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Adjacency matrix

Definition (Adjacency matrix)
The adjacency matrix of a graph G with n vertices, V (G) = {v1, ...vn}
is a n × n matrix, denoted by A(G) = (aij), and is defined by

aij =

{
1 if vi ∼ vj ,

0 otherwise.
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Example

Example
Consider the graph G

2 1

4 3

The adjacency matrix of G is

A(G) =


0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0
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Properties

Let G be a connected graph with vertices {v1, v2, . . . , vn} and let A be
the adjacency matrix of G. Then,

1 A is symmetric.

2 Sum of the 2× 2 principal minors of A equals to −|E(G)|.
3 Sum of the 3× 3 principal minors of A equals to twice the number

of triangles in the graph.
4 (i , j)th entry of the matrix Ak equals the number of walks of length

k from the vertex i to the vertex j .
5 If vi and vj are vertices of G with d(vi , vj) = m, then the matrices

I,A, . . . ,Am are linearly independent.
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Irreducible matrices

An n × n matrix, n ≥ 2, is reducible its rows and columns can be
simultaneously permuted to (

B C
0 D

)
where B and D are square (not necessarily of the same order).

Otherwise, it is irreducible. For n = 1, 0 is reducible, a 6= 0 is
irreducible.

The directed graph G(A), associated with an n × n matrix has n
vertices 1, . . . ,n and an arc from i to j if and only if aij 6= 0.

Working definition: A is irreducible if and only if G(A) is strongly
connected.
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Example


1 0 1 0
0 0 0 1
0 1 0 0
1 0 0 1



1 2

4 3
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Perron-Frobenius Theorem
Theorem
If A is nonnegative and irreducible, then

a) ρ(A) > 0, where ρ(A) is the maximum of absolute value of all the
eigenvalues of A,

b) ρ(A) is an eigenvalue of A,
c) There is a positive vector such that Ax = ρ(A)x,

Theorem

Let A,B ∈ Cn×n and suppose that A is nonnegative. If A ≥ |B|, then
ρ(A) ≥ ρ(|B|) ≥ ρ(B).

Theorem

Let A,B ∈ Cn×n. Suppose A is nonnegative and irreducible, and
A ≥ |B|. If λ = eiθρ(B) is a maximum-modulus eigenvalue of B, then
there is a diagonal unitary matrix D ∈ Cn×n such that B = eiθDAD−1.
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Spectrum of adjacency matrix

Let G be a graph with n vertices and with eigenvalues of its adjacency
matrices, λ1 ≥ λ2 ≥ ... ≥ λn. We denote by ∆(G) and δ(G), the
maximum and the minimum of the vertex degrees of G, respectively.

Properties of spectrum

δ(G) ≤ λ1 ≤ ∆(G).

χ(G) ≤ 1 + λ1, where χ(G) is the chromatic number of G.

χ(G) ≥ 1− λ1
λn

.

G is bipartite if and only if the eigenvalues of A are symmetric with
respect to origin. That is, λ is an eigenvalue of A(G) if and only if
−λ is an eigenvalue of A(G).
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Gain graphs

Let G be a group and, let G be a simple graph with vertex set
V (G) = {1,2, . . . ,n} and edge set E(G) = {e1, . . . ,em} .

Define ejk as a directed edge from the vertex j to the vertex k , if
there is an edge between them.

The directed edge set
−−−→
E(G) consists of the directed edges

ejk ,ekj ∈
−−−→
E(G), for each adjacent vertices j and k of G.

Assign a weight (gain) g ∈ G for each directed edge ejk ∈
−−−→
E(G),

such that the weight of ekj is g−1. Let us denote this assignment
by ϕ.
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T-gain adjacency matrix
Definition (Thomas Zaslavsky)
A G-gain graph is a graph G in which each orientation of an edge is
given a gain which is the inverse of the gain assigned to the opposite
orientation.

If G = T = {z ∈ C : |z| = 1}, then the gain graph is called T-gain
graph.

Definition ( T-gain adjacency matrix )

Let Φ = (G, ϕ) be a T- gain graph, where ϕ :
−−−→
E(G)→ T be a weight

function. The T-gain adjacency matrix or complex unit gain
adjacency matrix A(Φ) = (aij) is defined by

aij =

{
ϕ(eij) if vi ∼ vj ,

0 otherwise.
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On T-gain adjacency matrix

Example

Figure: T-gain graph Φ and its underlying graph

A(Φ) =

 0 i ei π7

−i 0 1
e−i π7 1 0
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Definition
The gain of a cycle C = v1v2, . . . vlv1, denoted by ϕ(C), is
defined as the product of the gains of its edges, that is
ϕ(C) = ϕ(e12)ϕ(e23) . . . ϕ(e(l−1)l)ϕ(el1).

A cycle C is said to be neutral if ϕ(C) = 1, and a gain graph is
said to be balanced if all its cycles are neutral.

A function from the vertex set of G to the complex unit circle T is
called a switching function.

We say that, two gain graphs Φ1 = (G, ϕ1) and Φ2 = (G, ϕ2) are
said to be switching equivalent, written as Φ1 ∼ Φ2 , if there is a
switching function ζ : V → T such that
ϕ2(eij) = ζ(vi)

−1ϕ1(eij)ζ(vj).
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Spectrum of T-gain adjacency matrix

Theorem (Zaslavsky[19],1989)
Let Φ = (G, ϕ) be a T-gain graph. Then Φ is balanced if and only if
Φ ∼ (G,1).

Theorem (Reff[17], 2012)
Let Φ1 = (G, ϕ1) and Φ2 = (G, ϕ2) be two T-gain graph. If Φ1 ∼ Φ2 ⇒
A(Φ1) and A(Φ2) have the same spectrum.
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Key theorem

Theorem

Let Φ = (G, ϕ) be a T-gain (connected) graph, then ρ(A(Φ)) = ρ(A(G))
if and only if either Φ or −Φ is balanced.

Proof: If Φ or −Φ is balanced, then ρ(A(Φ)) = ρ(A(G)). Conversely,
suppose that ρ(A(Φ)) = ρ(A(G)). Let λn ≤ λn−1 ≤ · · · ≤ λ1 be the
eigenvalues of A(Φ). Since A(Φ) is Hermitian, either ρ(A(Φ)) = λ1 or
ρ(A(Φ)) = −λn.
Case 1: Suppose that ρ(A(Φ)) = λ1. Then there is a diagonal unitary
matrix D ∈ Cn×n such that A(Φ) = DA(G)D−1. Hence Φ ∼ (G,1).
Therefore, Φ is balanced.
Case 2: If ρ(A(Φ)) = −λn, then λn = eιπρ(A(Φ)). We have
A(Φ) = eιπDA(G)D−1, for some diagonal unitary matrix D ∈ Cn×n.
Thus A(−Φ) = DA(G)D−1. Hence, (−Φ) ∼ (G,1). Thus, −Φ is
balanced.
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Converse

Theorem

Let Φ = (G, ϕ) be a T-gain(connected) graph. Then,
σ(A(Φ)) = σ(A(G)) if and only if Φ is balanced.
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Characterization of bipartite graphs

Theorem

Let G be a connected graph. Then, G is bipartite if and only if
ρ(A(Φ)) = ρ(A(G)) implies σ(A(Φ)) = σ(A(G)) for every gain ϕ.

Theorem

Let G be a connected graph. Then
(i) If G is bipartite, then whenever Φ is balanced implies −Φ is

balanced.
(ii) If Φ is balanced implies −Φ is balanced for some gain Φ, then the

graph is bipartite.
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Invariance of gain spectrum and gain spectral radius

Theorem
Let Φ = (G, ϕ) be a T-gain graph. Then G is a tree if and only if
σ(A(G)) = σ(A(Φ)) for all ϕ.

Theorem
Let Φ = (G, ϕ) be a T-gain graph. Then G is a tree⇔
ρ(A(G)) = ρ(A(Φ)) for all ϕ.

Theorem
Let Φ = (G, ϕ) be a T-gain graph. TFAE,

1 G is tree,
2 σ(A(G)) = σ(A(Φ)) for all ϕ,
3 ρ(A(G)) = ρ(A(Φ)) for all ϕ.
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