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1 SVD existence and uniqueness

Theorem 1.1 (Existence and uniqueness). Let A ∈ Cm×n. Then, there exists unitary matrices
U ∈ Cm×m and V ∈ Cn×n such that

U∗AV =



σ1 0 . . . 0 0 . . . 0
0 σ2 . . . 0 0 . . . 0
. . . . . . . . . . .
. . . . . . . . . . .
0 0 . . . σk 0 . . . 0
0 0 . . . 0 0 . . . 0
. . . . . . . . . . .
0 0 . . . 0 0 . . . 0


(1)

where σi ≥ σi+1 for 1 ≤ i ≤ k − 1 and σi ∈ R for 1 ≤ i ≤ k. These σis are called singular values
of A and the above decomposition is called singular value decomposition (SVD) of A. Furthermore,
the singular values σi are uniquely determined, and, if A is square and the σi are distinct, then
columns of U and V are uniquely determined up to multiplication by unit modulus complex numbers
eiθ.

Proof. Existence: Note that ‖A‖2 = ‖Av1‖2 for some v1 ∈ V such that ‖v1‖2 = 1. Let Av1 = σ1u1

where ‖u1‖2 = 1. Extend {v1} to an orthonormal basis and let columns of V = [v1 V1] denote this
orthonormal basis. Similarly, extend u1 to an orthonormal basis and let columns of U = [u1 U1]
denote this orthonormal basis. Consider U∗AV = A1.

U∗AV =

[
u∗1
U∗1

]
A
[
v1 V1

]
=

[
u∗1
U∗1

] [
σ1u1 AV1

]
=

[
σ1u

∗
1u1 u∗1AV1

σ1U
∗
1u1 U∗1AV1

]
=

[
σ1 w∗

0 B

]
. (2)

Note that unitary matrices preserve vector norms. Therefore, ‖A1‖2 = ‖U∗AV ‖2 = ‖A‖2 = σ1.

Observe that A1

[
σ∗1
w

]
=

[
σ21 + w∗w

Bw

]

⇒ σ21 = ‖A1‖22 ≥
‖A1

[
σ∗1
w

]
‖22

‖
[
σ∗1
w

]
‖22

=
(σ21 + ‖w‖22)2 + ‖Bw‖22

σ21 + ‖w‖22
≥ (σ21 + ‖w‖22)

Therefore, w = 0 and A1 =

[
σ1 0
0 B

]
. Now by induction, B can be transformed into the canonical

form. Let σ2 = ‖B‖2. ‖A‖2 ≥ ‖B‖2. Therefore, σ1 ≥ σ2 and σi ≥ σi+1 for 1 ≤ i ≤ k − 1.
Uniqueness: Observe that AA∗ = UΣ2U∗ and A∗A = V ∗Σ2V . Thus, the singular values of A can
be obtained from the square roots of the eigenvalues of AA∗ or A∗A implying uniqueness of the
singular values. (However, this is not the way singular values are computed numerically.) The
statement about the uniqueness of U and V follows from the corresponding result on eigenvectors.
(Refer the next section on norms and svd for an alternate proof on uniqueness.)

Remark 1.2. Notice that UΣ = AV . Thus, UΣei = AV ei ⇒ σiui = Avi. These ui, vi are called
pair of singular vectors associated with the singular value σi. Geometrically, when A is full rank, it
maps the sphere formed by the unit vectors associated with the columns of V into an ellipse whose
axes are given by the columns of U and scaled by singular values of A.
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Remark 1.3. Note that A =
∑r

i=1 σi(A)uiv
∗
i . Therefore, Im(A) ⊆ span{u1, . . . ,ur}. But dim(Im(A)) =

r = dim(span{u1, . . . ,ur}), hene, Im(A) = span{u1, . . . ,ur}. Notice that ker(Σ) = {er+1, . . . , en}.
Therefore, ker(A) = span{vr+1, . . . ,vn}. Kernel and image of A∗ follows similarly. It is also clear
that the rank of A is equal to the number of nonzero singular values of A.

Corollary 1.4 (condensed svd). Let A ∈ Cm×n such that rank(A) = r. Then, there exists matrices
Û ∈ Cm×r, V̂ ∈ Cn×r such that Û∗Û = I, V̂ ∗V̂ = I and Σ̂ = diag(σ1(A), . . . , σr(A)), (σi > 0, 1 ≤
i ≤ r) and A = Û Σ̂V̂ ∗.

Note that Û Û∗ gives an orthogonal projector onto Im(A). Let V = [V̂ V̄ ]. Then, V̄ V̄ ∗ gives an
orthogonal projector onto ker(A). One can similarly construct projector onto the image and the
kernel space of A∗.

Example 1.5. For orthogonal/unitary matrices, all singular values are equal to one. For Hermitian
matrices, U∗AU = D where D is a diagonal matrix having eigenvalues of A. We now obtain svd
for A. Choose columns of V matrix as follows: Let vi = ui if λi > 0 and vi = −ui if λi < 0
for 1 ≤ i ≤ n. Thus, U∗AV = Σ where Σ contains modulus of eigenvalues of A on its diagonal.
Therefore, the singular values of a Hermitian matrix are given by the modulus of its eigenvalues.
For positive definite matrices P , U∗AU = D = Σ and eigenvalues and singular values are one and
the same.

Geometrically, one can think of svds as follows. Consider the action of A on unit vectors i.e.
action of A on the unit sphere Sn. ASn = UΣV ∗Sn. Since V ∗ is unitary, V ∗Sn ⊆ Sn. Now Σ maps
Sn in to an ellipse and U changes the orientation of this ellipse. Maximum elongation is along u1
which forms the major axis of the ellipse.

2 Norms and svd

We now consider the relationship between the 2−norm, the Frobenius norm and singular values.

Theorem 2.1. ‖A‖2 = σ1(A), ‖A‖2F =
∑r

i=1 σi(A)2.

Proof. Recall that A = UΣV ∗ and ‖A‖2 = max‖x‖2=1‖Ax‖. Note that

max‖x‖2=1‖Ax‖2 = max‖x‖2=1‖UΣV ∗x‖2 = max‖y‖2=1‖Σy‖2

since U and V are unitary. Therefore, ‖A‖2 = σ1(A). Observe that ‖A‖2F = trace(A∗A). Moreover,
A = UΣV ∗ ⇒ A∗A = V Σ2V ∗ and trace(V Σ2V ∗) =

∑
i σi(A)2.

Alternate proof of uniqueness of svd ([1]): It is clear from above theorem that the largest
singular value σ1 is uniquely determined since it is the 2−norm of A. Recall that Av1 = σ1u1.
Suppose in addition to v1, there is another linearly independent vector z such that ‖z‖2 = 1 and
‖Az‖2 = σ1. Define a unit vector v2 orthogonal to v1 as a linear combination of v1 and z

v2 =
z− 〈v1, z〉

‖z− 〈v1, z〉v1‖2
.

Since ‖A‖2 = σ1, ‖Av2‖2 ≤ σ1; but this must be an equality, for otherwise, since z = cv1 + sv2

for some constants c and s with |c|2 + |s|2 = 1, we would have ‖Az‖2 < σ1. This vector v2 is a
second right singular vector of A corresponding to the singular value σ1. It is clear that v2 lies in

the column span of V1 (see V1 in the existence part). Let y = [v1 V1]
∗v2 =

[
0

V ∗1 v2

]
=

[
0
y1

]
.

Notice that ‖y1‖2 = ‖v2‖2 = 1. From Equation (2),

Av2 =
[
u1 U1

] [ σ1 0∗

0 B

] [
v∗1
V ∗1

]
v2 =

[
u1 U1

] [ σ1 0∗

0 B

] [
0
y1

]
=
[
u1 U1

] [ 0
By1

]
.
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Therefore, ‖By1‖2 = σ1. This implies that if the singular vector v1 is not unique, then the
corresponding singular value σ1 is not simple. To complete the uniqueness proof we note that,
as indicated above, once σ1, v1 and u1 are determined, the remainder of the SVD is determined
by the action of A on the space orthogonal to v1. Since v1 is unique up to multiplication by eiθ,
this orthogonal space is uniquely defined, and the uniqueness of the remaining singular values and
vectors now follows by induction.
Orthonormal set and orthonormal projection: Recall that orthogonal projection x∗ of a
vector x onto a subspace W gives a vector in W closest to x. (Let x = x∗ + x⊥ where x∗ ⊥ x⊥. If
x̂ ∈W, then writing x̂ = x̂− x∗ + x∗, x− x̂ = x− x∗ + x∗ − x̂ = x⊥ + x∗ − x̂ where x⊥ ⊥ x∗ − x̂
since x∗ − x̂ ∈W. Therefore, ‖x− x̂‖2 ≥ ‖x⊥‖2 = ‖x− x∗‖2.)

Let A =
∑r

i=1 σiuiv
∗
i with the Frobenius norm. Note that rank one matrices uiv

∗
i , 1 ≤ i ≤ r

form an orthonormal set since trace((uiv
∗
i )
∗(ujv

∗
j )) = δij . Thus, a matrix of rank r − 1 closest to

A w.r.t. the Frobenius norm is obtained by the orthonormal projection of A onto the set {uiv∗i },
1 ≤ i ≤ r− 1 i.e., Â =

∑r−1
i=1 σiuiv

∗
i with ‖A− Â‖2F = σr(A)2. (This can be related to fourier series

expansion using orthonormal sets and truncated fourier series which gives the best approximation
of a periodic function using finitely many terms where principle of orthonormality is used.)

Theorem 2.2 (Closest low rank matrix ([2])). Let A = UΣV ∗ =
∑r

i=1 σiuiv
∗
i . Let Â =

∑k
i=1 σiuiv

∗
i ,

k < r. Then,
minrank(B)=k‖A−B‖2 = ‖A− Â‖2 = σk+1(A). (3)

Proof. Since U∗ÂV = diag(σ1, . . . , σk, 0, . . . , 0), rank(Â) = k and U∗(A−Â)V = diag(0, . . . , 0, σk+1, . . . , σr).
Therefore, ‖A− Â‖2 = σk+1.

Suppose rank(B) = k for some B ∈ Cm×n. We can find orthonormal vectors x1, . . . ,xn−k
such that ker(B) = span {x1, . . . ,xn−k}. A dimension argument shows that span{x1, . . . ,xn−k}∩
span {v1, . . . ,vk+1} 6= {0}. Let z be a unit 2−norm vector in this intersection. Now Bz = 0 and
Az =

∑k+1
i=1 σiui(v

∗
i z). Therefore,

‖A−B‖22 ≥ ‖(A−B)z‖22 = ‖Az‖22 ≥ σ2k+1.

This proves the theorem.

Thus, the smallest singular value of A is the 2−norm distance to the nearest singular matrix.
It also follows that the set of full rank matrices is both open and dense.

Theorem 2.3 ([2]). Let A ∈ Rn×m, n ≥ m, rank(A) = m with singular values σ1 ≥ . . . ≥ σm > 0.
Then, ‖(ATA)−1‖2 = σ−2m , ‖(ATA)−1AT‖2 = σ−1m , ‖A(ATA)−1‖2 = σ−1m , ‖A(ATA)−1AT‖2 = 1.

Proof. Follows from svd decomposition.

3 Applications

3.1 Condition number

Define the condition number of a matrix as κ2(A) = ‖A‖2‖A−1‖2. It is clear that ‖A‖2 = σ1(A)

and ‖A−1‖2 = σ−1n . Therefore, κ2(A) = σ1(A)
σn(A)

. Note that κ2(A) ≥ 1. If κ2(A) is small, we say A is
well conditioned, otherwise, it is ill conditioned.

Consider Ax = b where b represents measurement and x is to be estimated. Suppose there is a
measurement error (due to noise) say δb in b and let A(x+ δx) = b+ δb. Suppose A is invertible.
Therefore δx = A−1δb and ‖δx‖ = ‖A−1‖‖δb‖. Now, the relative error can be written as

‖δx‖
‖x‖

≤ ‖A‖‖A−1‖‖δy‖
‖y‖

= κ2(A)
‖δy‖
‖y‖

. (4)
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Thus, we can bound the relative error is estimating x using condition number and relative mea-
surement error. Condition number of a matrix has a lot of applications in numerical linear algebra,
particularly in sensitivity analysis and backward stability of certain algorithms.

3.2 Numerical rank

Given an ε > 0, the numerical rank of a matrix is the number of its singular values which are
greater than ε.

If a matrix does not have full rank, any small perturbation is almost certain to transform it
to a matrix that does have full rank. It follows that in the presence of uncertainty in the data,
it is impossible to calculate the (exact, theoretical) rank of a matrix or even detect that it is
rank deficient. It is reasonable to call a matrix numerically rank deficient if it is very close to a
rank-deficient matrix, since it could have been rank deficient except for a small perturbation,

3.3 Least squares solution, least norm solution and pseudoinverse using svd

Consider the least squares problem Ax = b where A ∈ Rn×m, b ∈ Rn. Suppose n > m. We seek x
such that ‖b−Ax‖2 is minimized. If rank(A) = m, then the solution is unique. Observe that

‖b−Ax‖2 = ‖UTb− Σ(V Tx)‖2.

Let c = UTb and y = V Tx. Thus, find y such that ‖c − Σy‖2 is minimized. Then x can be
recovered from y. Clearly, the solution is given by yi = ci

σi
, i = 1, . . . ,m. If rank(A) = r < m,

then one can ask for a norm minimizing solution. In this case, yi = ci
σi

, i = 1, . . . , r and yi = 0 for
i = r + 1, . . . ,m.

Now consider the case when n < m and rank(A) = n. Again, UTb = Σ(V Tx). It follows that
the norm minimizing solution is given by yi = ci

σi
, i = 1, . . . , n and yi = 0 for i = n+ 1, . . . ,m.

The pseudoinverse of A = Û Σ̂V̂ T is given by A† = V̂ Σ̂−1ÛT. This can also be written as
A† = V TΣ†U where Σ† = diag(σ−11 , . . . , σ−1r , 0, . . . , 0). One can check that x = A†b gives the norm
minimizing solution of Ax = b.

3.4 Polar decomposition

All complex numbers z can be represented in polar form z = reiθ. On similar lines, every real
square matrix can be factored into A = QS, where Q is orthogonal and S is symmetric positive
semidefinite. If A is invertible then S is positive definite. This can be seen as follows

A = UΣV T = (UV T)(V ΣV T), (5)

where (UV T)T(UV T) = I and V ΣV T ≥ 0. Polar decomposition has applications in mechanics and
engineering.

3.5 Probability and statistics

For a random vector x, with mean x̄ = E[x], the covariance matrix is given by Cxx = E[(x− x̄)(x−
x̄)T] = E[xxT]− x̄x̄T which is a positive semidefinite matrix. The diagonal entries of the covariance
matrix are variances of random variables xi, i = 1, . . . , n. The eigenvalues/singular values of the
covariance matrix represents the variance of random variables in new coordinates obtained after a
change of basis where the new basis is given by eigenvectors of Cxx.
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3.6 Data compression/image processing

Suppose a satellite takes a picture, and wants to send it to Earth. The picture may contain 1000
by 1000 “pixels”-a million little squares, each with a definite color. We can code the colors, and
send back 1, 000, 000 numbers. It is better to find the essential information inside the 1000 by 1000
matrix, and send only that. Suppose we know the SVD. The key is in the singular values (in Σ).
Typically, some σ′s are significant and others are extremely small. If we keep 20 and throw away
980, then we send only the corresponding 20 columns of U and V . The other 980 columns are
multiplied in UΣV T by the small σ′s that are being ignored. We can do the matrix multiplication
as columns times rows:

A = UΣV T =
r∑
i=1

σiuiv
T
i .

Any matrix is the sum of r matrices of rank 1. If only 20 terms are kept, we send 20 times 2000
numbers instead of a million (25 to 1 compression).

It is clear that SVD is invariant under unitary transformations. Note that Fourier trans-
form/discrete Fourier transform are unitary transformations. Therefore, the SVD of data and its
Fourier transform are the same. In general, svd has many applications in big data analysis.

3.7 Control theory and svd

Let G(s) = C(sI − A)−1B + D be the transfer function of a linear dynamical system ẋ = Ax +
Bu, y = Cx +Du. The 2−norm of G(s) is defined as

‖G‖2 := (

ˆ ∞
−∞

trace(G∗(jω)G(jω))dω)
1
2 = (

ˆ ∞
−∞

r∑
i=1

σi(G(jω))2dω)
1
2 (6)

and the infinity norm is defined as

‖G‖∞ := supωσ1(G(jω)). (7)

These norms on G(s) allows one to capture the effect of noise and disturbance on the measured
output of the system. Using a state feedback of the form say u = −Kx + r, one can modify the
transfer function to meet the design specifications e.g., the effect of disturbance/noise on the out-
put. The modified transfer function must have a norm less than some nonzero positive constant.
This norm is related to svds as mentioned in the definition. In control literature, this is the well
studied theory of H2 and H∞ control.

One can define a Hankel operator for linear systems whose singular values are called Hankel
singular values which are invariants of the system. Hankel singular values are important in control
applications.

Model order reduction: Find Ĝ of lower size such that ‖G − Ĝ‖ is minimized. Model order
reduction is an important topic in control theory which involves applications of svd.

Moreover, in linear control theory, there are positive definite matrices called controllability/observability
Gramians which are positive definite for controllable/observable systems. They are used to compute
energy required for a state transfer and also to find the least energy input. The eigenvalues/singular
values of this matrix gives indication of energy required to control in eigen directions. The inverse
of the minimum singular value indicates the worst energy to go from the origin to the points on
the unit sphere. The sum of invereses of singular values indicate the average energy required for
control. The product of singular values i.e., the determinant indicates the volume of the ellipsoid
that can be reached with unit energy inputs.
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3.8 Tensor decomposition

One can extend the idea of writing matrices as a sum of rank one tensors. For data represented
by higher order tensors instead of matrices, one can have a similar decomposition of higher order
tensors known as higher order svd. This has applications in computer graphics, machine learning,
signal processing etc.

3.9 Limitations

Low rank approximation using SVD fails when one wants to obtain a structured low rank approx-
imation of matrices where certain structure of the underlying matrix needs to be preserved (e.g.,
Hankel, Toeplitz, banded matrices etc.). However, the structured low rank approximation is a hard
problem in general.

4 Computation algorithms

The eigenvalue problem can be made much easier if we first reduce the matrix to a condensed
form, such as tridiagonal or Hessenberg. The same is true of the SVD problem. The eigenvalue
problem requires that the reduction be done via similarity transformations. For the singular value
decomposition, it is clear that similarity transformations are not required, but the transforming
matrices should be orthogonal. One can reduce any matrix A ∈ Rn×m to bidiagonal form by an
orthogonal equivalence transformation, in which each of the transforming matrices is a product of
m or fewer reflectors.

A matrix B ∈ Rn×m is said to be bidiagonal if bij = 0 whenever i > j or i < j − 1.

Theorem 4.1 ([2]). Let A ∈ Rn×m with n > m. Then there exist orthogonal Û ∈ Rn×n and
V̂ ∈ Rm×m, both products of a finite number of reflectors, and a bidiagonal B ∈ Rn×m such that
A = ÛBV̂ T. There is a finite algorithm to calculate Û , V̂ and B.

Proof. Watkins, Theorem 5.9.21.

This is called Householder reduction to bidiagonal form. Thus, we are reduced to computing
the svd of B. This is same as computing eigenvalues of tridiagonal matrices BTB or BBT. There
are numerous algorithms that can perform this task e.g., the QR algorithm. However, one prefers
not to form products BTB or BBT. There are algorithms which operate directly on B (Watkins,
Golub).

References

[1] L. N. Trefethen, D. Bau III, Numerical linear algebra, SIAM, 1997.

[2] D. Watkins, Fundamentals of matrix computations, second edition, Wiley-Interscience Series of
Texts, Monographs, 2002.

[3] G. Golub, C. Van Loan, Matrix computations, third edition, John-Hopkins University Press,
1996.

[4] G. Strang, Linear algebra and its applications, fourth edition, Cengage Learning, 2018.

[5] A. Antoulas, Approximation of Large scale dynamical systems, SIAM, 2005.

“Don’t take yourself too seriously, no one else does..”-Anonymous
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