Adjacency matrices of complex unit gain graphs

M. Rajesh Kannan

Department of Mathematics, Indian Institute of Technology Kharagpur, email: rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ac.in

योगः कर्मसु कौशलम्
February 13,2019

Outline

- Adjacency matrices of graphs
- Perron-Frobenius theorem
- Spectral properties
- Adjacency matrices of complex unit gain graphs
- Characterization of bipartite graphs and trees

Adjacency matrix

Definition (Adjacency matrix)

The adjacency matrix of a graph G with n vertices, $V(G)=\left\{v_{1}, \ldots v_{n}\right\}$ is a $n \times n$ matrix, denoted by $A(G)=\left(a_{i j}\right)$, and is defined by

$$
a_{i j}= \begin{cases}1 & \text { if } v_{i} \sim v_{j}, \\ 0 & \text { otherwise. }\end{cases}
$$

Example

Example

Consider the graph G

Example

Example

Consider the graph G

The adjacency matrix of G is

$$
A(G)=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

Properties

Let G be a connected graph with vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let A be the adjacency matrix of G. Then,
(1) A is symmetric.

Properties

Let G be a connected graph with vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let A be the adjacency matrix of G. Then,
(1) A is symmetric.
(2) Sum of the 2×2 principal minors of A equals to $-|E(G)|$.

Properties

Let G be a connected graph with vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let A be the adjacency matrix of G. Then,
(1) A is symmetric.
(2) Sum of the 2×2 principal minors of A equals to $-|E(G)|$.
(3) Sum of the 3×3 principal minors of A equals to twice the number of triangles in the graph.

Properties

Let G be a connected graph with vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let A be the adjacency matrix of G. Then,
(1) A is symmetric.
(2) Sum of the 2×2 principal minors of A equals to $-|E(G)|$.
(3) Sum of the 3×3 principal minors of A equals to twice the number of triangles in the graph.
(4) $(i, j)^{t h}$ entry of the matrix A^{k} equals the number of walks of length k from the vertex i to the vertex j.

Properties

Let G be a connected graph with vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let A be the adjacency matrix of G. Then,
(1) A is symmetric.
(2) Sum of the 2×2 principal minors of A equals to $-|E(G)|$.
(3) Sum of the 3×3 principal minors of A equals to twice the number of triangles in the graph.
(4) $(i, j)^{t h}$ entry of the matrix A^{k} equals the number of walks of length k from the vertex i to the vertex j.
(5) If v_{i} and v_{j} are vertices of G with $d\left(v_{i}, v_{j}\right)=m$, then the matrices I, A, \ldots, A^{m} are linearly independent.

Properties

Let G be a connected graph with vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let A be the adjacency matrix of G. Then,
(1) A is symmetric.
(2) Sum of the 2×2 principal minors of A equals to $-|E(G)|$.
(3) Sum of the 3×3 principal minors of A equals to twice the number of triangles in the graph.
(4) $(i, j)^{t h}$ entry of the matrix A^{k} equals the number of walks of length k from the vertex i to the vertex j.
(5) If v_{i} and v_{j} are vertices of G with $d\left(v_{i}, v_{j}\right)=m$, then the matrices I, A, \ldots, A^{m} are linearly independent.

Irreducible matrices

An $n \times n$ matrix, $n \geq 2$, is reducible its rows and columns can be simultaneously permuted to

$$
\left(\begin{array}{ll}
B & C \\
0 & D
\end{array}\right)
$$

where B and D are square (not necessarily of the same order).

Irreducible matrices

An $n \times n$ matrix, $n \geq 2$, is reducible its rows and columns can be simultaneously permuted to

$$
\left(\begin{array}{ll}
B & C \\
0 & D
\end{array}\right)
$$

where B and D are square (not necessarily of the same order). Otherwise, it is irreducible. For $n=1,0$ is reducible, $a \neq 0$ is irreducible.

Irreducible matrices

An $n \times n$ matrix, $n \geq 2$, is reducible its rows and columns can be simultaneously permuted to

$$
\left(\begin{array}{ll}
B & C \\
0 & D
\end{array}\right)
$$

where B and D are square (not necessarily of the same order). Otherwise, it is irreducible. For $n=1,0$ is reducible, $a \neq 0$ is irreducible.

The directed graph $G(A)$, associated with an $n \times n$ matrix has n vertices $1, \ldots, n$ and an arc from i to j if and only if $a_{i j} \neq 0$.

Irreducible matrices

An $n \times n$ matrix, $n \geq 2$, is reducible its rows and columns can be simultaneously permuted to

$$
\left(\begin{array}{ll}
B & C \\
0 & D
\end{array}\right)
$$

where B and D are square (not necessarily of the same order). Otherwise, it is irreducible. For $n=1,0$ is reducible, $a \neq 0$ is irreducible.

The directed graph $G(A)$, associated with an $n \times n$ matrix has n vertices $1, \ldots, n$ and an arc from i to j if and only if $a_{i j} \neq 0$.

Working definition: A is irreducible if and only if $G(A)$ is strongly connected.

Example

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

Example

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

[^0]
Example

$\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1\end{array}\right)$

Example

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right)
$$

Perron-Frobenius Theorem

Theorem
If A is nonnegative and irreducible, then
a) $\rho(A)>0$, where $\rho(A)$ is the maximum of absolute value of all the eigenvalues of A,
b) $\rho(A)$ is an eigenvalue of A,
c) There is a positive vector such that $A x=\rho(A) x$,

Perron-Frobenius Theorem

Theorem
If A is nonnegative and irreducible, then
a) $\rho(A)>0$, where $\rho(A)$ is the maximum of absolute value of all the eigenvalues of A,
b) $\rho(A)$ is an eigenvalue of A,
c) There is a positive vector such that $A x=\rho(A) x$,

Theorem

Let $A, B \in \mathbb{C}^{n \times n}$ and suppose that A is nonnegative. If $A \geq|B|$, then $\rho(A) \geq \rho(|B|) \geq \rho(B)$.

Perron-Frobenius Theorem

Theorem

If A is nonnegative and irreducible, then
a) $\rho(A)>0$, where $\rho(A)$ is the maximum of absolute value of all the eigenvalues of A,
b) $\rho(A)$ is an eigenvalue of A,
c) There is a positive vector such that $A x=\rho(A) x$,

Theorem

Let $A, B \in \mathbb{C}^{n \times n}$ and suppose that A is nonnegative. If $A \geq|B|$, then $\rho(A) \geq \rho(|B|) \geq \rho(B)$.

Theorem

Let $A, B \in \mathbb{C}^{n \times n}$. Suppose A is nonnegative and irreducible, and $A \geq|B|$. If $\lambda=e^{i \theta} \rho(B)$ is a maximum-modulus eigenvalue of B,

Perron-Frobenius Theorem

Theorem

If A is nonnegative and irreducible, then
a) $\rho(A)>0$, where $\rho(A)$ is the maximum of absolute value of all the eigenvalues of A,
b) $\rho(A)$ is an eigenvalue of A,
c) There is a positive vector such that $A x=\rho(A) x$,

Theorem

Let $A, B \in \mathbb{C}^{n \times n}$ and suppose that A is nonnegative. If $A \geq|B|$, then $\rho(A) \geq \rho(|B|) \geq \rho(B)$.

Theorem

Let $A, B \in \mathbb{C}^{n \times n}$. Suppose A is nonnegative and irreducible, and $A \geq|B|$. If $\lambda=e^{i \theta} \rho(B)$ is a maximum-modulus eigenvalue of B, then there is a diagonal unitary matrix $D \in \mathbb{C}^{n \times n}$ such that $B=e^{i \theta} D A D^{-1}$.

Spectrum of adjacency matrix

Let G be a graph with n vertices and with eigenvalues of its adjacency matrices, $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$. We denote by $\Delta(G)$ and $\delta(G)$, the maximum and the minimum of the vertex degrees of G, respectively.

Spectrum of adjacency matrix

Let G be a graph with n vertices and with eigenvalues of its adjacency matrices, $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$. We denote by $\Delta(G)$ and $\delta(G)$, the maximum and the minimum of the vertex degrees of G, respectively.

Properties of spectrum

- $\delta(G) \leq \lambda_{1} \leq \Delta(G)$.

Spectrum of adjacency matrix

Let G be a graph with n vertices and with eigenvalues of its adjacency matrices, $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$. We denote by $\Delta(G)$ and $\delta(G)$, the maximum and the minimum of the vertex degrees of G, respectively.

Properties of spectrum

- $\delta(G) \leq \lambda_{1} \leq \Delta(G)$.
- $\chi(G) \leq 1+\lambda_{1}$, where $\chi(G)$ is the chromatic number of G.

Spectrum of adjacency matrix

Let G be a graph with n vertices and with eigenvalues of its adjacency matrices, $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$. We denote by $\Delta(G)$ and $\delta(G)$, the maximum and the minimum of the vertex degrees of G, respectively.

Properties of spectrum

- $\delta(G) \leq \lambda_{1} \leq \Delta(G)$.
- $\chi(G) \leq 1+\lambda_{1}$, where $\chi(G)$ is the chromatic number of G.
- $\chi(G) \geq 1-\frac{\lambda_{1}}{\lambda_{n}}$.

Spectrum of adjacency matrix

Let G be a graph with n vertices and with eigenvalues of its adjacency matrices, $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$. We denote by $\Delta(G)$ and $\delta(G)$, the maximum and the minimum of the vertex degrees of G, respectively.

Properties of spectrum

- $\delta(G) \leq \lambda_{1} \leq \Delta(G)$.
- $\chi(G) \leq 1+\lambda_{1}$, where $\chi(G)$ is the chromatic number of G.
- $\chi(G) \geq 1-\frac{\lambda_{1}}{\lambda_{n}}$.
- G is bipartite if and only if the eigenvalues of A are symmetric with respect to origin.

Spectrum of adjacency matrix

Let G be a graph with n vertices and with eigenvalues of its adjacency matrices, $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$. We denote by $\Delta(G)$ and $\delta(G)$, the maximum and the minimum of the vertex degrees of G, respectively.

Properties of spectrum

- $\delta(G) \leq \lambda_{1} \leq \Delta(G)$.
- $\chi(G) \leq 1+\lambda_{1}$, where $\chi(G)$ is the chromatic number of G.
- $\chi(G) \geq 1-\frac{\lambda_{1}}{\lambda_{n}}$.
- G is bipartite if and only if the eigenvalues of A are symmetric with respect to origin. That is, λ is an eigenvalue of $A(G)$ if and only if $-\lambda$ is an eigenvalue of $A(G)$.

Gain graphs

- Let \mathfrak{G} be a group and, let G be a simple graph with vertex set $V(G)=\{1,2, \ldots, n\}$ and edge set $E(G)=\left\{e_{1}, \ldots, e_{m}\right\}$.

Gain graphs

- Let \mathfrak{G} be a group and, let G be a simple graph with vertex set $V(G)=\{1,2, \ldots, n\}$ and edge set $E(G)=\left\{e_{1}, \ldots, e_{m}\right\}$.
- Define $e_{j k}$ as a directed edge from the vertex j to the vertex k, if there is an edge between them.

Gain graphs

- Let \mathfrak{G} be a group and, let G be a simple graph with vertex set $V(G)=\{1,2, \ldots, n\}$ and edge set $E(G)=\left\{e_{1}, \ldots, e_{m}\right\}$.
- Define $e_{j k}$ as a directed edge from the vertex j to the vertex k, if there is an edge between them.
- The directed edge set $\overrightarrow{E(G)}$ consists of the directed edges $e_{j k}, e_{k j} \in \overrightarrow{E(G)}$, for each adjacent vertices j and k of G.

Gain graphs

- Let \mathfrak{G} be a group and, let G be a simple graph with vertex set $V(G)=\{1,2, \ldots, n\}$ and edge set $E(G)=\left\{e_{1}, \ldots, e_{m}\right\}$.
- Define $e_{j k}$ as a directed edge from the vertex j to the vertex k, if there is an edge between them.
- The directed edge set $\overrightarrow{E(G)}$ consists of the directed edges $e_{j k}, e_{k j} \in \overrightarrow{E(G)}$, for each adjacent vertices j and k of G.
- Assign a weight (gain) $g \in \mathfrak{G}$ for each directed edge $e_{j k} \in \overrightarrow{E(G)}$, such that the weight of $e_{k j}$ is g^{-1}. Let us denote this assignment by φ.

\mathbb{T}-gain adjacency matrix

Definition (Thomas Zaslavsky)
A \mathfrak{G}-gain graph is a graph G in which each orientation of an edge is given a gain which is the inverse of the gain assigned to the opposite orientation.

\mathbb{T}-gain adjacency matrix

Definition (Thomas Zaslavsky)

A \mathfrak{G}-gain graph is a graph G in which each orientation of an edge is given a gain which is the inverse of the gain assigned to the opposite orientation.

If $\mathfrak{G}=\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$, then the gain graph is called \mathbb{T}-gain graph.

T-gain adjacency matrix

Definition (Thomas Zaslavsky)

A \mathfrak{G}-gain graph is a graph G in which each orientation of an edge is given a gain which is the inverse of the gain assigned to the opposite orientation.

If $\mathfrak{G}=\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$, then the gain graph is called \mathbb{T}-gain graph.

Definition (\mathbb{T}-gain adjacency matrix)

Let $\Phi=(G, \varphi)$ be a \mathbb{T} - gain graph, where $\varphi: \overrightarrow{E(G)} \rightarrow \mathbb{T}$ be a weight function.

\mathbb{T}-gain adjacency matrix

Definition (Thomas Zaslavsky)

A \mathfrak{G}-gain graph is a graph G in which each orientation of an edge is given a gain which is the inverse of the gain assigned to the opposite orientation.

If $\mathfrak{G}=\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$, then the gain graph is called \mathbb{T}-gain graph.

Definition (\mathbb{T}-gain adjacency matrix)

Let $\Phi=(G, \varphi)$ be a \mathbb{T} - gain graph, where $\varphi: \overrightarrow{E(G)} \rightarrow \mathbb{T}$ be a weight function. The \mathbb{T}-gain adjacency matrix or complex unit gain adjacency matrix $A(\Phi)=\left(a_{i j}\right)$ is defined by

$$
a_{i j}= \begin{cases}\varphi\left(e_{i j}\right) & \text { if } v_{i} \sim v_{j}, \\ 0 & \text { otherwise. }\end{cases}
$$

On \mathbb{T}-gain adjacency matrix

Example

Figure: \mathbb{T}-gain graph Φ and its underlying graph

On \mathbb{T}-gain adjacency matrix

Example

Figure: \mathbb{T}-gain graph Φ and its underlying graph

$$
A(\Phi)=\left(\begin{array}{ccc}
0 & i & e^{i \frac{\pi}{7}} \\
-i & 0 & 1 \\
e^{-i \frac{\pi}{7}} & 1 & 0
\end{array}\right)
$$

Definition

- The gain of a cycle $C=v_{1} v_{2}, \ldots v_{l} v_{1}$, denoted by $\varphi(C)$, is defined as the product of the gains of its edges, that is $\varphi(C)=\varphi\left(e_{12}\right) \varphi\left(e_{23}\right) \ldots \varphi\left(e_{(I-1) I}\right) \varphi\left(e_{/ 1}\right)$.

Definition

- The gain of a cycle $C=v_{1} v_{2}, \ldots v_{l} v_{1}$, denoted by $\varphi(C)$, is defined as the product of the gains of its edges, that is $\varphi(C)=\varphi\left(e_{12}\right) \varphi\left(e_{23}\right) \ldots \varphi\left(e_{(I-1) I}\right) \varphi\left(e_{/ 1}\right)$.
- A cycle C is said to be neutral if $\varphi(C)=1$, and a gain graph is said to be balanced if all its cycles are neutral.

Definition

- The gain of a cycle $C=v_{1} v_{2}, \ldots v_{l} v_{1}$, denoted by $\varphi(C)$, is defined as the product of the gains of its edges, that is $\varphi(C)=\varphi\left(e_{12}\right) \varphi\left(e_{23}\right) \ldots \varphi\left(e_{(I-1) I}\right) \varphi\left(e_{/ 1}\right)$.
- A cycle C is said to be neutral if $\varphi(C)=1$, and a gain graph is said to be balanced if all its cycles are neutral.
- A function from the vertex set of G to the complex unit circle \mathbb{T} is called a switching function.

Definition

- The gain of a cycle $C=v_{1} v_{2}, \ldots v_{l} v_{1}$, denoted by $\varphi(C)$, is defined as the product of the gains of its edges, that is $\varphi(C)=\varphi\left(e_{12}\right) \varphi\left(e_{23}\right) \ldots \varphi\left(e_{(I-1) I}\right) \varphi\left(e_{/ 1}\right)$.
- A cycle C is said to be neutral if $\varphi(C)=1$, and a gain graph is said to be balanced if all its cycles are neutral.
- A function from the vertex set of G to the complex unit circle \mathbb{T} is called a switching function.
- We say that, two gain graphs $\Phi_{1}=\left(G, \varphi_{1}\right)$ and $\Phi_{2}=\left(G, \varphi_{2}\right)$ are said to be switching equivalent, written as $\Phi_{1} \sim \Phi_{2}$, if there is a switching function $\zeta: V \rightarrow \mathbb{T}$ such that $\varphi_{2}\left(e_{i j}\right)=\zeta\left(v_{i}\right)^{-1} \varphi_{1}\left(e_{i j}\right) \zeta\left(v_{j}\right)$.

Spectrum of \mathbb{T}-gain adjacency matrix

Theorem (Zaslavsky[19],1989)
Let $\Phi=(G, \varphi)$ be a \mathbb{T}-gain graph. Then Φ is balanced if and only if $\Phi \sim(G, 1)$.

Spectrum of \mathbb{T}-gain adjacency matrix

```
Theorem (Zaslavsky[19],1989)
Let }\Phi=(G,\varphi)\mathrm{ be a T-gain graph. Then }\Phi\mathrm{ is balanced if and only if
\Phi~(G, 1).
```

Theorem (Reff[17], 2012)
Let $\Phi_{1}=\left(G, \varphi_{1}\right)$ and $\Phi_{2}=\left(G, \varphi_{2}\right)$ be two \mathbb{T}-gain graph. If $\Phi_{1} \sim \Phi_{2} \Rightarrow$ $A\left(\Phi_{1}\right)$ and $A\left(\Phi_{2}\right)$ have the same spectrum.

Key theorem

Theorem
Let $\Phi=(G, \varphi)$ be a \mathbb{T}-gain (connected) graph, then $\rho(A(\Phi))=\rho(A(G))$ if and only if either Φ or $-\Phi$ is balanced.

Key theorem

Theorem

Let $\Phi=(G, \varphi)$ be a \mathbb{T}-gain (connected) graph, then $\rho(A(\Phi))=\rho(A(G))$ if and only if either Φ or $-\Phi$ is balanced.

Proof: If Φ or $-\Phi$ is balanced, then $\rho(A(\Phi))=\rho(A(G))$.

Key theorem

Theorem

Let $\Phi=(G, \varphi)$ be a \mathbb{T}-gain (connected) graph, then $\rho(A(\Phi))=\rho(A(G))$ if and only if either Φ or $-\Phi$ is balanced.

Proof: If Φ or $-\Phi$ is balanced, then $\rho(A(\Phi))=\rho(A(G))$. Conversely, suppose that $\rho(A(\Phi))=\rho(A(G))$.

Key theorem

Theorem

Let $\Phi=(G, \varphi)$ be a \mathbb{T}-gain (connected) graph, then $\rho(A(\Phi))=\rho(A(G))$ if and only if either Φ or $-\Phi$ is balanced.

Proof: If Φ or $-\Phi$ is balanced, then $\rho(A(\Phi))=\rho(A(G))$. Conversely, suppose that $\rho(A(\Phi))=\rho(A(G))$. Let $\lambda_{n} \leq \lambda_{n-1} \leq \cdots \leq \lambda_{1}$ be the eigenvalues of $A(\Phi)$.

Key theorem

Theorem

Let $\Phi=(G, \varphi)$ be a \mathbb{T}-gain (connected) graph, then $\rho(A(\Phi))=\rho(A(G))$ if and only if either Φ or $-\Phi$ is balanced.

Proof: If Φ or $-\Phi$ is balanced, then $\rho(A(\Phi))=\rho(A(G))$. Conversely, suppose that $\rho(A(\Phi))=\rho(A(G))$. Let $\lambda_{n} \leq \lambda_{n-1} \leq \cdots \leq \lambda_{1}$ be the eigenvalues of $A(\Phi)$. Since $A(\Phi)$ is Hermitian, either $\rho(A(\Phi))=\lambda_{1}$ or $\rho(A(\Phi))=-\lambda_{n}$.

Key theorem

Theorem

Let $\Phi=(G, \varphi)$ be a \mathbb{T}-gain (connected) graph, then $\rho(A(\Phi))=\rho(A(G))$ if and only if either Φ or $-\Phi$ is balanced.

Proof: If Φ or $-\Phi$ is balanced, then $\rho(A(\Phi))=\rho(A(G))$. Conversely, suppose that $\rho(A(\Phi))=\rho(A(G))$. Let $\lambda_{n} \leq \lambda_{n-1} \leq \cdots \leq \lambda_{1}$ be the eigenvalues of $A(\Phi)$. Since $A(\Phi)$ is Hermitian, either $\rho(A(\Phi))=\lambda_{1}$ or $\rho(A(\Phi))=-\lambda_{n}$.
Case 1: Suppose that $\rho(A(\Phi))=\lambda_{1}$. Then there is a diagonal unitary matrix $D \in \mathbb{C}^{n \times n}$ such that $A(\Phi)=D A(G) D^{-1}$. Hence $\Phi \sim(G, 1)$. Therefore, Φ is balanced.

Key theorem

Theorem

Let $\Phi=(G, \varphi)$ be a \mathbb{T}-gain (connected) graph, then $\rho(A(\Phi))=\rho(A(G))$ if and only if either Φ or $-\Phi$ is balanced.

Proof: If Φ or $-\Phi$ is balanced, then $\rho(A(\Phi))=\rho(A(G))$. Conversely, suppose that $\rho(A(\Phi))=\rho(A(G))$. Let $\lambda_{n} \leq \lambda_{n-1} \leq \cdots \leq \lambda_{1}$ be the eigenvalues of $A(\Phi)$. Since $A(\Phi)$ is Hermitian, either $\rho(A(\Phi))=\lambda_{1}$ or $\rho(A(\Phi))=-\lambda_{n}$.
Case 1: Suppose that $\rho(A(\Phi))=\lambda_{1}$. Then there is a diagonal unitary matrix $D \in \mathbb{C}^{n \times n}$ such that $A(\Phi)=D A(G) D^{-1}$. Hence $\Phi \sim(G, 1)$.
Therefore, Φ is balanced.
Case 2: If $\rho(A(\Phi))=-\lambda_{n}$, then $\lambda_{n}=e^{\iota \pi} \rho(A(\Phi))$. We have $A(\Phi)=e^{\iota \pi} D A(G) D^{-1}$, for some diagonal unitary matrix $D \in \mathbb{C}^{n \times n}$. Thus $A(-\Phi)=D A(G) D^{-1}$. Hence, $(-\Phi) \sim(G, 1)$. Thus, $-\Phi$ is balanced.

Converse

Theorem
Let $\Phi=(G, \varphi)$ be a \mathbb{T}-gain(connected) graph. Then, $\sigma(A(\Phi))=\sigma(A(G))$ if and only if Φ is balanced.

Characterization of bipartite graphs

Theorem

Let G be a connected graph. Then, G is bipartite if and only if $\rho(A(\Phi))=\rho(A(G))$ implies $\sigma(A(\Phi))=\sigma(A(G))$ for every gain φ.

Characterization of bipartite graphs

Theorem

Let G be a connected graph. Then, G is bipartite if and only if $\rho(A(\Phi))=\rho(A(G))$ implies $\sigma(A(\Phi))=\sigma(A(G))$ for every gain φ.

Theorem

Let G be a connected graph. Then
(i) If G is bipartite, then whenever Φ is balanced implies $-\Phi$ is balanced.

Characterization of bipartite graphs

Theorem

Let G be a connected graph. Then, G is bipartite if and only if $\rho(A(\Phi))=\rho(A(G))$ implies $\sigma(A(\Phi))=\sigma(A(G))$ for every gain φ.

Theorem

Let G be a connected graph. Then
(i) If G is bipartite, then whenever Φ is balanced implies $-\Phi$ is balanced.
(ii) If Φ is balanced implies - Φ is balanced for some gain Φ, then the graph is bipartite.

Invariance of gain spectrum and gain spectral radius

Theorem

Let $\Phi=(G, \varphi)$ be a \mathbb{T}-gain graph. Then G is a tree if and only if $\sigma(A(G))=\sigma(A(\Phi))$ for all φ.

Invariance of gain spectrum and gain spectral radius

Theorem

Let $\Phi=(G, \varphi)$ be a \mathbb{T}-gain graph. Then G is a tree if and only if $\sigma(A(G))=\sigma(A(\Phi))$ for all φ.

Theorem

Let $\Phi=(G, \varphi)$ be a \mathbb{T}-gain graph. Then G is a tree \Leftrightarrow $\rho(A(G))=\rho(A(\Phi))$ for all φ.

Invariance of gain spectrum and gain spectral radius

```
Theorem
Let }\Phi=(G,\varphi)\mathrm{ be a T-gain graph. Then G is a tree if and only if
\sigma(A(G))=\sigma(A(\Phi)) for all }\varphi\mathrm{ .
```

```
Theorem
Let }\Phi=(G,\varphi)\mathrm{ be a T-gain graph. Then G is a tree }
\rho(A(G))=\rho(A(\Phi)) for all \varphi.
```


Theorem

Let $\Phi=(G, \varphi)$ be a \mathbb{T}-gain graph. TFAE,
(1) G is tree,
(2) $\sigma(A(G))=\sigma(A(\Phi))$ for all φ,
(3) $\rho(A(G))=\rho(A(\Phi))$ for all φ.

References I

R. B. Bapat, Graphs and matrices, Universitext, Springer, London; Hindustan Book Agency, New Delhi, 2010. MR 2797201

R R. B. Bapat and Sukanta Pati, Energy of a graph is never an odd integer, Bull. Kerala Math. Assoc. 1 (2004), no. 2, 129-132. MR 2250987

雷 Andries E. Brouwer and Willem H. Haemers, Spectra of graphs, Universitext, Springer, New York, 2012. MR 2882891

1- Gilles Caporossi, Dragos Cvetkovic, Ivan Gutman, and Pierre Hansen, Variable neighborhood search for extremal graphs. 2. finding graphs with extremal energy, Journal of Chemical Information and Computer Sciences 39 (1999), no. 6, 984-996.

目 M. Cavers, S. M. Cioabă, S. Fallat, D. A. Gregory, W. H. Haemers, S. J. Kirkland, J. J. McDonald, and M. Tsatsomeros, Skew-adjacency matrices of graphs, Linear Algebra Appl. 436 (2012), no. 12, 4512-4529. MR 2917427

References II

Rrystal Guo and Bojan Mohar, Hermitian adjacency matrix of digraphs and mixed graphs, J. Graph Theory 85 (2017), no. 1, 217-248. MR 3634484

围 Karl E. Gustafson and Duggirala K. M. Rao, Numerical range, Universitext, Springer-Verlag, New York, 1997, The field of values of linear operators and matrices. MR 1417493

R I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forshungszentrum Graz 103 (1978), no. 2, 1-22.

- Ivan Gutman, The energy of a graph: Old and new results, Algebraic Combinatorics and Applications (Berlin, Heidelberg) (Anton Betten, Axel Kohnert, Reinhard Laue, and Alfred Wassermann, eds.), Springer Berlin Heidelberg, 2001, pp. 196-211.

R Frank Harary, The determinant of the adjacency matrix of a graph, SIAM Review 4 (Jul., 1962), no. 1, 202-210.

References III

直 A. J. Hoffman, On eigenvalues and colorings of graphs, Graph Theory and its Applications, Academic, New York and London (1970), 79-91.

Roger A. Horn and Charles R. Johnson, Matrix analysis, second ed., Cambridge University Press, Cambridge, 2013. MR 2978290
(O.E. Polansky. I. Gutman, Mathematical concepts in organic chemistry, Springer Berlin Heidelberg, 1986.

Jianxi Liu and Xueliang Li, Hermitian-adjacency matrices and Hermitian energies of mixed graphs, Linear Algebra Appl. 466 (2015), 182-207. MR 3278246

R R Mehatari, M Rajesh Kannan, and A Samanta, On the adjacency matrix of complex unit gain graphs, (Submitted, arXiv:1812.03747) (2018).

國 Juan Rada and Antonio Tineo, Upper and lower bounds for the energy of bipartite graphs, J. Math. Anal. Appl. 289 (2004), no. 2, 446-455. MR 2026917

References IV

Nathan Reff, Spectral properties of complex unit gain graphs, Linear Algebra Appl. 436 (2012), no. 9, 3165-3176. MR 2900705
H. S. Wilf, The eigenvalues of a graph and its chromatic number, Journal of the London Mathematical Society s1-42 (1967), no. 1, 330-332.

嗇 Thomas Zaslavsky, Biased graphs. I. Bias, balance, and gains, J. Combin. Theory Ser. B 47 (1989), no. 1, 32-52. MR 1007712

[^0]: $7 / 22$

