Revision of SVD and Classification of handwritten digits problem

M. Rajesh Kannan

Department of Mathematics, Indian Institute of Technology Kharagpur, email: rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ac.in

September 2019

References

(1) Numerical Matrix Analysis, Ilse Ipsen, SIAM.
(2) Matrix Methods in Data Mining and Pattern Recognition, Lars Elden, SIAM.
(3) Linear Algebra, A. Ramachandra Rao and P Bhimasankaram, Hindustan book agency.

Classification of handwritten digits

Classification of handwritten digits

The digits are treated in two different (but equivalent) forms

- 16×16 gray scale, as in the above figure,

Classification of handwritten digits

The digits are treated in two different (but equivalent) forms

- 16×16 gray scale, as in the above figure,
- a vector in \mathbb{R}^{256}.

Classification by computer of handwritten digits

Problem: How to classify unknown digit?

Classification by computer of handwritten digits

Problem: How to classify unknown digit? Precisely, given a set of manually classified digits (the training set), classify a set of unknown digits (the test set).

Classification by computer of handwritten digits

Problem: How to classify unknown digit? Precisely, given a set of manually classified digits (the training set), classify a set of unknown digits (the test set).

A simple algorithm: Distance to the known digits

- Measure the distance between the unknown digit to the known digits using the Euclidean distance.

A simple algorithm: Distance to the known digits

- Measure the distance between the unknown digit to the known digits using the Euclidean distance.
- stack the columns of the image in a vector and identify each digit as a vector in \mathbb{R}^{256}.

A simple algorithm: Distance to the known digits

- Measure the distance between the unknown digit to the known digits using the Euclidean distance.
- stack the columns of the image in a vector and identify each digit as a vector in \mathbb{R}^{256}.
- Then define the distance function

$$
d(x, y)=\|x-y\|_{2}=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{256}-y_{256}\right)^{2}} .
$$

A simple algorithm: Distance to the known digits

- Measure the distance between the unknown digit to the known digits using the Euclidean distance.
- stack the columns of the image in a vector and identify each digit as a vector in \mathbb{R}^{256}.
- Then define the distance function

$$
d(x, y)=\|x-y\|_{2}=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{256}-y_{256}\right)^{2}} .
$$

- All the digits of one kind in the training set form a cluster of points in the Euclidean space \mathbb{R}^{256}. (Assumption)

A simple algorithm: Distance to the known digits

- Measure the distance between the unknown digit to the known digits using the Euclidean distance.
- stack the columns of the image in a vector and identify each digit as a vector in \mathbb{R}^{256}.
- Then define the distance function

$$
d(x, y)=\|x-y\|_{2}=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{256}-y_{256}\right)^{2}} .
$$

- All the digits of one kind in the training set form a cluster of points in the Euclidean space \mathbb{R}^{256}. (Assumption)
- Ideally the clusters are well separated, and the separation between the clusters depends on how well written the training digits are.

The means ("averages") of all digits in the training set.

A simple algorithm: Distance to the known digits

Algorithm

- Given the manually classified training set, compute the means m_{i}, $i=0,1,2, \ldots, 9$, of all the 10 digits.

A simple algorithm: Distance to the known digits

Algorithm

- Given the manually classified training set, compute the means m_{i}, $i=0,1,2, \ldots, 9$, of all the 10 digits.
- For each digit in the test set, classify it as k if m_{k} is the closest mean.

A simple algorithm: Distance to the known digits

Algorithm

- Given the manually classified training set, compute the means m_{i}, $i=0,1,2, \ldots, 9$, of all the 10 digits.
- For each digit in the test set, classify it as k if m_{k} is the closest mean.

For some test set, the success rate of this algorithm is around 75%.

A simple algorithm: Distance to the known digits

Algorithm

- Given the manually classified training set, compute the means m_{i}, $i=0,1,2, \ldots, 9$, of all the 10 digits.
- For each digit in the test set, classify it as k if m_{k} is the closest mean.

For some test set, the success rate of this algorithm is around 75%. The
reason for the relatively bad performance is that the algorithm does not use any information about the variation within each class of digits.

A simple algorithm: Distance to the known digits

Algorithm

- Given the manually classified training set, compute the means m_{i}, $i=0,1,2, \ldots, 9$, of all the 10 digits.
- For each digit in the test set, classify it as k if m_{k} is the closest mean.

For some test set, the success rate of this algorithm is around 75%. The
reason for the relatively bad performance is that the algorithm does not use any information about the variation within each class of digits.

Using singular value decomposition(SVD), we will see a classification algorithm, for which the success rate is around 93%.

Singular Value Decomposition(SVD)

Let $A \in \mathbb{R}^{m \times n}$. If $m \leq n$, then an SVD of A is

Singular Value Decomposition(SVD)

Let $A \in \mathbb{R}^{m \times n}$. If $m \leq n$, then an SVD of A is

$$
A=U(\Sigma 0) V^{T}
$$

Singular Value Decomposition(SVD)

Let $A \in \mathbb{R}^{m \times n}$. If $m \leq n$, then an SVD of A is

$$
A=U(\Sigma 0) V^{T}, \text { where } \Sigma=\left(\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{m}
\end{array}\right), \sigma_{1} \geq \ldots \geq \sigma_{m} \geq 0
$$

and $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal.

Singular Value Decomposition(SVD)

Let $A \in \mathbb{R}^{m \times n}$. If $m \leq n$, then an SVD of A is

$$
A=U(\Sigma 0) V^{T}, \text { where } \Sigma=\left(\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{m}
\end{array}\right), \sigma_{1} \geq \ldots \geq \sigma_{m} \geq 0
$$

and $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal.

The matrix U is called a left singular vector matrix, V is called a right singular vector matrix, and the scalars σ_{j} are called singular values.

Singular Value Decomposition(SVD)

Let $A \in \mathbb{R}^{m \times n}$.

Singular Value Decomposition(SVD)

Let $A \in \mathbb{R}^{m \times n}$. If $m \geq n$, then a singular value decomposition(SVD) of A is a decomposition

Singular Value Decomposition(SVD)

Let $A \in \mathbb{R}^{m \times n}$. If $m \geq n$, then a singular value decomposition(SVD) of A is a decomposition

$$
A=U\binom{\Sigma}{0} V^{T},
$$

Singular Value Decomposition(SVD)

Let $A \in \mathbb{R}^{m \times n}$. If $m \geq n$, then a singular value decomposition(SVD) of A is a decomposition

$$
A=U\binom{\Sigma}{0} V^{T}, \text { where } \Sigma=\left(\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n}
\end{array}\right), \sigma_{1} \geq \ldots \geq \sigma_{n} \geq 0
$$

and $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal.

Singular Value Decomposition(SVD)

Let $A \in \mathbb{R}^{m \times n}$. If $m \geq n$, then a singular value decomposition(SVD) of A is a decomposition

$$
A=U\binom{\Sigma}{0} V^{T}, \text { where } \Sigma=\left(\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n}
\end{array}\right), \sigma_{1} \geq \ldots \geq \sigma_{n} \geq 0
$$

and $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal.

Fact

- If W is an orthogonal matrix, then $\|W x\|_{2}=\|x\|_{2}$.

Singular Value Decomposition(SVD)

Let $A \in \mathbb{R}^{m \times n}$. If $m \geq n$, then a singular value decomposition(SVD) of A is a decomposition

$$
A=U\binom{\Sigma}{0} V^{T}, \text { where } \Sigma=\left(\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n}
\end{array}\right), \sigma_{1} \geq \ldots \geq \sigma_{n} \geq 0
$$

and $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal.

Fact

- If W is an orthogonal matrix, then $\|W x\|_{2}=\|x\|_{2}$.
- If λ is a non-zero real number, then λ is an eigenvalue of the matrix $A A^{T}$ if and only if λ is an eigenvalue of $A^{T} A$.

SVD geometry

$A=U D V^{\top}$

Multiplication by V^{T}
\qquad

Computing SVD

Example

Let us compute SVD for the following 2×3 matrix,

$$
A=\left(\begin{array}{ccc}
3 & 1 & 1 \\
-1 & 3 & 1
\end{array}\right)
$$

Computing SVD

Example

Let us compute SVD for the following 2×3 matrix,

$$
A=\left(\begin{array}{ccc}
3 & 1 & 1 \\
-1 & 3 & 1
\end{array}\right)
$$

In order to find U, we have to start with $A A^{T}$.

$$
A A^{T}=\left(\begin{array}{ccc}
3 & 1 & 1 \\
-1 & 3 & 1
\end{array}\right)\left(\begin{array}{cc}
3 & -1 \\
1 & 3 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
11 & 1 \\
1 & 11
\end{array}\right)
$$

Computing SVD

Example

Let us compute SVD for the following 2×3 matrix,

$$
A=\left(\begin{array}{ccc}
3 & 1 & 1 \\
-1 & 3 & 1
\end{array}\right)
$$

In order to find U, we have to start with $A A^{T}$.

$$
A A^{T}=\left(\begin{array}{ccc}
3 & 1 & 1 \\
-1 & 3 & 1
\end{array}\right)\left(\begin{array}{cc}
3 & -1 \\
1 & 3 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
11 & 1 \\
1 & 11
\end{array}\right)
$$

Next, we have to find the eigenvalues and corresponding eigenvectors of $A A^{T}$. After calculating, we get the following eigenvalues and their corresponding eigenvectors.

$$
\begin{aligned}
\lambda=10 ; & u_{1}=\binom{1}{1} \\
\lambda=12 ; & u_{2}=\binom{1}{-1} .
\end{aligned}
$$

$$
\begin{aligned}
& \lambda=10 ; u_{1}=\binom{1}{1} \\
& \lambda=12 ; \quad u_{2}=\binom{1}{-1} .
\end{aligned}
$$

Thus the matrix A has singular values $\sigma_{1}=\sqrt{12}$ and $\sigma_{2}=\sqrt{10}$. Now after normalizing u_{1} and u_{2}, we put $U=\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}\end{array}\right)$.

$$
\begin{aligned}
& \lambda=10 ; u_{1}=\binom{1}{1} \\
& \lambda=12 ; \quad u_{2}=\binom{1}{-1} .
\end{aligned}
$$

Thus the matrix A has singular values $\sigma_{1}=\sqrt{12}$ and $\sigma_{2}=\sqrt{10}$. Now after normalizing u_{1} and u_{2}, we put $U=\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}\end{array}\right)$.
The calculation of V is similar. V is based on $A^{T} A$, so we have

$$
A^{T} A=\left(\begin{array}{cc}
3 & -1 \\
1 & 3 \\
1 & 1
\end{array}\right)\left(\begin{array}{ccc}
3 & 1 & 1 \\
-1 & 3 & 1
\end{array}\right)=\left(\begin{array}{ccc}
10 & 0 & 2 \\
0 & 10 & 4 \\
2 & 4 & 2
\end{array}\right)
$$

Eigenvalues and their corresponding eigenvectors are as follows

$$
\begin{aligned}
& \text { for } \lambda=12 ; \quad v_{1}=\left(\begin{array}{c}
1 \\
2 \\
1
\end{array}\right) \\
& \text { for } \lambda=10 ; \quad v_{2}=\left(\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right) \\
& \text { for } \lambda=0 ; \quad v_{3}=\left(\begin{array}{c}
1 \\
2 \\
-5
\end{array}\right) .
\end{aligned}
$$

Eigenvalues and their corresponding eigenvectors are as follows

$$
\begin{aligned}
& \text { for } \lambda=12 ; \quad v_{1}=\left(\begin{array}{c}
1 \\
2 \\
1
\end{array}\right) \\
& \text { for } \lambda=10 ; \quad v_{2}=\left(\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right) \\
& \text { for } \lambda=0 ; \quad v_{3}=\left(\begin{array}{c}
1 \\
2 \\
-5
\end{array}\right) .
\end{aligned}
$$

$$
\text { After normalization, we get } V=\left(\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{30}} \\
\frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{5}} & \frac{2}{\sqrt{30}} \\
\frac{1}{\sqrt{6}} & 0 & \frac{-5}{\sqrt{30}}
\end{array}\right) \text { i.e., }
$$

$$
V^{T}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} & 0 \\
\frac{1}{\sqrt{30}} & \frac{2}{\sqrt{30}} & \frac{-5}{\sqrt{30}}
\end{array}\right)
$$

SVD of A is

$$
A=U \Sigma V^{T}, \text { where } \Sigma=\left(\begin{array}{ccc}
\sqrt{12} & 0 & 0 \\
0 & \sqrt{10} & 0
\end{array}\right)
$$

SVD of A is

$$
A=U \Sigma V^{T}, \text { where } \Sigma=\left(\begin{array}{ccc}
\sqrt{12} & 0 & 0 \\
0 & \sqrt{10} & 0
\end{array}\right)
$$

That is,

$$
A=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{ccc}
\sqrt{12} & 0 & 0 \\
0 & \sqrt{10} & 0
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} & 0 \\
\frac{1}{\sqrt{30}} & \frac{2}{\sqrt{30}} & \frac{-5}{\sqrt{30}}
\end{array}\right)
$$

Geometric form of SVD

Let $A \in \mathbb{R}^{m \times n}$ with $m \leq n$. Then, \mathbb{R}^{n} has an orthonormal basis $\left\{v_{1}, \ldots, v_{n}\right\}, \mathbb{R}^{m}$ has an orthonormal basis $\left\{u_{1}, \ldots, u_{m}\right\}$ and there exists $\sigma_{1} \geq \sigma_{2} \geq \ldots, \geq \sigma_{r} \geq 0$ such that

$$
A v_{i}= \begin{cases}\sigma_{i} u_{i}, & \text { if } i=1, \ldots, r \\ 0 & \text { if } i \geq r+1\end{cases}
$$

Geometric form of SVD

Let $A \in \mathbb{R}^{m \times n}$ with $m \leq n$. Then, \mathbb{R}^{n} has an orthonormal basis $\left\{v_{1}, \ldots, v_{n}\right\}, \mathbb{R}^{m}$ has an orthonormal basis $\left\{u_{1}, \ldots, u_{m}\right\}$ and there exists $\sigma_{1} \geq \sigma_{2} \geq \ldots, \geq \sigma_{r} \geq 0$ such that

$$
A v_{i}= \begin{cases}\sigma_{i} u_{i}, & \text { if } i=1, \ldots, r \\ 0 & \text { if } i \geq r+1\end{cases}
$$

and

$$
A^{T} u_{i}= \begin{cases}\sigma_{i} v_{i}, & \text { if } i=1, \ldots, r \\ 0 & \text { if } i \geq r+1\end{cases}
$$

Four fundamental subspaces

For an $m \times n$ matrix A, the following subspaces are called fundamental subspaces.

- Range space of A : $R(A)=\left\{x \in \mathbb{R}^{m}: x=\right.$ Ay for some $\left.y \in \mathbb{R}^{n}\right\}$. (span of columns of A)

Four fundamental subspaces

For an $m \times n$ matrix A, the following subspaces are called fundamental subspaces.

- Range space of A : $R(A)=\left\{x \in \mathbb{R}^{m}: x=\right.$ Ay for some $\left.y \in \mathbb{R}^{n}\right\}$. (span of columns of A)
- Null space of A : $N(A)=\left\{x \in \mathbb{R}^{n}: A x=0\right\}$.

Four fundamental subspaces

For an $m \times n$ matrix A, the following subspaces are called fundamental subspaces.

- Range space of $A: R(A)=\left\{x \in \mathbb{R}^{m}: x=\right.$ Ay for some $\left.y \in \mathbb{R}^{n}\right\}$. (span of columns of A)
- Null space of A : $N(A)=\left\{x \in \mathbb{R}^{n}: A x=0\right\}$.
- Range space of A^{T} :
$R\left(A^{T}\right)=\left\{x \in \mathbb{R}^{n}: x=A^{T} y\right.$ for some $\left.y \in \mathbb{R}^{m}\right\}$.

Four fundamental subspaces

For an $m \times n$ matrix A, the following subspaces are called fundamental subspaces.

- Range space of $A: R(A)=\left\{x \in \mathbb{R}^{m}: x=\right.$ Ay for some $\left.y \in \mathbb{R}^{n}\right\}$. (span of columns of A)
- Null space of A : $N(A)=\left\{x \in \mathbb{R}^{n}: A x=0\right\}$.
- Range space of A^{T} :
$R\left(A^{T}\right)=\left\{x \in \mathbb{R}^{n}: x=A^{T} y\right.$ for some $\left.y \in \mathbb{R}^{m}\right\}$.
- Null space of $A^{T}: N\left(A^{T}\right)=\left\{x \in \mathbb{R}^{m}: A^{T} x=0\right\}$.

Basis for fundamental subspaces

If $A \in \mathbb{R}^{m \times n}$ is a matrix of rank r, and $A=U \Sigma V^{\top}$ is the SVD of A, then - $R(A)=\operatorname{span}\left\{u_{1}, \ldots, u_{r}\right\}$,

Basis for fundamental subspaces

If $A \in \mathbb{R}^{m \times n}$ is a matrix of rank r, and $A=U \Sigma V^{T}$ is the SVD of A, then

- $R(A)=\operatorname{span}\left\{u_{1}, \ldots, u_{r}\right\}$,
- $N(A)=\operatorname{span}\left\{u_{r+1}, \ldots, u_{m}\right\}$,

Basis for fundamental subspaces

If $A \in \mathbb{R}^{m \times n}$ is a matrix of rank r, and $A=U \Sigma V^{T}$ is the SVD of A, then

- $R(A)=\operatorname{span}\left\{u_{1}, \ldots, u_{r}\right\}$,
- $N(A)=\operatorname{span}\left\{u_{r+1}, \ldots, u_{m}\right\}$,
- $R\left(A^{T}\right)=\operatorname{span}\left\{v_{1}, \ldots, v_{r}\right\}$,

Basis for fundamental subspaces

If $A \in \mathbb{R}^{m \times n}$ is a matrix of rank r, and $A=U \Sigma V^{T}$ is the SVD of A, then

- $R(A)=\operatorname{span}\left\{u_{1}, \ldots, u_{r}\right\}$,
- $N(A)=\operatorname{span}\left\{u_{r+1}, \ldots, u_{m}\right\}$,
- $R\left(A^{T}\right)=\operatorname{span}\left\{v_{1}, \ldots, v_{r}\right\}$,
- $N\left(A^{T}\right)=\operatorname{span}\left\{v_{r+1}, \ldots, v_{n}\right\}$.

Illustration

$$
A=\left(\begin{array}{ccc}
3 & 1 & 1 \\
-1 & 3 & 1
\end{array}\right)=
$$

$$
\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{ccc}
\sqrt{12} & 0 & 0 \\
0 & \sqrt{10} & 0
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} & 0 \\
\frac{1}{\sqrt{30}} & \frac{2}{\sqrt{30}} & \frac{-5}{\sqrt{30}}
\end{array}\right) .
$$

Illustration

$$
A=\left(\begin{array}{ccc}
3 & 1 & 1 \\
-1 & 3 & 1
\end{array}\right)=
$$

$$
\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{ccc}
\sqrt{12} & 0 & 0 \\
0 & \sqrt{10} & 0
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} & 0 \\
\frac{1}{\sqrt{30}} & \frac{2}{\sqrt{30}} & \frac{-5}{\sqrt{30}}
\end{array}\right) .
$$

- $R(A)=\operatorname{span}\left\{\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}},\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}\right\}$,

Illustration

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
3 & 1 & 1 \\
-1 & 3 & 1
\end{array}\right)= \\
& \left(\begin{array}{cccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{ccc}
\sqrt{12} & 0 & 0 \\
0 & \sqrt{10} & 0
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} & 0 \\
\frac{1}{\sqrt{30}} & \frac{2}{\sqrt{30}} & \frac{-5}{\sqrt{30}}
\end{array}\right) .
\end{aligned}
$$

$$
\text { - } R(A)=\operatorname{span}\left\{\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}},\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}\right\} \text {, }
$$

- $N(A)=\operatorname{span}\{0\}$,

Illustration

$A=\left(\begin{array}{ccc}3 & 1 & 1 \\ -1 & 3 & 1\end{array}\right)=$
$\left(\begin{array}{ccc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}\end{array}\right)\left(\begin{array}{ccc}\sqrt{12} & 0 & 0 \\ 0 & \sqrt{10} & 0\end{array}\right)\left(\begin{array}{ccc}\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} & 0 \\ \frac{1}{\sqrt{30}} & \frac{2}{\sqrt{30}} & \frac{-5}{\sqrt{30}}\end{array}\right)$.

- $R(A)=\operatorname{span}\left\{\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}},\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}\right\}$,
- $N(A)=\operatorname{span}\{0\}$,
- $R\left(A^{T}\right)=\operatorname{span}\left\{\left(\begin{array}{cc}\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\ \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} \\ \frac{1}{\sqrt{30}} & \frac{2}{\sqrt{30}}\end{array}\right)\right\}$,

Illustration

$A=\left(\begin{array}{ccc}3 & 1 & 1 \\ -1 & 3 & 1\end{array}\right)=$
$\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}\end{array}\right)\left(\begin{array}{ccc}\sqrt{12} & 0 & 0 \\ 0 & \sqrt{10} & 0\end{array}\right)\left(\begin{array}{ccc}\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} & 0 \\ \frac{1}{\sqrt{30}} & \frac{2}{\sqrt{30}} & \frac{-5}{\sqrt{30}}\end{array}\right)$.

- $R(A)=\operatorname{span}\left\{\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}},\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}\right\}$,
- $N(A)=\operatorname{span}\{0\}$,
- $R\left(A^{T}\right)=\operatorname{span}\left\{\left(\begin{array}{ll}\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\ \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} \\ \frac{1}{\sqrt{30}} & \frac{2}{\sqrt{30}}\end{array}\right)\right\}$,
- $N\left(A^{T}\right)=\operatorname{span}\left\{\left(\begin{array}{c}\frac{1}{\sqrt{6}} \\ 0 \\ \frac{-5}{\sqrt{30}}\end{array}\right)\right\}$.

SVD - equivalent (and useful) form

Theorem

Let $A \in \mathbb{R}^{m \times n}$, and let $\sigma_{1}, \ldots, \sigma_{r}$ be the nonzero singular values of A, with associated right and left singular vectors v_{1}, \ldots, v_{r} and u_{1}, \ldots, u_{r}, respectively. Then

$$
A=\sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{T}
$$

SVD - equivalent (and useful) form

Theorem

Let $A \in \mathbb{R}^{m \times n}$, and let $\sigma_{1}, \ldots, \sigma_{r}$ be the nonzero singular values of A, with associated right and left singular vectors v_{1}, \ldots, v_{r} and u_{1}, \ldots, u_{r}, respectively. Then

$$
A=\sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{T}
$$

$$
\text { If } \begin{aligned}
A & =\left(\begin{array}{ccc}
3 & 1 & 1 \\
-1 & 3 & 1
\end{array}\right) \text {, then } \\
A & =(\sqrt{12})\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}\left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{30}}\right)+(\sqrt{10})\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}}\left(\frac{2}{\sqrt{6}}, \frac{-1}{\sqrt{5}}, \frac{2}{\sqrt{30}}\right) .
\end{aligned}
$$

Properties

(1) An $m \times n$ matrix has $\min \{m, n\}$ singular values.

Properties

(a) An $m \times n$ matrix has $\min \{m, n\}$ singular values.
(2) The singular values are unique, but the singular vector matrices are not. Although an SVD is not unique, one often says "the SVD" instead of "a SVD."

Properties

(1) An $m \times n$ matrix has $\min \{m, n\}$ singular values.
(2) The singular values are unique, but the singular vector matrices are not. Although an SVD is not unique, one often says "the SVD" instead of "a SVD."
(3) Let $A \in \mathbb{R}^{m \times n}$ with $m \geq n$. If $A=U\binom{\Sigma}{0} V^{T}$ is an SVD of A, then $A^{T}=V(\Sigma 0) U^{T}$ is an SVD of A^{T}. Therefore, A and A^{T} have the same singular values.

Properties

(1) An $m \times n$ matrix has $\min \{m, n\}$ singular values.
(2) The singular values are unique, but the singular vector matrices are not. Although an SVD is not unique, one often says "the SVD" instead of "a SVD."
(3) Let $A \in \mathbb{R}^{m \times n}$ with $m \geq n$. If $A=U\binom{\Sigma}{0} V^{T}$ is an SVD of A, then $A^{T}=V(\Sigma 0) U^{T}$ is an SVD of A^{T}. Therefore, A and A^{T} have the same singular values.
(4) $A \in \mathbb{R}^{n \times n}$ is nonsingular if and only if all singular values are nonzero, i.e., $\sigma_{j}>0,1 \leq j \leq n$.

Properties

(1) An $m \times n$ matrix has $\min \{m, n\}$ singular values.
(2) The singular values are unique, but the singular vector matrices are not. Although an SVD is not unique, one often says "the SVD" instead of "a SVD."
(3) Let $A \in \mathbb{R}^{m \times n}$ with $m \geq n$. If $A=U\binom{\Sigma}{0} V^{T}$ is an SVD of A, then $A^{T}=V(\Sigma 0) U^{T}$ is an SVD of A^{T}. Therefore, A and A^{T} have the same singular values.
(4) $A \in \mathbb{R}^{n \times n}$ is nonsingular if and only if all singular values are nonzero, i.e., $\sigma_{j}>0,1 \leq j \leq n$.
(5) If $A=U \Sigma V^{T}$ is an SVD of A, then $A^{-1}=V \Sigma^{-1} U^{T}$ is an SVD of A^{-1}.

Properties

Fact (Magnification)

If $A \in \mathbb{R}^{m \times n}$ has singular values $\sigma_{1} \geq \ldots \geq \sigma_{p}$, where $p=\min \{m, n\}$, then

$$
\max _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}=\sigma_{1}=\operatorname{maxmag}(A)
$$

Properties

Fact (Magnification)

If $A \in \mathbb{R}^{m \times n}$ has singular values $\sigma_{1} \geq \ldots \geq \sigma_{p}$, where $p=\min \{m, n\}$, then

$$
\begin{aligned}
& \max _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}=\sigma_{1}=\operatorname{maxmag}(A) \\
& \min _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}=\sigma_{p}=\operatorname{minmag}(A)
\end{aligned}
$$

Properties

Fact (Magnification)

If $A \in \mathbb{R}^{m \times n}$ has singular values $\sigma_{1} \geq \ldots \geq \sigma_{p}$, where $p=\min \{m, n\}$, then

$$
\begin{aligned}
& \max _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}=\sigma_{1}=\operatorname{maxmag}(A), \\
& \min _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}=\sigma_{P}=\operatorname{minmag}(A) .
\end{aligned}
$$

Fact (Condition number)

If $A \in \mathbb{R}^{n \times n}$ is nonsingular, then $k_{2}(A)=\frac{\sigma_{1}}{\sigma_{n}}=\frac{\operatorname{maxmag}(A)}{\operatorname{minmag}(A)}$.

Properties

Fact (Magnification)

If $A \in \mathbb{R}^{m \times n}$ has singular values $\sigma_{1} \geq \ldots \geq \sigma_{p}$, where $p=\min \{m, n\}$, then

$$
\begin{aligned}
& \max _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}=\sigma_{1}=\operatorname{maxmag}(A), \\
& \min _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}=\sigma_{P}=\operatorname{minmag}(A) .
\end{aligned}
$$

Fact (Condition number)

If $A \in \mathbb{R}^{n \times n}$ is nonsingular, then $k_{2}(A)=\frac{\sigma_{1}}{\sigma_{n}}=\frac{\operatorname{maxmag}(A)}{\operatorname{minmag}(A)}$.

Fact

If $A \in \mathbb{R}^{m \times n}$ has singular values $\sigma_{1} \geq \ldots \geq \sigma_{p}$, where $p=\min \{m, n\}$, then $\|A\|_{2}=\max _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}=\sigma_{1}$

Algo. for classification of handwritten digits using SVD

- Let us consider the 16×16 matrix representation of the image as vector in $\mathbb{R}^{256 \times 1}$, by stacking all the columns of the image above each other.

Algo. for classification of handwritten digits using SVD

- Let us consider the 16×16 matrix representation of the image as vector in $\mathbb{R}^{256 \times 1}$, by stacking all the columns of the image above each other.
- The matrix consisting of all the training digits of one kind. the $3^{\prime} s$ say, is an element of the space $A \in \mathbb{R}^{256 \times n}$.

Algo. for classification of handwritten digits using SVD

- Let us consider the 16×16 matrix representation of the image as vector in $\mathbb{R}^{256 \times 1}$, by stacking all the columns of the image above each other.
- The matrix consisting of all the training digits of one kind. the $3^{\prime} s$ say, is an element of the space $A \in \mathbb{R}^{256 \times n}$.
- Each column of A represents an image of a digit 3.

Algo. for classification of handwritten digits using SVD

- Let us consider the 16×16 matrix representation of the image as vector in $\mathbb{R}^{256 \times 1}$, by stacking all the columns of the image above each other.
- The matrix consisting of all the training digits of one kind. the $3^{\prime} s$ say, is an element of the space $A \in \mathbb{R}^{256 \times n}$.
- Each column of A represents an image of a digit 3. If $A=\sum_{i=1}^{m} \sigma_{i} u_{i} v_{i}^{T}$, then the left singular vectors u_{i} forms an orthonormal basis for the range space of A. i.e., "the image of $3^{\prime} s$ ".

Algo. for classification of handwritten digits using SVD

- Let us consider the 16×16 matrix representation of the image as vector in $\mathbb{R}^{256 \times 1}$, by stacking all the columns of the image above each other.
- The matrix consisting of all the training digits of one kind. the $3^{\prime} s$ say, is an element of the space $A \in \mathbb{R}^{256 \times n}$.
- Each column of A represents an image of a digit 3. If $A=\sum_{i=1}^{m} \sigma_{i} u_{i} v_{i}^{T}$, then the left singular vectors u_{i} forms an orthonormal basis for the range space of A. i.e., "the image of $3^{\prime} s$ ".
- Each digit is well characterized by a few of the first left singular values of its own kind.

Algo. for classification of handwritten digits using SVD

- Let us consider the 16×16 matrix representation of the image as vector in $\mathbb{R}^{256 \times 1}$, by stacking all the columns of the image above each other.
- The matrix consisting of all the training digits of one kind. the $3^{\prime} s$ say, is an element of the space $A \in \mathbb{R}^{256 \times n}$.
- Each column of A represents an image of a digit 3. If $A=\sum_{i=1}^{m} \sigma_{i} u_{i} v_{i}^{\top}$, then the left singular vectors u_{i} forms an orthonormal basis for the range space of A. i.e., "the image of $3^{\prime} s$ ".
- Each digit is well characterized by a few of the first left singular values of its own kind.

Algorithm

Training: For the training set of known digits, compute the SVD of each set of digits of one kind.
Classification: For a given test digit, compute its relative residual in all 10 bases. If one residual is significantly smaller than all the others, classify as that. Otherwise give up.

Thank you!

Thank you! Happy journey!!!

