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Iterative methods for matrix equations 
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   Let us start with the matrix equation Ax=b   

i-th row of the matrix represents the equation:  

Now, let us assume a trial solution : x=x(0) 

 
And further assume that in each equation, all other terms except the i-th term is 
evaluated using the trial solution as: 
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ij j i
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a x b
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If we separate out the i-th component:  
ij j ii i ij i

a x a x b
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( )0
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Basic iterative steps 
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From this, xi can be evaluated as 

However, this xi  is not the actual solution as it is calculated using guess values. 
 
We will not get  
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a
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provided aii≠0 :: Non-zero diagonals  
(pivots?) 
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n

i ij j
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b a x
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− =∑



Basic iterative steps- Jacobi iteration 
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The updated values of xi are obtained 
after first iteration 

Use the updated x(1)  as the new guess values and do the next iteration. 
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Do this for all x-s, i=1…n  
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So we use an iterative method 
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Probably we still end up in  



Jacobi iteration 
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Use the updated x, and carry on iterations for 3,4,5…. k-th times 
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We will still get: ( )3
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=
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So, we need to update the guess values to be x(3)  and carry on the iterations…. 
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How many steps?----Convergence 
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( )

1
0

n
k

i ij j
j

b a x
=

− =∑

After large number of iterations, (k being sufficiently large) 

At this stage the updates solution x(k) converges the to solution x of Ax=b. 

( ) ( )1max k k
i ii

x x ε+− <With further iteration we get: 

Changes in the value of x is infinitesmall at next iterations   -- CONVERGENCE 

ε is a very small number, its value depends on machine precision  



Jacobi iterations 
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Requirements for successful Jacobi method: 

Jacobi iteration is an iterative method for matrix solvers 

2.         

with at least one  for which

ii ij
j i

a a i

i
≠
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1. Non-zero diagonals, aii≠0 
 

3.     ii ij
j i

a a
≠
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Iteration step in Jacobi method 
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Let us look into each row during a Jacobi iteration step 
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However, the circled variables are 
already updated. 
 
We can get faster convergence if 
the already updated values can 
be used. 
 
-- Gauss-Seidel iterations 



Gauss-Seidel Iterations 
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A Gauss-Seidel method step uses already updated values as: 
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Convergence criterion is same as  
Jacobi method 



Jacobi Iterative methods in matrix form 
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Ax=b 

A=D-E-F -E    D -F 

Jacobi step:  
( )

( )
( ) ( )

1

n n
k k

k i ij j ij j
i ij jj i j i j ik

i
ii ii

b a x a xb a x
x

a a
≠ < >+

− −−
= =

∑ ∑∑

1k k kDx Ex Fx b+ − − = Written in matrix form 

( )1or, k kDx b E F x+ = + +

( )1 1 1k kx D b D E F x+ − −⇒ = + +



Gauss-Seidel Iterative methods in matrix form 
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Ax=b 

A=D-E-F -E    D -F 

Gauss Seidel 
step:  ( )

( ) ( )1

1

n n
k k

i ij j ij j
j i j ik

i
ii

b a x a x
x

a

+

< >+

− −
=

∑ ∑

1 1k k kDx Ex Fx b+ +− − = Written in matrix form 

( ) 1or, k kD E x b Fx+− = +

( ) ( )1 11k kx D E b D E Fx− −+⇒ = − + −



General form of an iteration step 
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1 ( )k k kMx Nx b M A x b+ = + = − +

For Jacobi:  M=D, N=-E-F 
 
For Gauss-Seidel: M=D-E, N=-F 



General form of an iteration step 
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1k kx Gx f+⇒ = +

G is called the iteration matrix 
 
If the iteration converges, we get x=Gx+f at the limiting step 

( ) 1x I G f−⇒ = −

This has a solution if I-G is non-singular! 

1

1 1 1

( )
( )

k k

k k

Mx M A x b
x M M A x M b

+

+ − −

= − +

⇒ = − +



General form of an iteration step 
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1k kx Gx f+ = +

Let x* be the actual solution 
 
The converged step results in    Ax*=b ⇒ Mx*=(M-A)x*+f ⇒ x*=Gx*+f 
 

* *x Gx f= +Final step: 

k+1-th iteration step: 1k kx Gx f+ = +

Subtracting ( )1 * *k kx x G x x+ − = − (1) 



iteration steps- convergence requirement 
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* *x Gx f= +Convergence step: 

k-th iteration step: 1k kx Gx f−= +

Subtracting ( )1* *k kx x G x x−− = − (2) 

Using (1) and (2) ( ) ( )1 2 1* * *k k kx x G x x G x x+ −− = − = −

Considering all iteration 
steps 

( ) ( ) ( )
( )

1 2 1 3 2

1 0

* * * *

                 ..... *

k k k k

k

x x G x x G x x G x x

G x x

+ − −

+

− = − = − = −

= −



iteration steps- requirement for accurate solution 
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( )1 1 0* *k kx x G x x+ +− = −

If x* is the converged solution and x0 is an arbitrary initial guess  
 

So, k+1-th iteration step will converge to xk+1~x0 for any x0 iff: 

1 0kG + →

Or, 1G <

So, if the iteration matrix G has a matrix norm less than 1, the iteration steps will 
converge to accurate solution of Ax=b 



iteration steps- convergence Analysis 
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Convergence step: 

k-th iteration step: 1k kx Gx f−= +

Using the above relations  ( ) ( )
( )

1 1 2 1 2

1 0                                .......

k k k k k k

k

x x G x x G x x

G x x

+ − − −− = − = −

= −

Let us assume convergence is achieved at k+1th step 

1k kx Gx f+ = +

. 

. 

1st  iteration step: 1 0x Gx f= +



iteration steps- convergence Analysis 
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( ) ( )
( )

1 1 2 2

1 0                                .......

k k k k k k

k

x x G x x G x x

G x x

+ − −− = − = −

= −

1 0x Gx f= +First iteration step 

(a) 

Substituting in (a) ( ) ( )
( )( )

1 1 0 0 0

0                                     

k k k k

k

x x G x x G Gx f x

G I G x f

+ − = − = + −

= − +



iteration steps- convergence Analysis 
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Again, for convergence, xk+1 and xk will have practically same value. 
I.e., there difference is infinitesmall. 

1k kx x ε+⇒ − <

( )( )1 0k k kx x G I G x f+ − = − +We got 

So, for convergence at 
k+1-th step: 

1 0kG + →

Or, 1G <



Convergence and accuracy of an iterative method 
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For Ax=b,  we have the iterative step  

If  

1k kx Gx f+ = +
11      0kG G +< →

The iteration will converge for some k as  
1k kx x ε+ − <

The converged solution xk will be practically 
same as exact solution x* as * kx x ε− <

So, if the iterations converge, they will converge to the exact solution 



Diagonally dominant matrices 
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A matrix A is called 

Weakly diagonally dominant if  
1

       
i j

n

jj ij
i

a a j
≠
=

≥ ∀∑

Strictly diagonally dominant if  
1

       
i j

n

jj ij
i

a a j
≠
=

> ∀∑

Irreducibly diagonally dominant if  
1

1

       

and          at least for one j

i j

i j

n

jj ij
i

n

jj ij
i

a a j

a a

≠

≠

=

=

≥ ∀

>

∑

∑

Irreducibly / strictly diagonally dominant matrices show non-zero pivots (at least in 
a permuted form)and hence non-singular  



Theorem for convergence of iterations 
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If A is a strictly diagonally dominant or an irreducibly dominant matrix, then the 
associated Jacobi or Gauss Seidel iterations converge for any x0. 

5 0 4 3
1 3 2 1
2 6 8 0

u
v
w

     
     =    
         

5 0 4 3
1 4 0 1
2 5 9 0

u
v
w

     
     =    
         

Can be solved 
using these 
methods 

2 5 4 3
1 3 2 1
2 6 8 0

u
v
w

     
     =    
         

Can not be Not even 
The row-
permuted form 

1 3 2 1
2 6 8 0
5 0 4 3

u
v
w

     
     =    
         



Spectral radius of a matrix 
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The maximum modulus of the eigenvalues of  A is called the spectral radius of  A, 
ρ(A). 

1/
lim ( )

kk

k
A Aρ

→∞
=

For any matrix norm: 



Convergence for regular splitting of a matrix 
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Let A=M-N. 
M,N pair is called a regular splitting if M is non-singular and M-1 and N are non-
negative.  

Theorem: Let M and N be a regular splitting of matrix  A. Then  ρ(M-1 N)<1 iff A  is 
non-singular and A-1 is non-negative.  

The iteration step :                                               will converge if ρ(M-1 N)<1  1 1 1k kx M Nx M b+ − −= +

This regular splitting with above condition on spectral radius can be only 
obtained for irreducibly/strictly diagonally dominant matrices  ---  
 from Greshgorin theorem 

A non-negative matrix means all elements are non-negative 



Theorem on convergence of iterative methods 
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Let G be a square matrix such that ρ(G)<1 . Then I-G is non-singular and the iteration 
xk+1=Gxk+f converges for every f and x0.   
The converse statement is also true. 



Convergence factor 
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Let the error at k-th step be dk:                               x* is the exact solution   *k
kd x x= −

0
k

kd G d=

Convergence factor (ρ) is given as: 
1/

0

lim
k

k

k

d
d

ρ
→∞

 
=   

 

For faster convergence, convergence factor (ρ) must be small 



General convergence factor 
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Convergence factor (ρ) depends on initial guess x0. General convergence 
factor, φ,  is defined as independent of initial guess. 

0

0

1/

0

1/

0

0

lim max

  lim max

n

n

k

k

k x R

kk

k x R

d
d

G d
d

φ
→∞ ∈

→∞ ∈

 
=   

 

 
 =
 
 

( )1/
  lim

kk

k
G

→∞
= ( )   spectral radiusGρ=



Convergence Rate 
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For faster convergence, convergence rate (τ) must be high 

( )
( )( )

ln

   ln G

τ ρ

ρ

= −

≈ −

Smaller the spectral radius of G, faster the convergence, higher the convergence 
rate. Less number of iterations will be needed. 
 
At spectral radius≥1, iterations will cease to converge! 



Looking into the convergence 
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Let us run a Gauss-Seidel code for a diagonally dominant (3x3) matrix 

We look into the convergence in terms of L∞ norm for residual r=b-Ax and 
x(k+1)-x(k) 



Convergence history 
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1. Both the parameters monotonically reduce to zero. 

2. The difference of x(k+1)-x(k) is correlated with r=b-Ax. 

3. The changes in x(k+1)-x(k) is slows down with increase in iteration number 



Numerical experiments 
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Consider matrix generated as finite difference approximation of   
 
 

2

2 0;   0 1 (0) 0, (1) 1d T x T T
dx

= ≤ ≤ = =

A tridiagonal matrix is obtained.  
Matrix size is varied by varying number of grid points 
 

2

3

4

5

6

7

8

2 1 0 0 . . 0
1 2 1 . 0
0 1 2 1 0
0 0 1 2 1 0
. . 1 2 1 0

1 2 1 0
1 2 1

T
T
T
T
T
T
T

−     
    −     
    −
    =−     
    −
    

−     
    − −    

An example 8x8 
matrix 



Numerical experiments 
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Matrices are solved using Jacobi and Gauss Seidel method. 
 
The spectral radius of iteration matrix (G), convergence rate and number of iterations 
are noted for different sizes of the matrices. 
 
 



Numerical experiments 
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Matrix size Spectral radius of G, 
ρ(G) 

Convergence rate, 
η=-ln(ρ(G)) 

Number of iterations 
for convergence till 

ε=10-6 

10x10 
Jacobi 0.94632 0.05517 200 

Gauss-Seidel 0.89533 0.11034 106 

20x20 
Jacobi 0.98645 0.01364 709 

Gauss-Seidel 0.97309 0.02728 374 

40x40 
Jacobi 0.99661 0.00340 2435 

Gauss-Seidel 0.99322 0.00680 1291   

Observation:  
1. Largest eigenvalue increases with matrix size 
2. Spectral radius is higher for Jacobi 
3. Number of required iterations are strongly related with convergence rate  



How to improve convergence? 
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If x(k+1)-x(k) can be increased at each iteration step, number of iterations will be reduced! 

Jacobi/ Gauss-Seidel iteration step: 1k kx Gx f+ = +

( )

1

              

k k k k

k

x x Gx x f
G I x f

+ − = − +

= − +

This is the difference that x covers in a particular iteration till it converges to the 
exact solution x* 

Successive over relaxation is proposed 



Successive over-relaxation (SOR) 
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Jacobi/ Gauss-Seidel iteration step: ( )1k k kx x G I x f+ − = − +

SOR iteration step: ( )1       1k k kx x G I x fω ω+ − = − + >

At each iteration step, update x as: ( )1     k k kx x G I x fω+ = + − +

SOR can be expressed as ( ) ( )1k kD E x F I D x bω ω ω ω+  − = + − + 

( ) ( ) ( )1 11k kx D E F I D x D E bω ω ω ω ω− −+  ⇒ = − + − + − 

So, the iteration matrix: ( ) ( )1G D E F I Dω ω ω−  = − + − 



Successive over-relaxation (SOR)- Convergence 
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For convergence ρ(G)<1 

Theorem: 
If A is symmetric with positive diagonal element and for 0<ω<2, SOR converges for any 
x0, iff A is positive definite. 

If ω>2, SOR will diverge 
 
If ω=1, SOR is same as the basic G-S or Jacobi method. 
 
If ω<2,  SOR is actually under-relaxing the iterations or increasing the number of 
iterations. 
 
Optimum value of ω? When ρ(G) is lease?  



Optimum relaxation factor, ωopt 
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Theorem: 
Let A be a consistently ordered matrix such that aii≠0, for i=1,…n and let ω ≠0 . 
Then if λ is a non-zero eigenvalue of the SOR iteration matrix and there is any 
scalar µ that satisfies 
 
 
Then µ is an eigenvalue of the Jacobi iteration matrix, B. 

Conversely, if µ is an eigenvalue of Jacobi iteration matrix, B, and if a scalar λ 
satisfies                                  , then λ  is an eigenvalue of the SOR iteration matrix.   

( )2 2 21λ ω λω µ+ − =

( )2 2 21λ ω λω µ+ − =

Using the above theorem, optimum SOR 
factor, ωopt, is obtained as: ( )2

2

1 1
opt

B
ω

ρ
=

+ −



Numerical experiments- Gauss Siedel and SOR 
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Obs: No. of iterations are least at a particular SOR factor 



Optimum SOR 
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 ( )2

2

1 1
optω

ρ
=

+ −
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