Advanced Matrix Algebra and Applications

- Swanand Khare

Books:

1) Fundamentals of matrix computations

- David watkins
a) Matrix Algebra.
- s. Boyd

Lecture 1:
Inner product. (Dot product)

$$
\begin{aligned}
& \mathbb{R}^{n} / \mathbb{R}^{2} \nmid \mathbb{R}^{3} \\
& x, y \in \mathbb{R}^{n} \quad x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right), \quad y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) \\
& \langle x, y\rangle=x^{\top} y=\sum_{i=1}^{n} x_{i} y_{i} \\
& \langle x, x\rangle=x^{\top} x=\sum_{i=1}^{n} x_{i}^{2}=\|x\|_{2}^{2} \\
& \cos \theta=\frac{\langle x, y\rangle}{\|x\|\|y\|}
\end{aligned}
$$

cis. inequalility $\Rightarrow-1 \leq \cos \theta \leq 1$
$x, y \in \mathbb{R}^{n}$ are such that

$$
\langle x, y\rangle=x^{\top} y=0
$$

LU
Cholesky
QR
SVD x
$A x=b$ system of linear equations.

$$
\begin{aligned}
& A \in \mathbb{R}^{m \times n} \\
& b \in \in \mathbb{R}^{m}
\end{aligned}
$$

Q1: Does there exist. $x \in \mathbb{R}^{n}$ s.t.

$$
\begin{aligned}
& A_{x}=b \\
& ? ? \\
& A=\left[\begin{array}{ccc}
\dot{A}_{1} & \dot{A}_{2} & \cdots \\
\vdots & A_{n} \\
1 & 1 & \\
\hline
\end{array}\right] ; x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \\
& A x=\left[\begin{array}{lll}
A_{1} & \cdots & A_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\begin{array}{c}
x_{1} A_{1}+x_{2} A_{2} \\
+\cdots+x_{n} A_{n}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{col} \operatorname{span}(A)= & \left\{\alpha_{1} A_{1}+\alpha_{2} A_{2}+\cdots+\alpha_{n} A_{n} \mid\right. \\
& \alpha_{1}, \cdots \alpha_{n} \in \mathbb{R} \text { and } \\
& A_{1}, \cdots, A_{n} \text { are columns } \\
& f A\}
\end{aligned}
$$

- Very easy to prove that cotspan (A) is a subspace of \mathbb{R}^{m}
If $b \in \mathbb{R}^{m}$ is in the $\operatorname{col} \operatorname{span}(A)$, then b can be written as a linear combination of $A_{i}{ }^{\prime}$ s.

$$
\begin{aligned}
& 3 x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R} \text { s.t- } \\
& \sum_{i=1}^{n} A_{i} x_{i}=b \\
& \Rightarrow A_{x}=b
\end{aligned}
$$

\Rightarrow Solution exists!!

2) Uniqueness

The columns of A are in fact basis vectors for the colurn space of A.

Ex: Relate the geometrical concepts with algebraic constraints on rank $[A ; b]$

Solve:

$$
A_{x}=b
$$

$$
\begin{gathered}
{\left[\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{1 n} \\
\& & u_{22} & \cdots & u_{2 n} \\
\vdots & & \\
u_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]} \\
u_{x}=b \\
u_{n n} x_{n}=b_{n} \\
x_{n}=\frac{1}{u_{n n n}} b_{n} \\
u_{n-1, n-1} x_{n-1}+u_{n-1, n} x_{n}=b_{n-1} \\
x_{n-1}=\frac{1}{u_{n-1, n-1}}\left[b_{n-1}-u_{n-1, n} x_{n}\right]
\end{gathered}
$$

Floating Point Operations Flops Floating Point Arithmatic

Similarly, $L_{x}=b$ where L is an Lower triangular system can also be solved very easily by forward substitution.

In general, we will try to convert $A_{x}=b$ problem into an equivalent upper triangular or lower triangular system.

LU, cholesky, $Q R$
symmetric positive definite matrices.

$$
A \in \mathbb{R}^{n \times n}
$$

A: symmetric.

$$
x^{\top} A x>0 \quad \forall x \in \mathbb{R}^{n}
$$

$A_{x}=b$ where symmetric positive definite.
$A=[\square]$
principal minors

Lecture 2 :

- Gaussian Elimination (pivoting)

$$
\left.\begin{array}{c}
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & a_{n 2} & \ldots & a_{n n}
\end{array}\right] ; b=\left[\begin{array}{c}
b_{1} \\
\vdots \\
a_{n 1}
\end{array}\right] \\
{[A \vdots b]}
\end{array}\right]\left[\begin{array}{c}
R_{2}-\frac{a_{21} R_{1}}{a_{11}}\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
\tilde{b_{1}} \\
\vdots \\
\tilde{b}_{n}
\end{array}\right]
\end{array}\right.
$$

- LU
$A \in \mathbb{R}^{n \times n}$ non-singular.

$$
\begin{aligned}
& A=L D U \\
& \quad\left[\begin{array}{lll}
1 & \ddots & 0 \\
& \ddots & \ddots
\end{array}\right]\left[\begin{array}{lll}
d_{1} & d_{l} & \\
& & \\
& 0 & \\
d_{n}
\end{array}\right]\left[\begin{array}{lll}
1 & & * \\
\vdots & & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& A x=b \\
& L(U x)=b \\
& y \\
& L_{y}=b \\
& U x=y
\end{aligned}
$$

A is symmetric pod.

$$
A=L D L^{\top}
$$

where D has only positive diagonal entries.

$$
A=G G^{\top}
$$

where $\quad G=L D^{1 / 2}$

To solve $A x=b$
In practice we generally solve a perturbed system.

$$
\begin{gathered}
(A+\Delta A)(x+\Delta x)=(b+\Delta b) \\
\tilde{A} \tilde{x}=\tilde{b}
\end{gathered}
$$

Suppose that one can solve $\tilde{A} \tilde{x}=\tilde{b}$ exactly for \tilde{x}.
Then we declare \tilde{x} to be the solution to $A x=b$.

Can we justify this??
Answer: Not always!! (Sensitivity analysis)

Ex: $\quad A x=b$

$$
A=\left[\begin{array}{cc}
1000 & 999 \\
999 & 998
\end{array}\right] ; \quad b=\left[\begin{array}{l}
1999 \\
1997
\end{array}\right]
$$

Note: $x=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is the solution.

$$
\begin{array}{ll}
\tilde{b}=\left[\begin{array}{ll}
1998.99 \\
1997.01
\end{array}\right] & \tilde{b}=b+\Delta b \\
& \Delta b=\left[\begin{array}{c}
-0.01 \\
0.01
\end{array}\right]^{*}
\end{array}
$$

Now solve:

$$
\begin{aligned}
& \tilde{A} \tilde{x}=\tilde{b} \\
& \tilde{\sim}=\left[\begin{array}{c}
20.97 \\
-18.99
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& A^{-1}=\left.\begin{array}{cc}
-998 & 999 \\
999 & -1000
\end{array}\right] \quad \underset{b}{ }=\left[\begin{array}{l}
1999.01 \\
1997.01
\end{array}\right] \\
& \Delta b=\left[\begin{array}{c}
0.01 \\
0.01
\end{array}\right] \\
& \tilde{x}=A^{-1} \tilde{b} \\
&=\left[\begin{array}{rr}
-998 & 999 \\
999 & -1000
\end{array}\right]\left[\begin{array}{l}
1999.01 \\
1997.01
\end{array}\right] \\
& \tilde{x}=\left[\begin{array}{r}
-998 \times 1999.01+999 \times 1997.01 \\
\sim \\
\sim
\end{array}\right]\left[\begin{array}{c}
1.01 \\
0.99
\end{array}\right]
\end{aligned}
$$

We observe here that a "small" perturbation is b causes a "very large" perturbation in $x .4$
Q: Can we quantify this perturbation in x ??

Norms:
Vector norm.
$\|\|:. \mathbb{R}^{n} \rightarrow \mathbb{R}$
i) $\|x\| \geqslant 0 \quad \forall x \in \mathbb{R}^{n}$
and $\|x\|=0$ iff $x=0$
ii) $\|\alpha x\|=|\alpha|\|x\|$
iii) $\|x+y\| \leq\|x\|+\|y\|$
(.) $\|\cdot x\|_{2}=\sqrt{\langle x, x\rangle}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}$
(.) $\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p} \quad p \geqslant 1$
is a vector norm.
(.) $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
$(1) \quad \pi x \|_{\infty}=\max _{i}\left|x_{i}\right|$

Matrix norms:

$$
A \in \mathbb{R}^{n \times n}
$$

Consider A as a vector in $\mathbb{R}^{n^{2}}$.

$$
\|A\|_{F}=\left(\sum_{i, j} a_{i j}^{2}\right)^{1 / 2}
$$

is in fact the 2 -norm of the vector in $\mathbb{R}^{n^{2}}$.

Induced. matrix norm:

$$
\begin{aligned}
\|A\|_{2} & =\max _{x \neq 0} \frac{\| A x) \|_{2}}{\|x\|_{2}} \\
& =\max _{x \neq 0}\left\|A \frac{x}{\|x\|_{2}}\right\|_{2} \\
& =\max _{\|y\|_{2}=1}\|A y\|_{2}
\end{aligned}
$$

Lecture 4.
Least squares problem.

$$
\begin{aligned}
& \left.A \in \mathbb{R}^{N \times n} \quad N \gg n .\right\} \text { Given } \\
& b \in \mathbb{R}^{N}
\end{aligned}
$$

Solve:

$$
\left.\begin{array}{ll}
& A_{x}=b \\
A
\end{array}\right][x]=\left[\begin{array}{l}
b \\
\end{array}\right]
$$

determined system of linear eq?.

Geometry)

$$
\begin{aligned}
& \Rightarrow \quad\langle A \hat{x}, b-A \hat{x}\rangle=0 \\
& \Rightarrow \quad \hat{x}^{\top} A^{\top}(b-A \hat{x})=0 \\
& \Rightarrow \quad \hat{x}^{\top} A^{\top} b=\hat{x}^{\top} A^{\top} A \hat{x} \text { Why?? } \\
& \Rightarrow \quad A^{\top} b=\hat{A}^{\top} A \hat{x}<\text { Normal Eq?! }
\end{aligned}
$$

$$
A^{T} A \in \mathbb{R}^{n \times n}
$$

Solving the normal eq!

$$
\left(A^{\top} A\right) \hat{x}=A^{\top} b
$$

we get the LS solution to the system $\quad A x=b$
In particular, if $A^{\top} A$ is invertible, then $\hat{x}=\left(A^{\top} A\right)^{-1} A^{\top} b$

The matrix $\left(A^{\top} A\right)^{-1} A^{\top}$ is known as psecudo-inverse of A and is denoted as A^{+}.
Q: Why is this solution called Least Squares (LS)??

$$
\min _{x \in \mathbb{R}^{n}}\|b-A x\|_{2} E
$$

$$
\begin{aligned}
&\|b-A x\|_{2}^{2}=\langle b-A x, b-A x\rangle \\
&=\left(b-A_{x}\right)^{\top}(b-A x) \\
&=\left(b_{-x^{\top}} A^{\top}\right)(b-A x) \\
&=b^{\top} b-\frac{x^{\top} A^{\top} b-b^{\top} A x}{x^{\top} A^{\top} A x}+ \\
&=x^{\top} A^{\top} A x-\frac{2 x^{\top} A^{\top} b}{}+b^{\top} b \\
& \min x^{\top} A^{\top} A x-2 x^{\top} A^{\top} b+b^{\top} b \\
& x \in R^{n} \quad \operatorname{cost}^{\top} \frac{f^{n}}{-} \\
& \nabla \nabla_{x}\left(\cos f^{n}\right)=0 \\
& 2 A^{\top} A x-2 A^{\top} b=0 \\
& \Rightarrow A^{\top} A x=A^{\top} b
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle b-A_{x}, b-A_{x}\right\rangle \\
& b=\left[\int_{N-1} A x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]\right. \\
& r=b-A_{N x}=\left[\begin{array}{c}
r_{1} \\
r_{2} \\
i \\
r_{\omega}
\end{array}\right]_{N \times 1} \\
& \langle b-A x, b-A x\rangle=\langle r, r\rangle \\
& =\sum_{i=1}^{n} r_{i}^{2}
\end{aligned}
$$

Given $A \& b$, to solve the LS problem, one needs to construct normal equations and then solve them simultaneously.

$$
A^{\top} A \hat{x}=A^{\top} b
$$

i) computational complexity of computing $A^{\top} A$
ii)

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
0 & \varepsilon
\end{array}\right] \\
& \begin{aligned}
A^{\top} A & =\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & \varepsilon
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
0 & \varepsilon
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 2 \\
2 & 2+\varepsilon^{2}
\end{array}\right]
\end{aligned}
\end{aligned}
$$

Numerical approach to solve LS problem.

$$
\begin{array}{ll}
A x=b & A \in \mathbb{R}^{N \times n} \\
& b \in \mathbb{R}^{N \times 1}
\end{array}
$$

To find x s.t. $\|b-A x\|_{2}^{2}$ is minimized.

$$
\begin{aligned}
n b-A x \|_{2}^{2} & =\langle b-A x, b-A x\rangle \\
& =\langle Q(b-A x), Q(b-A x)\rangle \\
& =(b-A x)^{\top} \underbrace{Q^{\top} Q_{0}(b-A x)}_{I}
\end{aligned}
$$

If Q is such that $Q^{\top} Q=I$

$$
\begin{aligned}
& \left\|Q^{\top}(b-A x)\right\|_{2}^{2}=\|b-A x\|_{2}^{2} \\
& \|Q^{\top} b-\underbrace{Q^{\top} A}_{R=[\square}\|_{2}^{2}=\left\|Q^{\top} b-R x\right\|_{2}^{2}
\end{aligned}
$$

