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GPGPU and CUDA    
 

An Introduction 



GPU Computing 

Graphical Processing Unit (GPU), intially 
designed for game development 
 
Around 2000, general purpose GPGPU-s 
developed 
 
Efficient in matrix calculation 
 
 
 
 GPU -vs- CPU 

performance, NVIDIA 



NVIDIA GeForce 8 Architecture  



GPU Hardware 



GPGPU Using 
CUDA 

Traditional 
GPGPU  



MEMORIES 



Features of CUDA memories 
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Terminology  

Device  - GPU 

Host – Hosting CPU 

Kernel – Part of the code that runs in GPU 

Global memory  - data available to all threads and 
can be copied directly to host 

DRAM- Device or GPU RAM  

SRAM – on chip shared RAM 

Memory bandwidth  
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CUDA Programming Model  

• Integrated host+device app C program 
– Serial or modestly parallel parts in host C code 
– Highly parallel parts in device SPMD kernel C code 

Serial Code (host)  

. . . 

. . . 

Parallel Kernel (device)  
KernelA<<< nBlk, nTid >>>(args); 

Serial Code (host)  

Parallel Kernel (device)  
KernelB<<< nBlk, nTid >>>(args); 
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Modern GPUs contain hundreds of arithmetic 
units, and their power can be used to accelerate 
a lot of compute-intensive applications.  
 
The existing generation of GPUs have a 
flexible architecture. 
 
Most of the transistors in CPU are dedicated 
for data caching and controlling    

GPU Versus CPU 



Threads 

Writing Code 
on Multi-
core 
Processor 



KERNEL 
LAUNCH 
(DEVICE 
FUNCTION) 

Threads  

Launches thousands of threads 
simultaneously  

C U D A 



Single Instruction 
(Issued by Instruction Unit) 
  
Multiple Data  
(e.g. fetched from  
Shared Memory) 

S  I  M  D! 



CUDA platform for parallel processing on Nvidia GPUs. 

Source: PARALLEL PROCESSING WITH CUDA 
Nvidia’s High-Performance Computing Platform Uses Massive Multithreading By Tom 
R.Halfhill {01/28/08-01} 



Serial Code (host) 

. . .

. . .

Parallel Kernel (device) 
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host) 

Parallel Kernel (device) 
KernelB<<< nBlk, nTid >>>(args);

• Integrated host+device app C program 
– Serial or modestly parallel parts in host C code 
– Highly parallel parts in device SPMD kernel C code 

CUDA launches 
threads in blocks 
and grids 
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Host

Kernel 
1

Kernel 
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

       

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Block IDs and Thread IDs  
 

• Each thread uses IDs to 
decide what data to work on 
– Block ID: 1D or 2D 
– Thread ID: 1D, 2D, or 3D  

 
 
 
• Simplifies memory 

addressing when processing 
multidimensional data 
– Image processing 
– Solving PDEs on volumes 
– Matrix, 2D and 3D arrays 

 



• Thread: concurrent code and associated state executed on the 
CUDA device (in parallel with other threads) 
– The unit of parallelism in CUDA 

 
• Warp: a group of threads executed physically in parallel in any 

GPU, basic unit of scheduling hardware-  
Hardware limits 

 
• Block: a group of threads that are executed together and form the 

unit of resource assignment –  
Programming specification 

 
• Grid: a group of thread blocks that must all complete before the 

next kernel call of the program can take effect 

Thread Block Algebra  
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CUDA Device Memory 
Allocation • cudaMalloc() 

– Allocates object in the device 
Global Memory 

– Requires two parameters 
• Address of a pointer to 

the allocated object 
• Size of of allocated object 

• cudaFree() 
– Frees object from device 

Global Memory 
• Pointer to freed object 

Grid 

Global 
Memory 

Block (0, 0)  

Shared Memory 

Thread (0, 0)  

Registers 

Thread (1, 0)  

Registers 

Block (1, 0)  

Shared Memory 

Thread (0, 0)  

Registers 

Thread (1, 0)  

Registers 

Host 

Essentials--  CUDA Device Memory Allocation 



CUDA Device Memory Allocation (2)  

• Code example:  
– Allocate a  32* 32 single precision float array 
– Attach the allocated storage to Md 
– “d” is often used to indicate a device data 

structure (“h” is used to indicate host) 

TILE_WIDTH = 32; 
Float* Md 
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float); 
 
cudaMalloc((void**)&Md, size); 
cudaFree(Md); 
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CUDA Host-Device Data 
Transfer 

• cudaMemcpy()  
– memory data transfer 
– Requires four parameters 

• Pointer to destination  
• Pointer to source 
• Number of bytes copied 
• Type of transfer  

– Host to Device 
– Device to Host 
– Device to Device 
– Host to Host  

• Asynchronous transfer 

Grid 

Global 
Memory 

Block (0, 0)  

Shared Memory 

Thread (0, 0)  

Registers 

Thread (1, 0)  

Registers 

Block (1, 0)  

Shared Memory 

Thread (0, 0)  

Registers 

Thread (1, 0)  

Registers 

Host 



CUDA Host-Device Data Transfer (2) 
• Code example:  

– Transfer a  32 * 32 single precision float 
array 

– Mh is in host memory and Md is in device 
memory 

– cudaMemcpyHostToDevice and 
cudaMemcpyDeviceToHost are symbolic 
constants  

cudaMemcpy(Md, Mh, size,cudaMemcpyHostToDevice); 
cudaMemcpy(Mh, Md, size,cudaMemcpyDeviceToHost); 



C language extension  - Operators in Device and 
Host 

Function type qualifiers (where to call and execute a function): 
__device__, __global__,__host__ 

Variable type qualifiers ( __device__, __constant__ and 
__shared__) 

Kernel execution directive ( foo<<...>>(...) ) 

Built-in variables for grid/block size and block/thread indices 

• __global__ defines a kernel function 

– Must return void 

 



CUDA Programming Model 

Compute Unified Device Architecture 
Threads are executed to 
do parts of job 
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• Integrated host+device app C program 
– Serial or modestly parallel parts in host C code 
– Highly parallel parts in device SPMD kernel C code 

Serial Code (host)  

. . . 

. . . 

Parallel Kernel (device)  
KernelA<<< nBlk, nTid >>>(args); 

Serial Code (host)  

Parallel Kernel (device)  
KernelB<<< nBlk, nTid >>>(args); 

CUDA Programming Model 



Compiling a CUDA Program 

Use the following command: 

#: nvcc VectorAdd.cu –o  VectorAdd 

#: ./ VectorAdd 

nvcc is the compiler while “./” executes the binary 

 



Any CUDA program broadly consist of the following 
components: 
  
1)          Include header files 
  
2)          Kernel that executes on the CUDA device, e.g: 
     //__global__ void MatrixMulKernel(float *Md, float *Nd, 
float *Pd, int Width) 
  
3)          main( ) routine, the CPU must find.  
    3.1:-    Define pointer to host and device arrays 
    3.2:-   Define other variables used in the program  
               e.g. arrays etc. 
    3.3:-   Allocate array on the host 
                    /e.g. a_h=(float*)malloc(size) 
    3.4:-    Allocate array on device (DRAM of the GPU) 
                   /e.g. cudaMalloc ((void**) (a_d,size)) 
      



3.5:-  Copy the data from host array to device array. 
              // cudaMemcpy(Md_d,Md_h,size,cudaMemcpyHostToDevice); 
 
3.6:-   Kernel Call, Execution Configuration  //  e.g add_array<<<n 
block,p size>>>(…..) 
 
3.7:-    Retrieve result from device to host in the host memory, e.g;         
cudaMemcpy(Pd_h,Pd_d,size,cudaMemcpyDeviceToHost); 
 
3.8:-    Print result // for (i=0,………) 
             printf(“%f “,,a_h[i])  ; 
 
   3.9:-  Free  allocated device and host memories  //    
           e.g free(a_h); 
           cudaFree(a_d); 
 



Using the above programming steps,  the following program calculates and 

prints  the square of first 1000 integers.   
      // 1) Include header files  
                  #include <stdio.h> 
            #include <cuda.h> 
            #include <conio.h> 
 // 2) Kernel that executes on the CUDA device 
                       __global__ void square_array(float*a,int N) 
                   { 
                        int idx=blockIdx.x*blockDim.x+threadIdx.x; 
                      if(idx<N)a[idx]=a[idx]*a[idx]; 
                }  
        // 3)          main( ) routine, the CPU must find 
                  int main(void) 
             {  
        // 3.1:-    Define pointer to host and device arrays 
                 float*a_h,*a_d;  
       // 3.2:-   Define other variables used in the program e.g. arrays etc. 
                const int N=100; 
            size_t size=N*sizeof(float);   



// 3.3:-   Allocate array on the host 
            a_h=(float*)malloc(size);  
// 3.4:-    Allocate array on device (DRAM of the GPU)  
             cudaMalloc((void**)&a_d,size); 
        for(int i=0;i<N;i++)a_h[i]=(float)i;  
// 3.5:-  Copy the data from host array to device array. 
        cudaMemcpy(a_d,a_h,size,cudaMemcpyHostToDevice 
// 3.6:-   Kernel Call, Execution Configuration  
             int block_size=4; 
        int n_blocks=N/block_size+(N%block_size==0); 
        square_array<<<n_blocks,block_size>>>(a_d,N);  
// 3.7:-    Retrieve result from device to host in the host memory, e.g;   
             cudaMemcpy(a_h,a_d,sizeof(float)*N,cudaMemcpyDeviceToHost 
// 3.8:-    Print result   
               for(int i=0;i<N;i++) 
           printf("%d\t%f\n",i,a_h[i]); 
// 3.9:-    Free allocated memories on the device and host  
         free(a_h); 
         cudaFree(a_d); 
          getch(); 
} 



GPU Computing in Computational Mechanics Problem 
CUDA (Compute Unified Device Architecture) coupled over basic compilers (C, 
Fortran) 

Uses a SIMD (single Instruction Multiple Data) model with multiple threads 

In-built synchronization – excellent scalability 

Hybrid (shared + distributed) memory management 

Domain decomposition and parallel computing can be done on top of GPU 
processing  --(two levels of parallelization) 

Speed-up upto 55x obtained for large problems 

Comparison with 32 Core CPU and P100 GPU for 1000 
times solution of a 144000 x 144000 matrix 



CPU Profiling of the IBM code 

Sample OpenACC call 

CPU-GPU Profiling of the IBM code, with MAC in GPU and 
SOLA in CPU 

CPU-GPU Profiling of the IBM code after moving most of the 
subroutines to GPU 

Speed-up: 
 
70x with single 
processor 
10 x with multi(16) core 

Flow over fixed cylinder 

Code Profiling and Performance Optimization using OpenACC in 
GPU 



Moving boundary case- 3 
million cells 
10x speed-up in search 
 
40x speed-up in solver 

Performance Enhancement 



Performance results for  large structured matrices  (septadiagonal)  

size 1000 5000 10000 20000 
serial 1.48 59.29 236.7 979.88 
parallel 0.41 1.61 6.07 30.23 
shared 0.49 1.24 4.11 20.8 

Jacobi solver for different memory optimization 

Size 2000 10000 100000 1E+06 2E+06 5E+06 
Serial 0.72 0.84 1.45 160.4 473.5 1367.8 
Parallel 0.23 0.25 0.43 22.32 90.45 176.61 

Speedup 3.13 3.36 3.37 7.18 5.23 7.74 

Performance of BiCGSTAB solver 



Performance results for  unstructured matrices 

Performance of different solvers 

size BiCGstab serial Jacobi serial 
BiCGstab 
parallel Jacobi parallel 

144 0.021 0.029 0.019 0.066 

3310 27.91 792.74 0.62 18.01 

7705 125.4 9482.46 3.25 187.24 

Convergence for different matrix sizes 



GPU Computing for Channel Flow 

Case Step Size Length Width Re Mesh Size Error Time Elapsed (s) 

Serial 0.02 5 1 25 250 X 50 10-4 1140.56 

Parallel 0.02 5 1 25 250 X 50 10-4 285.54 



Lid Driven Cavity 
Case Step Size Length Width Re Mesh Size Error Time Elapsed (s) 

Serial 0.02 1 1 100 50 X 50 10-4 855.05 

Parallel 0.02 1 1 100 50 X 50 10-4 114.42 

Agarwal, S., Kumar, M., and Roy, S, Demonstration of GPGPU Accelerated Computational 
Fluid Dynamics Calculations, Intelligent Computing and Applications, Springer India, 2015 
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