
1 

 
Domain Decomposition Method – Parallel 

Computing 

Somnath Roy 
Department of Mechanical Engineering 



Why Parallelization? 

1. To reduce computational time by dividing the number of operations into a large 
number of computers 
 

2. To reduce the matrix size to be stored in a single chunk of memory   



Estimates of computational cost for large-scale problems 

Grid spacing to resolve smallest turbulence length scale ~(Re)-3/4 
 
For Re~106, three-dimensional geometry needs  1013 grid points 
 
One time-step  (one set of matrix solutions) will need O(1013) FLOP (Floating Point 
Operation) 
 
Typical physical duration of a time step ~ 10-3 seconds 
 
Simulation for 10 seconds will need 1017 FLOP 
 
Fastest computers give 10 giga FLOP/sec speed 
 
Estimated time for this calculation : 1010 seconds = 317 years !!!! 
 
Matrix size = O(1013) floats = 1013x16 bytes >> standard RAM size 



Parallel Computing- Basic Idea 

Tasks like Synchronization and 
communication is done by 
functions called using libraries as 
MPI, OpenMP 
 
 
CUDA computing using graphics 
cards 

•The load(memory) can be too heavy to carry 

•Task will take astronomically long time! 

distribution 

synchronization 

communication 



Domain  Decomposition 

Distribute the domain into several subdomain 
 
Form the matrix equation for each subdomain 
using the inter-boundary domain values 
 
Propose an algorithm to solve each domain 
independently  
 
Transfer inter-domain solutions to obtain 
continuity across the boundaries! 
 
Converge to a final solution involving 
sundomains. 



The matrix solution in decomposed domain 

Solve:                  in u f∆ =

With boundary conditions: 

The matrix equation:   Au=b 

Let x≡Ʃxi be the solution at the domain-internal points 
and y be the solution in the inter domain boundaries 
Γij. Then Au=b can be written as: 

1 1 1 1

2 2 2 2

3 3 3 3

1 2 3

Au b
B E x f

B E x f
B E x f

F F F C y g

=

     
     

    ⇒ =                 

Γ 

2∆ = ∇



The matrix solution in decomposed domain 

1 1 1 1

2 2 2 2

3 3 3 3

1 2 3

Au b
B E x f

B E x f
B E x f

F F F C y g

=

     
     

    ⇒ =                 

x f
A

y g

B E x f
F C y g

   
=   

   ⇒
     

=    
     

( )1

,
  and  

or
Bx Ey f Fx Cy g
x B f Ey−

+ = + =

= −

( )
( )

1

1 1

,    So FB f Ey Cy g

C FB E y g FB f

−

− −

− + =

− = −

S  (Schur Component) ( )
1

1 1

Sy g FB f

y S g FB f

−

− −

⇒ = −

⇒ = −

So, finally the internal point solutions can be obtained as 
( )

( )

1

1 1

with
x B f Ey

y S g FB f

−

− −

= −

= −



Schur Component 

In a domain decomposition problem, Schur component is defined as 

Solution at the internal points of different subdomains are found as: 

If S-1 exists, y can be found and hence x can also be found 

( )1S C FB E−= −

( ) ( )1 1 1,x B f Ey y S g FB f− − −= − = −



Domain decomposition parallelization 

To solve: 

1 1 1 1

2 2 2 2

3 3 3 3

1 2 3

Au b
B E x f

B E x f
B E x f

F F F C y g

=

     
     

    ⇒ =                 

( ) ( )1 1 1,x B f Ey y S g FB f− − −= − = −

B is a block diagonal matrix, B 

Hence, inverse of B can be found  in a decoupled sense as disjoint processes. 
 
Hence the sets of equation given can be solved, provided y is made available to the particular 
process. 



Schwarz Alternating procedure 

Alternate between the domains for solution. Solve Dirichlet problem one one domain in each 
iteration and consider boundary conditions based on the most recent solution of the other 
domains. 

Algorithm 

• The algorithm sweeps through the s subdomains and solves the original equation in each 
domain based on the boundary conditions that are updated from the most recent values of u. 

• We can start with a global initial guess and update it in each domain during the iterations 

2u u∆ = ∇



Schwaz Multiplicative Procedure for Overlapping Domains 

Algorithm 



Schwaz Multiplicative Procedure - Steps 

1. Chose an initial guess u to the solutions 
2. Iterate until convergence 
3. For i=1,….s 
4. Solve ∆u=f in Ωi with u=uij in Γij 

5. Update u values in Γij 

6. Till convergence in all Ω=Ω1,Ω2,…. Ωs 

Convergence? 



Theorem for Convergence of Schwarz Procedure 

If the guess                     is chosen as                                  then the iterations are identical 

to Gauss-Seidel sweep of the Schur component and they converge! 

 

( )

( )
( )

0
0

0

i
i

i

x
u

y

 
=  

 

( ) ( )0 01
i i i i ix B f E y−  = − 



Domain Decomposition based parallel Matrix Solver 

1. Divide the domain into a number of subdomains. Domain overlaps are allowed 
such that the full row equation for each internal point of the subdomain is 
available 

2. Start with a global guess 
3. Update the solution at every subdomain locally. Consider the inter-domain 

boundaries as Dirichlet with the last updated solution value – parallel step 
4. Update the boundary values in one sub-domain as obtained by local solution 

of neighbouring domains. – Data transfer step 
5. Iterate over the domains for a global convergence –synchronization step 



Parallel Computing: Basic Idea 

Serial/standalone 
computing 

Parallel computing 

Distributed 
memory  

Shared memory (load) 

•The load(memory) can be too heavy to carry 

•Task will take astronomically long time! 

Large piece of memory (or load) to be 
used. More Synchronization , less 
communication 

Smaller memory units. 
More communication 

distribution 

synchronization 

communication 



Parallel Computing: The More the Better? 

•Non-uniform distribution 
•More communication and synchronization 
•Idle time for some of them 
 

Less weight for each people 
 --Increase in speed 

 --More latency 

sp
ee

d 
= 

no
. o

f 
ite

ra
tio

ns
/s

ec
 

actual speed-
up 

overhead 



Architecture of a Parallel Computing Platform 

IBM Blue gene (Aregon national lab) 
• 250000 processors (2GHz) 

• 10-Gigabit ethernet connector 

•petaflops speed, petabyte RAM 

Architecture of a supercomputer 
(Flynn’s taxonomy): 
 

Based upon the number of concurrent instruction (or control)  
and data streams available in the architecture (Flynn, 1966): 
 
Single Instruction, Single Data stream (SISD): 
 
Single Instruction, Multiple Data streams (SIMD) 
 
Multiple Instruction, Single Data stream (MISD) 
 
Multiple Instruction, Multiple Data streams (MIMD) 
 



SISD 

• Computers in this category can decode only a single instruction in unit time 

An analogy of Flynn’s classification is the 
check-in desk at an airport 
•SISD: a single desk 

The way an ordinary computer works 



SIMD 

• An array of processors all executing the same instruction but on 
different data 

•SIMD: many desks and a supervisor with 
a megaphone giving instructions that every 
desk obeys 
 

IT industry jobs: processing of credit card 
information for 1 lac people in 1000 
computers 



MISD 
• Some consider this category to be empty. However, some consider 

systolic arrays to fall in this category:  
– Data is pumped through processors, each processor applying a different 

operation to the same data stream. 

 
•MISD:  For the same passenger different desks are 
doing different job. One processing ticket, the other 
checking luggage etc. 
 

Income Tax Department: 
Processing different financial information (Tax, Bank 
transaction, Foreign money exchange ) from a same 
PAN 
 
 



MIMD 

• MIMD: More than one CPU, each running its own 
program on its own data 

 
•MIMD: many desks working at their own 
pace, synchronized through a central 
database 
More communication between each processor 

More flexibility 

Used in scientific computing 
Single Program Multiple Data & Multiple Program Single Data models 



Elements of a Parallel Program 

What we need to know How many people doing the work. (Degree of Parallelism) 
 
What is needed to begin the work. (Initialization) 
 
Who does what. (Work distribution) 
 
Access to work part. (Data/IO access) 
 
Whether they need info from each other to finish their own 
job. (Communication) 
 
When are they all done. (Synchronization) 
 
What needs to be done to collate the result. 

Message Passing Interface (MPI) 



What is MPI? 
• A message passing library specification 

– Message-passing model 
– Library functions can be used with C, Fortran, C++ compilers 
 
In short: 
– MPI "is a message-passing application programmer interface, together with 

protocol and semantic specifications for how its features must behave in any 
implementation.“ 
 

• Designed for parallel computers, clusters, and heterogeneous networks 

 The other popular interface available is OpenMP 



Why MPI? 

• Small  

– Many programs can be written with only 6 basic functions  

eg. ‘call MPI_SEND(start, count, datatype, dest, tag, comm,ierr)’ 

• Large  

– MPI’s extensive functionality from many functions 

• Scalable 

– Point-to-point communication 

• Flexible 

– Don’t need to rewrite parallel programs across platforms 

And a Free Open-source Software! 



MPI Functions 

Many parallel programs can be written using just these functions, 
 and they are:- 
 
MPI_INIT                                       Initialize MPI                               
MPI_FINALIZE                              Exit MPI 

MPI_COMM_SIZE                       Determine number of processes within a comm 

MPI_COMM_RANK                    Determine process rank within a comm 

MPI_SEND       Send a message 

MPI_RECV       Receive a message 

MPI_COMM_WORLD                Default communicator whose group contains all initial processes 

 



  
MPI_SEND(start, count, datatype, dest, tag, comm,ierr) 

• call MPI_SEND(tsendr,ndata,MPI_DOUBLE_PRECISION,myid+1,10,     MPI_COMM_WORLD,ierr) 

 !MPI_RECV(start, count, datatype, source, tag, comm,status,ierr) 

•  call MPI_RECV(trecvl,ndata,MPI_DOUBLE_PRECISION,myid-1,10, MPI_COMM_WORLD,stt, ierr) 

 
 

 

Note* : Other than the above standard  send and recv , the   others  blocking send or 
recv are : MPI_Ssend , MPI_Bsend ,MPI_Srecv , MPI_Brecv 
 

Sending 
processor 

Receiving  
processor 

request to send 

idle 

send 

idle 

ok to receive 

latency 
(overcome by using buffer) 

Point to Point Communication 



Collective Communication 

  • Collective functions involve communication among all processes in a process group, 
Instead of involving  communication between two specific processes. i.e. A single call 
handles the communication between all the processes in a communicator 
 

• MPI_BCAST distributes data from one process (the root) to all others in a 
communicator. 
 
 
 

• MPI_REDUCE combines data from all processes in communicator and returns it to one 
process. 

 
 
 
 
Note*: In many numerical algorithms, SEND/RECEIVE can be replaced by BCAST/REDUCE, improving both 

simplicity and efficiency. 



Parallelization of CFD Problem : Domain Decomposition 
Partitioning the domain into smaller blocks and solving smaller matrices in 
different computers in parallel  

2 0T∇ =

2 0T∇ = 2 0T∇ =
2 0T∇ =

2 0T∇ = 2 0T∇ =

Distributing the domains to 
different computer 
--decreases matrix size 
 
 
Solving each domain 
independently and parallelly in 
each computer  
--increases speed 

Dynamic exchange of boundary condition among each domain over a partition line 



Key Points in Parlallel Program 

 Initialization of Parallel environment  

Allocation of decomposed domain to the processors     

-- load balancing, idle time minimization 

Calculation in each domain 

Synchronization 

-- latency 

Communication 

 -- avoiding bottleneck or deadlock in data exchange! 

Assembly of results 

Termination 

overheads  due to initialization, synchronization and communication 



Scalability of an MPI Program 

Geometry with 3 million grid points 
Block structured mesh. Each block is solved in a separate processor 
Data exchange for two layers among each partition 

latency 


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	 
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30

