormal basis.

Problem 2. Let $x \in \mathbb{R}^{n}$ and let P be a Householder matrix such that $P x= \pm\|x\|_{2} e_{1}$. Let $G_{1,2}, \ldots, G_{n-1, n}$ be Givens rotations, and let $Q=G_{1,2} \ldots G_{n-1, n}$. Suppose $Q x= \pm\|x\|_{2} e_{1}$. Must P equals to Q ?

Problem 3. Let A be an $n \times m$ real matrix. Show that $X=A^{\dagger}$ minimizes $\|A X-I\|_{F}$ over all $m \times n$ matrices X. What is the value of this minimum?

Problem 4. Let $H=\left(\begin{array}{cc}0 & A^{T} \\ A & 0\end{array}\right)$, where $A=U \Sigma V^{T}$ is the SVD of an $n \times n$ matrix A. Let $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right), U=\left[u_{1}, \ldots, u_{n}\right]$ and $V=\left[v_{1}, \ldots, v_{n}\right]$. Then the $2 n$ eigenvalues of H are $\pm \sigma_{i}$, with corresponding unit eigenvectors $\frac{1}{\sqrt{(2)}}\binom{v_{i}}{ \pm u_{i}}$.

Problem 5. Let $B \in \mathbb{R}^{n \times m}$ be any matrix such thta $R(A)=R(B)$. Show that x is a solution of the least squares problem for the overdetermined system $A x=b$ if and only if $B^{T} A x=B^{T} x$.

Problem 6. Show that if A has full rank, then $R(A)=R(B)$ if and only if there exists a nonsingular matrix $C \in \mathbb{R}^{m \times m}$ such that $A=B C$. What happens if we drop the assumption that A has full rank.

Problem 7. Show that the function $f\left(x_{1}, \ldots, x_{n}\right)=\|b-A x\|_{2}^{2}$ is a differentiable function on m variables. Compute $\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{m}}\right)^{T}$ and, using this, derive the normal equation for the least squares problem.

Problem 8. Let $A \in \mathbb{R}^{n \times m}$ with singular values $\sigma_{1} \geq \ldots, \geq \sigma_{m}$ and right singular vectors v_{1}, \ldots, v_{m}. Show that for $k=1, \ldots, m, \sigma_{k}=\max \left\{\frac{\|A x\|_{2}}{\|x\|_{2}}: x \neq 0, x \in \operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\}^{\perp}\right\}=$ $\min \left\{\frac{\|A x\|_{2}}{\|x\|_{2}}: x \neq 0, x \in \operatorname{span}\left\{v_{k+1}, \ldots, v_{m}\right\}^{\perp}\right\}$.

Problem 9. Let $A \in \mathbb{R}^{n \times m}$. Then B is the Pseudoinverse of A if and only if B satisfies the following four equations(Moore-Penrose equations):

1. $A B A=A$
2. $B A B=B$
3. $(B A)^{T}=B A$
4. $(A B)^{T}=A B$.
