
1

GPGPU and CUDA

An Introduction

GPU Computing

Graphical Processing Unit (GPU), intially
designed for game development

Around 2000, general purpose GPGPU-s
developed

Efficient in matrix calculation

 GPU -vs- CPU

performance, NVIDIA

NVIDIA GeForce 8 Architecture

GPU Hardware

GPGPU Using
CUDA

Traditional
GPGPU

MEMORIES

Features of CUDA memories

8

Terminology

Device - GPU

Host – Hosting CPU

Kernel – Part of the code that runs in GPU

Global memory - data available to all threads and
can be copied directly to host

DRAM- Device or GPU RAM

SRAM – on chip shared RAM

Memory bandwidth

9

CUDA Programming Model

• Integrated host+device app C program
– Serial or modestly parallel parts in host C code
– Highly parallel parts in device SPMD kernel C code

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);

10

Modern GPUs contain hundreds of arithmetic
units, and their power can be used to accelerate
a lot of compute-intensive applications.

The existing generation of GPUs have a
flexible architecture.

Most of the transistors in CPU are dedicated
for data caching and controlling

GPU Versus CPU

Threads

Writing Code
on Multi-
core
Processor

KERNEL
LAUNCH
(DEVICE
FUNCTION)

Threads

Launches thousands of threads
simultaneously

C U D A

Single Instruction
(Issued by Instruction Unit)

Multiple Data
(e.g. fetched from
Shared Memory)

S I M D!

CUDA platform for parallel processing on Nvidia GPUs.

Source: PARALLEL PROCESSING WITH CUDA
Nvidia’s High-Performance Computing Platform Uses Massive Multithreading By Tom
R.Halfhill {01/28/08-01}

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);

• Integrated host+device app C program
– Serial or modestly parallel parts in host C code
– Highly parallel parts in device SPMD kernel C code

CUDA launches
threads in blocks
and grids

16

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Block IDs and Thread IDs

• Each thread uses IDs to
decide what data to work on
– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D

• Simplifies memory

addressing when processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– Matrix, 2D and 3D arrays

• Thread: concurrent code and associated state executed on the
CUDA device (in parallel with other threads)
– The unit of parallelism in CUDA

• Warp: a group of threads executed physically in parallel in any

GPU, basic unit of scheduling hardware-
Hardware limits

• Block: a group of threads that are executed together and form the

unit of resource assignment –
Programming specification

• Grid: a group of thread blocks that must all complete before the

next kernel call of the program can take effect

Thread Block Algebra

18

CUDA Device Memory
Allocation • cudaMalloc()

– Allocates object in the device
Global Memory

– Requires two parameters
• Address of a pointer to

the allocated object
• Size of of allocated object

• cudaFree()
– Frees object from device

Global Memory
• Pointer to freed object

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Essentials-- CUDA Device Memory Allocation

CUDA Device Memory Allocation (2)

• Code example:
– Allocate a 32* 32 single precision float array
– Attach the allocated storage to Md
– “d” is often used to indicate a device data

structure (“h” is used to indicate host)

TILE_WIDTH = 32;
Float* Md
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);
cudaFree(Md);

20

CUDA Host-Device Data
Transfer

• cudaMemcpy()
– memory data transfer
– Requires four parameters

• Pointer to destination
• Pointer to source
• Number of bytes copied
• Type of transfer

– Host to Device
– Device to Host
– Device to Device
– Host to Host

• Asynchronous transfer

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

CUDA Host-Device Data Transfer (2)
• Code example:

– Transfer a 32 * 32 single precision float
array

– Mh is in host memory and Md is in device
memory

– cudaMemcpyHostToDevice and
cudaMemcpyDeviceToHost are symbolic
constants

cudaMemcpy(Md, Mh, size,cudaMemcpyHostToDevice);
cudaMemcpy(Mh, Md, size,cudaMemcpyDeviceToHost);

C language extension - Operators in Device and
Host

Function type qualifiers (where to call and execute a function):
__device__, __global__,__host__

Variable type qualifiers (__device__, __constant__ and
__shared__)

Kernel execution directive (foo<<...>>(...))

Built-in variables for grid/block size and block/thread indices

• __global__ defines a kernel function

– Must return void

CUDA Programming Model

Compute Unified Device Architecture
Threads are executed to
do parts of job

24

• Integrated host+device app C program
– Serial or modestly parallel parts in host C code
– Highly parallel parts in device SPMD kernel C code

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);

CUDA Programming Model

Compiling a CUDA Program

Use the following command:

#: nvcc VectorAdd.cu –o VectorAdd

#: ./ VectorAdd

nvcc is the compiler while “./” executes the binary

Any CUDA program broadly consist of the following
components:

1) Include header files

2) Kernel that executes on the CUDA device, e.g:
 //__global__ void MatrixMulKernel(float *Md, float *Nd,
float *Pd, int Width)

3) main() routine, the CPU must find.
 3.1:- Define pointer to host and device arrays
 3.2:- Define other variables used in the program
 e.g. arrays etc.
 3.3:- Allocate array on the host
 /e.g. a_h=(float*)malloc(size)
 3.4:- Allocate array on device (DRAM of the GPU)
 /e.g. cudaMalloc ((void**) (a_d,size))

3.5:- Copy the data from host array to device array.
 // cudaMemcpy(Md_d,Md_h,size,cudaMemcpyHostToDevice);

3.6:- Kernel Call, Execution Configuration // e.g add_array<<<n
block,p size>>>(…..)

3.7:- Retrieve result from device to host in the host memory, e.g;
cudaMemcpy(Pd_h,Pd_d,size,cudaMemcpyDeviceToHost);

3.8:- Print result // for (i=0,………)
 printf(“%f “,,a_h[i]) ;

 3.9:- Free allocated device and host memories //
 e.g free(a_h);
 cudaFree(a_d);

Using the above programming steps, the following program calculates and

prints the square of first 1000 integers.
 // 1) Include header files
 #include <stdio.h>
 #include <cuda.h>
 #include <conio.h>
 // 2) Kernel that executes on the CUDA device
 __global__ void square_array(float*a,int N)
 {
 int idx=blockIdx.x*blockDim.x+threadIdx.x;
 if(idx<N)a[idx]=a[idx]*a[idx];
 }
 // 3) main() routine, the CPU must find
 int main(void)
 {
 // 3.1:- Define pointer to host and device arrays
 float*a_h,*a_d;
 // 3.2:- Define other variables used in the program e.g. arrays etc.
 const int N=100;
 size_t size=N*sizeof(float);

// 3.3:- Allocate array on the host
 a_h=(float*)malloc(size);
// 3.4:- Allocate array on device (DRAM of the GPU)
 cudaMalloc((void**)&a_d,size);
 for(int i=0;i<N;i++)a_h[i]=(float)i;
// 3.5:- Copy the data from host array to device array.
 cudaMemcpy(a_d,a_h,size,cudaMemcpyHostToDevice
// 3.6:- Kernel Call, Execution Configuration
 int block_size=4;
 int n_blocks=N/block_size+(N%block_size==0);
 square_array<<<n_blocks,block_size>>>(a_d,N);
// 3.7:- Retrieve result from device to host in the host memory, e.g;
 cudaMemcpy(a_h,a_d,sizeof(float)*N,cudaMemcpyDeviceToHost
// 3.8:- Print result
 for(int i=0;i<N;i++)
 printf("%d\t%f\n",i,a_h[i]);
// 3.9:- Free allocated memories on the device and host
 free(a_h);
 cudaFree(a_d);
 getch();
}

GPU Computing in Computational Mechanics Problem
CUDA (Compute Unified Device Architecture) coupled over basic compilers (C,
Fortran)

Uses a SIMD (single Instruction Multiple Data) model with multiple threads

In-built synchronization – excellent scalability

Hybrid (shared + distributed) memory management

Domain decomposition and parallel computing can be done on top of GPU
processing --(two levels of parallelization)

Speed-up upto 55x obtained for large problems

Comparison with 32 Core CPU and P100 GPU for 1000
times solution of a 144000 x 144000 matrix

CPU Profiling of the IBM code

Sample OpenACC call

CPU-GPU Profiling of the IBM code, with MAC in GPU and
SOLA in CPU

CPU-GPU Profiling of the IBM code after moving most of the
subroutines to GPU

Speed-up:

70x with single
processor
10 x with multi(16) core

Flow over fixed cylinder

Code Profiling and Performance Optimization using OpenACC in
GPU

Moving boundary case- 3
million cells
10x speed-up in search

40x speed-up in solver

Performance Enhancement

Performance results for large structured matrices (septadiagonal)

size 1000 5000 10000 20000
serial 1.48 59.29 236.7 979.88
parallel 0.41 1.61 6.07 30.23
shared 0.49 1.24 4.11 20.8

Jacobi solver for different memory optimization

Size 2000 10000 100000 1E+06 2E+06 5E+06
Serial 0.72 0.84 1.45 160.4 473.5 1367.8
Parallel 0.23 0.25 0.43 22.32 90.45 176.61

Speedup 3.13 3.36 3.37 7.18 5.23 7.74

Performance of BiCGSTAB solver

Performance results for unstructured matrices

Performance of different solvers

size BiCGstab serial Jacobi serial
BiCGstab
parallel Jacobi parallel

144 0.021 0.029 0.019 0.066

3310 27.91 792.74 0.62 18.01

7705 125.4 9482.46 3.25 187.24

Convergence for different matrix sizes

GPU Computing for Channel Flow

Case Step Size Length Width Re Mesh Size Error Time Elapsed (s)

Serial 0.02 5 1 25 250 X 50 10-4 1140.56

Parallel 0.02 5 1 25 250 X 50 10-4 285.54

Lid Driven Cavity
Case Step Size Length Width Re Mesh Size Error Time Elapsed (s)

Serial 0.02 1 1 100 50 X 50 10-4 855.05

Parallel 0.02 1 1 100 50 X 50 10-4 114.42

Agarwal, S., Kumar, M., and Roy, S, Demonstration of GPGPU Accelerated Computational
Fluid Dynamics Calculations, Intelligent Computing and Applications, Springer India, 2015

References
1- NVIDIA CUDA Programming Guide

2- Programming Massively Parallel Processors, By David Kirk, NVIDIA Fellow, Wen-mei
Hwu, Professor, University of Illinois

3- Course EC498, University of Illinois

http://courses.engr.illinois.edu/ece498/al/syllabus.html

4- David A. Patterson, The Landscape of Parallel Computing Research: A View from
Berkeley

5- PARALLEL PROCESSING WITH CUDA, Nvidia’s High-Performance Computing
Platform Uses Massive Multithreading By Tom R.Halfhill Published in Microprocessor
Report, {01/28/08-01}
http://www.nvidia.com/docs/IO/47906/220401_Reprint.pdf

6-Paweł Macioł, Krzysztof Bana´s, Testing Tesla Architecture for Scientific Computing: the
Performance of Matrix-Vector Product. Proceedings of the International Multiconference
on Computer Science and Information Technology pp. 285–291

http://courses.engr.illinois.edu/ece498/al/syllabus.html�
http://www.nvidia.com/docs/IO/47906/220401_Reprint.pdf�
http://www.nvidia.com/docs/IO/47906/220401_Reprint.pdf�
http://www.nvidia.com/docs/IO/47906/220401_Reprint.pdf�
http://www.nvidia.com/docs/IO/47906/220401_Reprint.pdf�
http://www.nvidia.com/docs/IO/47906/220401_Reprint.pdf�

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37

