Adjacency matrices of complex unit gain graphs

M. Rajesh Kannan

Department of Mathematics, Indian Institute of Technology Kharagpur, email: rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ac.in

February 13, 2019

Outline

- Adjacency matrices of graphs
- Perron-Frobenius theorem
- Spectral properties
- Adjacency matrices of complex unit gain graphs
- Characterization of bipartite graphs and trees

★ Ξ → ★ Ξ →

Adjacency matrix

Definition (Adjacency matrix)

The adjacency matrix of a graph *G* with *n* vertices, $V(G) = \{v_1, ..., v_n\}$ is a $n \times n$ matrix, denoted by $A(G) = (a_{ij})$, and is defined by

$$\mathbf{a}_{ij} = egin{cases} 1 & \textit{if } \mathbf{v}_i \sim \mathbf{v}_j, \ 0 & \textit{otherwise.} \end{cases}$$

くロト (得) (ほ) (ほ)

Example

Consider the graph G

Example

Consider the graph G

The adjacency matrix of G is

$$A(G) = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Let *G* be a connected graph with vertices $\{v_1, v_2, ..., v_n\}$ and let *A* be the adjacency matrix of *G*. Then,

A is symmetric.

Let *G* be a connected graph with vertices $\{v_1, v_2, ..., v_n\}$ and let *A* be the adjacency matrix of *G*. Then,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- A is symmetric.
- Sum of the 2 \times 2 principal minors of A equals to -|E(G)|.

- A is symmetric.
- Sum of the 2 \times 2 principal minors of A equals to -|E(G)|.
- Sum of the 3 × 3 principal minors of A equals to twice the number of triangles in the graph.

- A is symmetric.
- Sum of the 2 \times 2 principal minors of A equals to -|E(G)|.
- Sum of the 3 × 3 principal minors of A equals to twice the number of triangles in the graph.
- (*i*, *j*)th entry of the matrix A^k equals the number of walks of length k from the vertex *i* to the vertex *j*.

- A is symmetric.
- Sum of the 2 \times 2 principal minors of A equals to -|E(G)|.
- Sum of the 3 × 3 principal minors of A equals to twice the number of triangles in the graph.
- (*i*, *j*)th entry of the matrix A^k equals the number of walks of length k from the vertex *i* to the vertex *j*.
- So If v_i and v_j are vertices of G with $d(v_i, v_j) = m$, then the matrices I, A, \ldots, A^m are linearly independent.

- A is symmetric.
- Sum of the 2 \times 2 principal minors of A equals to -|E(G)|.
- Sum of the 3 × 3 principal minors of A equals to twice the number of triangles in the graph.
- (*i*, *j*)th entry of the matrix A^k equals the number of walks of length k from the vertex *i* to the vertex *j*.
- So If v_i and v_j are vertices of G with $d(v_i, v_j) = m$, then the matrices I, A, \ldots, A^m are linearly independent.

An $n \times n$ matrix, $n \ge 2$, is *reducible* its rows and columns can be simultaneously permuted to

$$\left(\begin{array}{cc}B&C\\0&D\end{array}\right)$$

where *B* and *D* are square (not necessarily of the same order).

An $n \times n$ matrix, $n \ge 2$, is *reducible* its rows and columns can be simultaneously permuted to

$$\left(\begin{array}{cc}B&C\\0&D\end{array}\right)$$

where *B* and *D* are square (not necessarily of the same order). Otherwise, it is *irreducible*. For n = 1, 0 is reducible, $a \neq 0$ is irreducible.

An $n \times n$ matrix, $n \ge 2$, is *reducible* its rows and columns can be simultaneously permuted to

$$\left(\begin{array}{cc}B&C\\0&D\end{array}\right)$$

where *B* and *D* are square (not necessarily of the same order). Otherwise, it is *irreducible*. For n = 1, 0 is reducible, $a \neq 0$ is irreducible.

The *directed graph G(A)*, associated with an $n \times n$ matrix has n vertices $1, \ldots, n$ and an arc from i to j if and only if $a_{ij} \neq 0$.

An $n \times n$ matrix, $n \ge 2$, is *reducible* its rows and columns can be simultaneously permuted to

$$\left(\begin{array}{cc}B&C\\0&D\end{array}\right)$$

where *B* and *D* are square (not necessarily of the same order). Otherwise, it is *irreducible*. For n = 1, 0 is reducible, $a \neq 0$ is irreducible.

The *directed graph G(A)*, associated with an $n \times n$ matrix has n vertices $1, \ldots, n$ and an arc from i to j if and only if $a_{ij} \neq 0$.

Working definition: *A* is irreducible if and only if G(A) is strongly connected.

Theorem

If A is nonnegative and irreducible, then

a) ρ(A) > 0, where ρ(A) is the maximum of absolute value of all the eigenvalues of A,

A E > A E >

- b) $\rho(A)$ is an eigenvalue of A,
- c) There is a positive vector such that $Ax = \rho(A)x$,

Theorem

If A is nonnegative and irreducible, then

- a) ρ(A) > 0, where ρ(A) is the maximum of absolute value of all the eigenvalues of A,
- b) $\rho(A)$ is an eigenvalue of A,
- c) There is a positive vector such that $Ax = \rho(A)x$,

Theorem

Let $A, B \in \mathbb{C}^{n \times n}$ and suppose that A is nonnegative. If $A \ge |B|$, then $\rho(A) \ge \rho(|B|) \ge \rho(B)$.

▲掃♪ ▲ヨ♪ ▲ヨ♪ 三日

Theorem

If A is nonnegative and irreducible, then

- a) ρ(A) > 0, where ρ(A) is the maximum of absolute value of all the eigenvalues of A,
- b) $\rho(A)$ is an eigenvalue of A,
- c) There is a positive vector such that $Ax = \rho(A)x$,

Theorem

Let $A, B \in \mathbb{C}^{n \times n}$ and suppose that A is nonnegative. If $A \ge |B|$, then $\rho(A) \ge \rho(|B|) \ge \rho(B)$.

Theorem

Let $A, B \in \mathbb{C}^{n \times n}$. Suppose A is nonnegative and irreducible, and $A \ge |B|$. If $\lambda = e^{i\theta}\rho(B)$ is a maximum-modulus eigenvalue of B,

Theorem

If A is nonnegative and irreducible, then

- a) ρ(A) > 0, where ρ(A) is the maximum of absolute value of all the eigenvalues of A,
- b) $\rho(A)$ is an eigenvalue of A,
- c) There is a positive vector such that $Ax = \rho(A)x$,

Theorem

Let $A, B \in \mathbb{C}^{n \times n}$ and suppose that A is nonnegative. If $A \ge |B|$, then $\rho(A) \ge \rho(|B|) \ge \rho(B)$.

Theorem

Let $A, B \in \mathbb{C}^{n \times n}$. Suppose A is nonnegative and irreducible, and $A \ge |B|$. If $\lambda = e^{i\theta}\rho(B)$ is a maximum-modulus eigenvalue of B, then there is a diagonal unitary matrix $D \in \mathbb{C}^{n \times n}$ such that $B = e^{i\theta}DAD^{-1}$.

Let *G* be a graph with *n* vertices and with eigenvalues of its adjacency matrices, $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$. We denote by $\Delta(G)$ and $\delta(G)$, the maximum and the minimum of the vertex degrees of *G*, respectively.

Let *G* be a graph with *n* vertices and with eigenvalues of its adjacency matrices, $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$. We denote by $\Delta(G)$ and $\delta(G)$, the maximum and the minimum of the vertex degrees of *G*, respectively.

Let *G* be a graph with *n* vertices and with eigenvalues of its adjacency matrices, $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$. We denote by $\Delta(G)$ and $\delta(G)$, the maximum and the minimum of the vertex degrees of *G*, respectively.

- $\delta(G) \leq \lambda_1 \leq \Delta(G)$.
- $\chi(G) \leq 1 + \lambda_1$, where $\chi(G)$ is the chromatic number of *G*.

Let *G* be a graph with *n* vertices and with eigenvalues of its adjacency matrices, $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$. We denote by $\Delta(G)$ and $\delta(G)$, the maximum and the minimum of the vertex degrees of *G*, respectively.

- $\delta(G) \leq \lambda_1 \leq \Delta(G)$.
- $\chi(G) \leq 1 + \lambda_1$, where $\chi(G)$ is the chromatic number of *G*.

•
$$\chi(G) \geq 1 - \frac{\lambda_1}{\lambda_n}$$
.

Let *G* be a graph with *n* vertices and with eigenvalues of its adjacency matrices, $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$. We denote by $\Delta(G)$ and $\delta(G)$, the maximum and the minimum of the vertex degrees of *G*, respectively.

- $\delta(G) \leq \lambda_1 \leq \Delta(G)$.
- $\chi(G) \leq 1 + \lambda_1$, where $\chi(G)$ is the chromatic number of *G*.
- $\chi(G) \geq 1 \frac{\lambda_1}{\lambda_n}$.
- *G* is bipartite if and only if the eigenvalues of *A* are symmetric with respect to origin.

Let *G* be a graph with *n* vertices and with eigenvalues of its adjacency matrices, $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$. We denote by $\Delta(G)$ and $\delta(G)$, the maximum and the minimum of the vertex degrees of *G*, respectively.

- $\delta(G) \leq \lambda_1 \leq \Delta(G)$.
- $\chi(G) \leq 1 + \lambda_1$, where $\chi(G)$ is the chromatic number of *G*.
- $\chi(G) \geq 1 \frac{\lambda_1}{\lambda_n}$.
- G is bipartite if and only if the eigenvalues of A are symmetric with respect to origin. That is, λ is an eigenvalue of A(G) if and only if -λ is an eigenvalue of A(G).

• Let \mathfrak{G} be a group and, let G be a simple graph with vertex set $V(G) = \{1, 2, ..., n\}$ and edge set $E(G) = \{e_1, ..., e_m\}$.

- Let \mathfrak{G} be a group and, let G be a simple graph with vertex set $V(G) = \{1, 2, ..., n\}$ and edge set $E(G) = \{e_1, ..., e_m\}$.
- Define e_{jk} as a directed edge from the vertex j to the vertex k, if there is an edge between them.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Let \mathfrak{G} be a group and, let G be a simple graph with vertex set $V(G) = \{1, 2, ..., n\}$ and edge set $E(G) = \{e_1, ..., e_m\}$.
- Define *e_{jk}* as a directed edge from the vertex *j* to the vertex *k*, if there is an edge between them.

• The directed edge set $\overrightarrow{E(G)}$ consists of the directed edges $e_{jk}, e_{kj} \in \overrightarrow{E(G)}$, for each adjacent vertices *j* and *k* of *G*.

11/23

- Let \mathfrak{G} be a group and, let G be a simple graph with vertex set $V(G) = \{1, 2, ..., n\}$ and edge set $E(G) = \{e_1, ..., e_m\}$.
- Define *e_{jk}* as a directed edge from the vertex *j* to the vertex *k*, if there is an edge between them.
- The directed edge set $\overrightarrow{E(G)}$ consists of the directed edges $e_{jk}, e_{kj} \in \overrightarrow{E(G)}$, for each adjacent vertices *j* and *k* of *G*.
- Assign a weight (gain) g ∈ 𝔅 for each directed edge e_{jk} ∈ *E*(*G*), such that the weight of e_{kj} is g⁻¹. Let us denote this assignment by φ.

$\mathbb{T}\text{-}\mathsf{gain}$ adjacency matrix

Definition (Thomas Zaslavsky)

A \mathfrak{G} -gain graph is a graph *G* in which each orientation of an edge is given a gain which is the inverse of the gain assigned to the opposite orientation.

$\mathbb{T}\text{-}\textsc{gain}$ adjacency matrix

Definition (Thomas Zaslavsky)

A \mathfrak{G} -gain graph is a graph *G* in which each orientation of an edge is given a gain which is the inverse of the gain assigned to the opposite orientation.

If $\mathfrak{G} = \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$, then the gain graph is called \mathbb{T} -gain graph.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

$\mathbb{T}\text{-}\textsc{gain}$ adjacency matrix

Definition (Thomas Zaslavsky)

A \mathfrak{G} -gain graph is a graph *G* in which each orientation of an edge is given a gain which is the inverse of the gain assigned to the opposite orientation.

If $\mathfrak{G} = \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$, then the gain graph is called \mathbb{T} -gain graph.

Definition (\mathbb{T} -gain adjacency matrix)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} - gain graph, where $\varphi : \overrightarrow{E(G)} \to \mathbb{T}$ be a weight function.

$\mathbb{T}\text{-}\textsc{gain}$ adjacency matrix

Definition (Thomas Zaslavsky)

A \mathfrak{G} -gain graph is a graph *G* in which each orientation of an edge is given a gain which is the inverse of the gain assigned to the opposite orientation.

If $\mathfrak{G} = \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$, then the gain graph is called \mathbb{T} -gain graph.

Definition (\mathbb{T} -gain adjacency matrix)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} - gain graph, where $\varphi : \overrightarrow{E(G)} \to \mathbb{T}$ be a weight function. The \mathbb{T} -gain adjacency matrix or complex unit gain adjacency matrix $A(\Phi) = (a_{ij})$ is defined by

$$a_{ij} = egin{cases} arphi(m{e}_{ij}) & ext{if } m{v}_i \sim m{v}_j, \ 0 & ext{otherwise.} \end{cases}$$

On $\mathbb{T}\text{-}\mathsf{gain}$ adjacency matrix

Example

Figure: $\mathbb T\text{-}gain$ graph Φ and its underlying graph

On $\mathbb{T}\text{-}\mathsf{gain}$ adjacency matrix

Example

Figure: $\mathbb T\text{-}gain$ graph Φ and its underlying graph

$${\cal A}(\Phi) = \left(egin{array}{cccc} 0 & i & e^{irac{\pi}{7}} \ -i & 0 & 1 \ e^{-irac{\pi}{7}} & 1 & 0 \end{array}
ight)$$

• The gain of a cycle $C = v_1 v_2, \ldots v_l v_1$, denoted by $\varphi(C)$, is defined as the product of the gains of its edges, that is $\varphi(C) = \varphi(e_{12})\varphi(e_{23})\ldots\varphi(e_{(l-1)l})\varphi(e_{l1}).$

- The gain of a cycle $C = v_1 v_2, \ldots v_l v_1$, denoted by $\varphi(C)$, is defined as the product of the gains of its edges, that is $\varphi(C) = \varphi(e_{12})\varphi(e_{23})\ldots\varphi(e_{(l-1)l})\varphi(e_{l1}).$
- A cycle C is said to be **neutral** if φ(C) = 1, and a gain graph is said to be **balanced** if all its cycles are neutral.

- The gain of a cycle $C = v_1 v_2, \ldots v_l v_1$, denoted by $\varphi(C)$, is defined as the product of the gains of its edges, that is $\varphi(C) = \varphi(e_{12})\varphi(e_{23})\ldots\varphi(e_{(l-1)l})\varphi(e_{l1}).$
- A cycle C is said to be **neutral** if φ(C) = 1, and a gain graph is said to be **balanced** if all its cycles are neutral.
- A function from the vertex set of *G* to the complex unit circle T is called a **switching function**.

- The gain of a cycle $C = v_1 v_2, \ldots v_l v_1$, denoted by $\varphi(C)$, is defined as the product of the gains of its edges, that is $\varphi(C) = \varphi(e_{12})\varphi(e_{23})\ldots\varphi(e_{(l-1)l})\varphi(e_{l1}).$
- A cycle C is said to be **neutral** if φ(C) = 1, and a gain graph is said to be **balanced** if all its cycles are neutral.
- A function from the vertex set of *G* to the complex unit circle T is called a **switching function**.
- We say that, two gain graphs Φ₁ = (G, φ₁) and Φ₂ = (G, φ₂) are said to be switching equivalent, written as Φ₁ ~ Φ₂, if there is a switching function ζ : V → T such that φ₂(e_{ij}) = ζ(v_i)⁻¹φ₁(e_{ij})ζ(v_j).

Spectrum of T-gain adjacency matrix

Theorem (Zaslavsky[19],1989)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain graph. Then Φ is balanced if and only if $\Phi \sim (G, 1)$.

Spectrum of T-gain adjacency matrix

Theorem (Zaslavsky[19],1989)

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain graph. Then Φ is balanced if and only if $\Phi \sim (G, 1)$.

Theorem (Reff[17], 2012)

Let $\Phi_1 = (G, \varphi_1)$ and $\Phi_2 = (G, \varphi_2)$ be two \mathbb{T} -gain graph. If $\Phi_1 \sim \Phi_2 \Rightarrow A(\Phi_1)$ and $A(\Phi_2)$ have the same spectrum.

Theorem

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain (connected) graph, then $\rho(A(\Phi)) = \rho(A(G))$ if and only if either Φ or $-\Phi$ is balanced.

Theorem

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain (connected) graph, then $\rho(A(\Phi)) = \rho(A(G))$ if and only if either Φ or $-\Phi$ is balanced.

Proof: If Φ or $-\Phi$ is balanced, then $\rho(A(\Phi)) = \rho(A(G))$.

Theorem

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain (connected) graph, then $\rho(A(\Phi)) = \rho(A(G))$ if and only if either Φ or $-\Phi$ is balanced.

Proof: If Φ or $-\Phi$ is balanced, then $\rho(A(\Phi)) = \rho(A(G))$. Conversely, suppose that $\rho(A(\Phi)) = \rho(A(G))$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Theorem

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain (connected) graph, then $\rho(A(\Phi)) = \rho(A(G))$ if and only if either Φ or $-\Phi$ is balanced.

Proof: If Φ or $-\Phi$ is balanced, then $\rho(A(\Phi)) = \rho(A(G))$. Conversely, suppose that $\rho(A(\Phi)) = \rho(A(G))$. Let $\lambda_n \leq \lambda_{n-1} \leq \cdots \leq \lambda_1$ be the eigenvalues of $A(\Phi)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Theorem

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain (connected) graph, then $\rho(A(\Phi)) = \rho(A(G))$ if and only if either Φ or $-\Phi$ is balanced.

Proof: If Φ or $-\Phi$ is balanced, then $\rho(A(\Phi)) = \rho(A(G))$. Conversely, suppose that $\rho(A(\Phi)) = \rho(A(G))$. Let $\lambda_n \leq \lambda_{n-1} \leq \cdots \leq \lambda_1$ be the eigenvalues of $A(\Phi)$. Since $A(\Phi)$ is Hermitian, either $\rho(A(\Phi)) = \lambda_1$ or $\rho(A(\Phi)) = -\lambda_n$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Theorem

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain (connected) graph, then $\rho(A(\Phi)) = \rho(A(G))$ if and only if either Φ or $-\Phi$ is balanced.

Proof: If Φ or $-\Phi$ is balanced, then $\rho(A(\Phi)) = \rho(A(G))$. Conversely, suppose that $\rho(A(\Phi)) = \rho(A(G))$. Let $\lambda_n \leq \lambda_{n-1} \leq \cdots \leq \lambda_1$ be the eigenvalues of $A(\Phi)$. Since $A(\Phi)$ is Hermitian, either $\rho(A(\Phi)) = \lambda_1$ or $\rho(A(\Phi)) = -\lambda_n$. **Case 1:** Suppose that $\rho(A(\Phi)) = \lambda_1$. Then there is a diagonal unitary matrix $D \in \mathbb{C}^{n \times n}$ such that $A(\Phi) = DA(G)D^{-1}$. Hence $\Phi \sim (G, 1)$. Therefore, Φ is balanced.

Theorem

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain (connected) graph, then $\rho(A(\Phi)) = \rho(A(G))$ if and only if either Φ or $-\Phi$ is balanced.

Proof: If Φ or $-\Phi$ is balanced, then $\rho(A(\Phi)) = \rho(A(G))$. Conversely, suppose that $\rho(A(\Phi)) = \rho(A(G))$. Let $\lambda_n \leq \lambda_{n-1} \leq \cdots \leq \lambda_1$ be the eigenvalues of $A(\Phi)$. Since $A(\Phi)$ is Hermitian, either $\rho(A(\Phi)) = \lambda_1$ or $\rho(A(\Phi)) = -\lambda_n$.

Case 1: Suppose that $\rho(A(\Phi)) = \lambda_1$. Then there is a diagonal unitary matrix $D \in \mathbb{C}^{n \times n}$ such that $A(\Phi) = DA(G)D^{-1}$. Hence $\Phi \sim (G, 1)$. Therefore, Φ is balanced.

Case 2: If $\rho(A(\Phi)) = -\lambda_n$, then $\lambda_n = e^{\iota \pi} \rho(A(\Phi))$. We have $A(\Phi) = e^{\iota \pi} DA(G) D^{-1}$, for some diagonal unitary matrix $D \in \mathbb{C}^{n \times n}$. Thus $A(-\Phi) = DA(G) D^{-1}$. Hence, $(-\Phi) \sim (G, 1)$. Thus, $-\Phi$ is balanced.

Converse

Theorem

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain(connected) graph. Then, $\sigma(A(\Phi)) = \sigma(A(G))$ if and only if Φ is balanced.

<ロ> (四) (四) (三) (三) (三) (三)

Characterization of bipartite graphs

Theorem

Let G be a connected graph. Then, G is bipartite if and only if $\rho(A(\Phi)) = \rho(A(G))$ implies $\sigma(A(\Phi)) = \sigma(A(G))$ for every gain φ .

Characterization of bipartite graphs

Theorem

Let G be a connected graph. Then, G is bipartite if and only if $\rho(A(\Phi)) = \rho(A(G))$ implies $\sigma(A(\Phi)) = \sigma(A(G))$ for every gain φ .

Theorem

Let G be a connected graph. Then

(i) If G is bipartite, then whenever Φ is balanced implies $-\Phi$ is balanced.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Characterization of bipartite graphs

Theorem

Let G be a connected graph. Then, G is bipartite if and only if $\rho(A(\Phi)) = \rho(A(G))$ implies $\sigma(A(\Phi)) = \sigma(A(G))$ for every gain φ .

Theorem

Let G be a connected graph. Then

- (i) If G is bipartite, then whenever Φ is balanced implies -Φ is balanced.
- (ii) If Φ is balanced implies -Φ is balanced for some gain Φ, then the graph is bipartite.

Invariance of gain spectrum and gain spectral radius

Theorem

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain graph. Then G is a tree if and only if $\sigma(A(G)) = \sigma(A(\Phi))$ for all φ .

Invariance of gain spectrum and gain spectral radius

Theorem

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain graph. Then G is a tree if and only if $\sigma(A(G)) = \sigma(A(\Phi))$ for all φ .

Theorem

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain graph. Then G is a tree $\Leftrightarrow \rho(\mathcal{A}(G)) = \rho(\mathcal{A}(\Phi))$ for all φ .

Invariance of gain spectrum and gain spectral radius

Theorem

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain graph. Then G is a tree if and only if $\sigma(A(G)) = \sigma(A(\Phi))$ for all φ .

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain graph. Then G is a tree $\Leftrightarrow \rho(\mathcal{A}(G)) = \rho(\mathcal{A}(\Phi))$ for all φ .

Theorem

Let $\Phi = (G, \varphi)$ be a \mathbb{T} -gain graph. TFAE,

$$(\mathbf{A}(\mathbf{G})) = \sigma(\mathbf{A}(\Phi)) \text{ for all } \varphi,$$

3
$$\rho(A(G)) = \rho(A(\Phi))$$
 for all φ .

References I

- R. B. Bapat, *Graphs and matrices*, Universitext, Springer, London; Hindustan Book Agency, New Delhi, 2010. MR 2797201
- R. B. Bapat and Sukanta Pati, *Energy of a graph is never an odd integer*, Bull. Kerala Math. Assoc. **1** (2004), no. 2, 129–132. MR 2250987
- Andries E. Brouwer and Willem H. Haemers, *Spectra of graphs*, Universitext, Springer, New York, 2012. MR 2882891
- Gilles Caporossi, Dragos Cvetkovic, Ivan Gutman, and Pierre Hansen, Variable neighborhood search for extremal graphs. 2. finding graphs with extremal energy, Journal of Chemical Information and Computer Sciences **39** (1999), no. 6, 984–996.
- M. Cavers, S. M. Cioabă, S. Fallat, D. A. Gregory, W. H. Haemers, S. J. Kirkland, J. J. McDonald, and M. Tsatsomeros, *Skew-adjacency matrices of graphs*, Linear Algebra Appl. **436** (2012), no. 12, 4512–4529. MR 2917427

References II

- Krystal Guo and Bojan Mohar, Hermitian adjacency matrix of digraphs and mixed graphs, J. Graph Theory 85 (2017), no. 1, 217–248. MR 3634484
- Karl E. Gustafson and Duggirala K. M. Rao, Numerical range, Universitext, Springer-Verlag, New York, 1997, The field of values of linear operators and matrices. MR 1417493
 - I. Gutman, *The energy of a graph*, Ber. Math.-Statist. Sekt. Forshungszentrum Graz **103** (1978), no. 2, 1–22.
- Ivan Gutman, *The energy of a graph: Old and new results*, Algebraic Combinatorics and Applications (Berlin, Heidelberg) (Anton Betten, Axel Kohnert, Reinhard Laue, and Alfred Wassermann, eds.), Springer Berlin Heidelberg, 2001, pp. 196–211.
- Frank Harary, *The determinant of the adjacency matrix of a graph*, SIAM Review **4** (Jul., 1962), no. 1, 202–210.

References III

- A. J. Hoffman, *On eigenvalues and colorings of graphs*, Graph Theory and its Applications, Academic, New York and London (1970), 79–91.
- Roger A. Horn and Charles R. Johnson, *Matrix analysis*, second ed., Cambridge University Press, Cambridge, 2013. MR 2978290
- O.E. Polansky. I. Gutman, *Mathematical concepts in organic chemistry*, Springer Berlin Heidelberg, 1986.
- Jianxi Liu and Xueliang Li, *Hermitian-adjacency matrices and Hermitian energies of mixed graphs*, Linear Algebra Appl. **466** (2015), 182–207. MR 3278246
- R Mehatari, M Rajesh Kannan, and A Samanta, *On the adjacency matrix of complex unit gain graphs*, (Submitted, arXiv:1812.03747) (2018).
- Juan Rada and Antonio Tineo, *Upper and lower bounds for the energy of bipartite graphs*, J. Math. Anal. Appl. **289** (2004), no. 2, 446–455. MR 2026917

References IV

- Nathan Reff, *Spectral properties of complex unit gain graphs*, Linear Algebra Appl. **436** (2012), no. 9, 3165–3176. MR 2900705
- H. S. Wilf, *The eigenvalues of a graph and its chromatic number*, Journal of the London Mathematical Society **s1-42** (1967), no. 1, 330–332.
- Thomas Zaslavsky, *Biased graphs. I. Bias, balance, and gains*, J. Combin. Theory Ser. B **47** (1989), no. 1, 32–52. MR 1007712