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Classification of handwritten digits

The digits are treated in two different (but equivalent) forms
16× 16 gray scale, as in the above figure,
a vector in R256.

3/22



Classification of handwritten digits

The digits are treated in two different (but equivalent) forms
16× 16 gray scale, as in the above figure,

a vector in R256.

3/22



Classification of handwritten digits

The digits are treated in two different (but equivalent) forms
16× 16 gray scale, as in the above figure,
a vector in R256.

3/22



Classification by computer of handwritten digits

Problem: How to classify unknown digit?

Precisely, given a set of
manually classified digits (the training set), classify a set of unknown digits
(the test set).
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A simple algorithm: Distance to the known digits

Measure the distance between the unknown digit to the known digits
using the Euclidean distance.

stack the columns of the image in a vector and identify each digit as
a vector in R256.
Then define the distance function

d(x , y) = ||x − y ||2 =
√

(x1 − y1)2 + · · ·+ (x256 − y256)2.

All the digits of one kind in the training set form a cluster of points in
the Euclidean space R256. (Assumption)
Ideally the clusters are well separated, and the separation between the
clusters depends on how well written the training digits are.
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The means (“averages“) of all digits in the training set.
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A simple algorithm: Distance to the known digits

Algorithm

Given the manually classified training set, compute the means mi ,
i = 0, 1, 2, . . . , 9, of all the 10 digits.

For each digit in the test set, classify it as k if mk is the closest mean.

For some test set, the success rate of this algorithm is around 75%. The

reason for the relatively bad performance is that the algorithm does not
use any information about the variation within each class of digits.

Using singular value decomposition(SVD), we will see a classification
algorithm, for which the success rate is around 93%.
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Singular Value Decomposition(SVD)

Let A ∈ Rm×n. If m ≤ n, then an SVD of A is

A = U(Σ 0)V T , where Σ =

 σ1
. . .

σm

 , σ1 ≥ . . . ≥ σm ≥ 0,

and U ∈ Rm×m and V ∈ Rn×n are orthogonal.

The matrix U is called a left singular vector matrix, V is called a right
singular vector matrix, and the scalars σj are called singular values.
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Singular Value Decomposition(SVD)

Let A ∈ Rm×n.

If m ≥ n, then a singular value decomposition(SVD) of A
is a decomposition

A = U
(

Σ
0

)
V T , where Σ =

 σ1
. . .

σn

 , σ1 ≥ . . . ≥ σn ≥ 0,

and U ∈ Rm×m and V ∈ Rn×n are orthogonal.

Fact
If W is an orthogonal matrix, then ||Wx ||2 = ||x ||2.
If λ is a non-zero real number, then λ is an eigenvalue of the matrix
AAT if and only if λ is an eigenvalue of AT A.
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SVD geometry
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Computing SVD

Example
Let us compute SVD for the following 2× 3 matrix,

A =
(

3 1 1
−1 3 1

)
.

In order to find U, we have to start with AAT .

AAT =
(

3 1 1
−1 3 1

) 3 −1
1 3
1 1

 =
(

11 1
1 11

)
.

Next, we have to find the eigenvalues and corresponding eigenvectors of
AAT . After calculating, we get the following eigenvalues and their
corresponding eigenvectors.
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λ = 10; u1 =
(

1
1

)

λ = 12; u2 =
(

1
−1

)
.

Thus the matrix A has singular values σ1 =
√

12 and σ2 =
√

10. Now

after normalizing u1 and u2, we put U =
( 1√

2
1√
2

1√
2
−1√

2

)
.

The calculation of V is similar. V is based on AT A, so we have

AT A =

 3 −1
1 3
1 1

( 3 1 1
−1 3 1

)
=

 10 0 2
0 10 4
2 4 2

 .
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Eigenvalues and their corresponding eigenvectors are as follows

for λ = 12; v1 =

 1
2
1


for λ = 10; v2 =

 2
−1
0


for λ = 0; v3 =

 1
2
−5

 .

After normalization, we get V =


1√
6

2√
5

1√
30

2√
6
−1√

5
2√
30

1√
6 0 −5√

30

 i.e.,

V T =


1√
6

2√
6

1√
6

2√
5

−1√
5 0

1√
30

2√
30

−5√
30
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SVD of A is

A = UΣV T , where Σ =
( √

12 0 0
0

√
10 0

)
.

That is,

A =
( 1√

2
1√
2

1√
2
−1√

2

)( √
12 0 0
0

√
10 0

)
1√
6

2√
6

1√
6

2√
5

−1√
5 0

1√
30

2√
30

−5√
30

.
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Geometric form of SVD

Let A ∈ Rm×n with m ≤ n . Then, Rn has an orthonormal basis
{v1, . . . , vn}, Rm has an orthonormal basis {u1, . . . , um} and there exists
σ1 ≥ σ2 ≥ . . . ,≥ σr ≥ 0 such that

Avi =
{
σiui , if i = 1, . . . , r ,
0 if i ≥ r + 1,

and
AT ui =

{
σivi , if i = 1, . . . , r ,
0 if i ≥ r + 1.
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Four fundamental subspaces

For an m × n matrix A, the following subspaces are called fundamental
subspaces.

Range space of A: R(A) = {x ∈ Rm : x = Ay for some y ∈ Rn}.
(span of columns of A)

Null space of A: N(A) = {x ∈ Rn : Ax = 0}.
Range space of AT :
R(AT ) = {x ∈ Rn : x = AT y for some y ∈ Rm}.
Null space of AT : N(AT ) = {x ∈ Rm : AT x = 0}.
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Basis for fundamental subspaces

If A ∈ Rm×n is a matrix of rank r , and A = UΣV T is the SVD of A, then
R(A) = span{u1, . . . , ur},

N(A) = span{ur+1, . . . , um},
R(AT ) = span{v1, . . . , vr},
N(AT ) = span{vr+1, . . . , vn}.
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Illustration
A =

(
3 1 1
−1 3 1

)
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( 1√
2

1√
2

1√
2
−1√

2

)( √
12 0 0
0

√
10 0

)
1√
6

2√
6

1√
6

2√
5

−1√
5 0

1√
30

2√
30

−5√
30

 .

R(A) = span {
( 1√

2
−1√

2

)
,

( 1√
2

1√
2

)
},

N(A) = span {0},
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1√
6

2√
6

2√
5

−1√
5

1√
30

2√
30
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1√
6

0
−5√

30
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1√
6

2√
6

2√
5

−1√
5

1√
30

2√
30

},

N(AT ) = span {


1√
6

0
−5√

30

} .
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SVD - equivalent (and useful) form

Theorem
Let A ∈ Rm×n, and let σ1, . . . , σr be the nonzero singular values of A,
with associated right and left singular vectors v1, . . . , vr and u1, . . . , ur ,
respectively. Then

A =
r∑

j=1
σjujvT

j .

If A =
(

3 1 1
−1 3 1

)
, then

A = (
√

12)
( 1√

2
1√
2

)(
1√
6 ,

2√
5 ,

1√
30

)
+ (
√

10)
( 1√

2
−1√

2

)(
2√
6 ,
−1√

5 ,
2√
30

)
.
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Properties

(1) An m × n matrix has min{m, n} singular values.

(2) The singular values are unique, but the singular vector matrices are
not. Although an SVD is not unique, one often says ”the SVD”
instead of ”a SVD.”

(3) Let A ∈ Rm×n with m ≥ n. If A = U
(

Σ
0

)
V T is an SVD of A,

then AT = V (Σ 0)UT is an SVD of AT . Therefore, A and AT have
the same singular values.

(4) A ∈ Rn×n is nonsingular if and only if all singular values are nonzero,
i.e., σj > 0, 1 ≤ j ≤ n.

(5) If A = UΣV T is an SVD of A, then A−1 = V Σ−1UT is an SVD of
A−1.
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Properties
Fact (Magnification)
If A ∈ Rm×n has singular values σ1 ≥ . . . ≥ σp, where p = min{m, n},
then

max
x 6=0

‖Ax‖2
‖x‖2

= σ1 = maxmag(A),

min
x 6=0

‖Ax‖2
‖x‖2

= σp = minmag(A).

Fact (Condition number)

If A ∈ Rn×n is nonsingular, then k2(A) = σ1
σn

= maxmag(A)
minmag(A) .

Fact
If A ∈ Rm×n has singular values σ1 ≥ . . . ≥ σp, where p = min{m, n},
then ‖A‖2 = max

x 6=0
‖Ax‖2
‖x‖2

= σ1
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Algo. for classification of handwritten digits using SVD
Let us consider the 16× 16 matrix representation of the image as
vector in R256×1, by stacking all the columns of the image above each
other.

The matrix consisting of all the training digits of one kind. the 3′s
say, is an element of the space A ∈ R256×n.
Each column of A represents an image of a digit 3. If
A =

∑m
i=1 σiuivT

i , then the left singular vectors ui forms an
orthonormal basis for the range space of A. i.e., ”the image of 3′s”.
Each digit is well characterized by a few of the first left singular
values of its own kind.

Algorithm
Training: For the training set of known digits, compute the SVD of each
set of digits of one kind.
Classification: For a given test digit, compute its relative residual in all
10 bases. If one residual is significantly smaller than all the others, classify
as that. Otherwise give up.
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Thank you!

Happy journey!!!
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