Linear Algebra

M. Rajesh Kannan

Department of Mathematics,
Indian Institute of Technology Kharagpur, email: rajeshkannan1.m@gmail.com, rajeshkannan@maths.iitkgp.ac.in

September 2019

References

A. Ramachandra Rao and P Bhimasankaram, Linear Algebra, Second edition, Hindustan book agency.

Outline

- Eigenvalues and eigenvectors,

Outline

- Eigenvalues and eigenvectors,
- Spectral representation of semi-simple matrices,

Outline

- Eigenvalues and eigenvectors,
- Spectral representation of semi-simple matrices,
- Spectral theorem symmetric matrices, Hermitian matrices and normal matrices,

Outline

- Eigenvalues and eigenvectors,
- Spectral representation of semi-simple matrices,
- Spectral theorem symmetric matrices, Hermitian matrices and normal matrices,
- Schur's lemma,

Outline

- Eigenvalues and eigenvectors,
- Spectral representation of semi-simple matrices,
- Spectral theorem symmetric matrices, Hermitian matrices and normal matrices,
- Schur's lemma,
- Singular value decomposition.

Eigenvalues and eigenvectors

Definition

A complex number λ is said to be an eigenvalue of an $n \times n$ complex matrix A, if there exists a nonzero vector $x \in \mathbb{C}^{n}$ such that $A x=\lambda x$.

Eigenvalues and eigenvectors

Definition

A complex number λ is said to be an eigenvalue of an $n \times n$ complex matrix A, if there exists a nonzero vector $x \in \mathbb{C}^{n}$ such that $A x=\lambda x$. The vector x is said to be an eigenvector associated with the eigenvalue λ.

Eigenvalues and eigenvectors

Definition

A complex number λ is said to be an eigenvalue of an $n \times n$ complex matrix A, if there exists a nonzero vector $x \in \mathbb{C}^{n}$ such that $A x=\lambda x$. The vector x is said to be an eigenvector associated with the eigenvalue λ.

Theorem

A complex number λ is an eigenvalue of a complex matrix A if and only if λ is a root of the characteristic polynomial $\operatorname{det}(A-\lambda I)=0$.

Eigenvalues and eigenvectors

Definition

A complex number λ is said to be an eigenvalue of an $n \times n$ complex matrix A, if there exists a nonzero vector $x \in \mathbb{C}^{n}$ such that $A x=\lambda x$. The vector x is said to be an eigenvector associated with the eigenvalue λ.

Theorem

A complex number λ is an eigenvalue of a complex matrix A if and only if λ is a root of the characteristic polynomial $\operatorname{det}(A-\lambda I)=0$.

Definition

Two $n \times n$ matrices A and B are said to be similar, if there exists an invertible matrix C such that $B=C^{-1} A C$.

Algebraic and geometric multiplicity

Definition

For an eigenvalue λ of A, the subspace of all eigenvectors of A corresponding to the eigenvalue λ together with the zero vector is called the eigenspace of A corresponding to the λ.

Algebraic and geometric multiplicity

Definition

For an eigenvalue λ of A, the subspace of all eigenvectors of A corresponding to the eigenvalue λ together with the zero vector is called the eigenspace of A corresponding to the λ.

Algebraic multiplicity of an eigenvalue λ of a matrix A is defined as the multiplicity of λ considered as a root of the characteristic polynomial. An eigenvalue λ is said to be simple, if its algebraic multiplicity is 1 .

Algebraic and geometric multiplicity

Definition
 For an eigenvalue λ of A, the subspace of all eigenvectors of A corresponding to the eigenvalue λ together with the zero vector is called the eigenspace of A corresponding to the λ.

Algebraic multiplicity of an eigenvalue λ of a matrix A is defined as the multiplicity of λ considered as a root of the characteristic polynomial. An eigenvalue λ is said to be simple, if its algebraic multiplicity is 1 .

Geometric multiplicity of an eigenvalue λ of a matrix A is defined as the dimension of the eigenspace associated with λ. An eigenvalue λ is said to be regular, if its algebraic multiplicity is equal the geometric multiplicity.

A.M. \geq G.M.

Theorem

For any eigenvalue λ of A, the algebraic multiplicity of λ with respect to A is greater than or equal to the geometric multiplicity of λ, as an eigenvalue of A.

A.M. \geq G.M.

Theorem

For any eigenvalue λ of A, the algebraic multiplicity of λ with respect to A is greater than or equal to the geometric multiplicity of λ, as an eigenvalue of A.

Proof

- Let $\left\{x_{1}, \ldots, x_{k}\right\}$ be a basis for the eigenspace of λ, and let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be an extension to a basis of \mathbb{C}^{n}.

A.M. \geq G.M.

Theorem

For any eigenvalue λ of A, the algebraic multiplicity of λ with respect to A is greater than or equal to the geometric multiplicity of λ, as an eigenvalue of A.

Proof

- Let $\left\{x_{1}, \ldots, x_{k}\right\}$ be a basis for the eigenspace of λ, and let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be an extension to a basis of \mathbb{C}^{n}.
- Set $P=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]$.

A.M. \geq G.M.

Theorem

For any eigenvalue λ of A, the algebraic multiplicity of λ with respect to A is greater than or equal to the geometric multiplicity of λ, as an eigenvalue of A.

Proof

- Let $\left\{x_{1}, \ldots, x_{k}\right\}$ be a basis for the eigenspace of λ, and let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be an extension to a basis of \mathbb{C}^{n}.
- Set $P=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]$.
- Then P is nonsingular, and

A.M. \geq G.M.

Theorem

For any eigenvalue λ of A, the algebraic multiplicity of λ with respect to A is greater than or equal to the geometric multiplicity of λ, as an eigenvalue of A.

Proof

- Let $\left\{x_{1}, \ldots, x_{k}\right\}$ be a basis for the eigenspace of λ, and let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be an extension to a basis of \mathbb{C}^{n}.
- Set $P=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]$.
- Then P is nonsingular, and

$$
\begin{aligned}
P^{-1} A P & =P^{-1}\left[\begin{array}{llllll}
A x_{1} & A x_{2} & \ldots & A x_{k} & \ldots & A x_{n}
\end{array}\right] \\
& =P^{-1}\left[\begin{array}{llllll}
\lambda x_{1} & \lambda x_{2} & \ldots & \lambda x_{k} & \ldots & A x_{n}
\end{array}\right] .
\end{aligned}
$$

Proof cont...

- Thus,

$$
P^{-1} A P=\left(\begin{array}{cc}
\lambda I_{k} & B \\
0 & C
\end{array}\right)
$$

for some matrices B and C.

Proof cont...

- Thus,

$$
P^{-1} A P=\left(\begin{array}{cc}
\lambda I_{k} & B \\
0 & C
\end{array}\right)
$$

for some matrices B and C.

- Hence, $\chi_{A}(\alpha)=\chi_{P^{-1} A P}(\alpha)=(\lambda-\alpha)^{k} \chi_{C}(\alpha)$.

Proof cont...

- Thus,

$$
P^{-1} A P=\left(\begin{array}{cc}
\lambda I_{k} & B \\
0 & C
\end{array}\right)
$$

for some matrices B and C.

- Hence, $\chi_{A}(\alpha)=\chi_{P^{-1} A P}(\alpha)=(\lambda-\alpha)^{k} \chi_{C}(\alpha)$.
- Thus, the algebraic multiplicity of λ is greater than or equal geometric multiplicity of λ.

Properties

- If λ is an eigenvalue of A with eigenvector x, then λ^{k} is an eigenvalue of A^{k} with eigenvector x.

Properties

- If λ is an eigenvalue of A with eigenvector x, then λ^{k} is an eigenvalue of A^{k} with eigenvector x.
- If $f(\alpha)$ is a polynomial and λ is an eigenvalue of A, then $f(\lambda)$ is an eigenvalue of $f(A)$.

Properties

- If λ is an eigenvalue of A with eigenvector x, then λ^{k} is an eigenvalue of A^{k} with eigenvector x.
- If $f(\alpha)$ is a polynomial and λ is an eigenvalue of A, then $f(\lambda)$ is an eigenvalue of $f(A)$.
- If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are the distinct eigenvalues of A, and $x_{1}, x_{2}, \ldots, x_{k}$ are the corresponding eigenvectors. Then the $x_{1}, x_{2}, \ldots, x_{k}$ are linearly independent.

Properties

- If λ is an eigenvalue of A with eigenvector x, then λ^{k} is an eigenvalue of A^{k} with eigenvector x.
- If $f(\alpha)$ is a polynomial and λ is an eigenvalue of A, then $f(\lambda)$ is an eigenvalue of $f(A)$.
- If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are the distinct eigenvalues of A, and $x_{1}, x_{2}, \ldots, x_{k}$ are the corresponding eigenvectors. Then the $x_{1}, x_{2}, \ldots, x_{k}$ are linearly independent.
- If λ is a nonzero eigenvalue of a square matrix $A B$ (A and B need not be square), then λ is an eigenvalue of the matrix $B A$ with the same algebraic and geometric multiplicities.

Properties

- If λ is an eigenvalue of A with eigenvector x, then λ^{k} is an eigenvalue of A^{k} with eigenvector x.
- If $f(\alpha)$ is a polynomial and λ is an eigenvalue of A, then $f(\lambda)$ is an eigenvalue of $f(A)$.
- If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are the distinct eigenvalues of A, and $x_{1}, x_{2}, \ldots, x_{k}$ are the corresponding eigenvectors. Then the $x_{1}, x_{2}, \ldots, x_{k}$ are linearly independent.
- If λ is a nonzero eigenvalue of a square matrix $A B(A$ and B need not be square), then λ is an eigenvalue of the matrix $B A$ with the same algebraic and geometric multiplicities. If $x_{1}, x_{2}, \ldots, x_{r}$ are linearly independent eigenvectors of $A B$ corresponding to to λ, then $B x_{1}, \ldots, B x_{r}$ are linearly independent eigenvectors of $B A$ corresponding to λ.

Weaker version of Schur's lemma

Theorem
Every matrix A is similar to an upper triangular matrix over \mathbb{C}.

Weaker version of Schur's lemma

Theorem
Every matrix A is similar to an upper triangular matrix over \mathbb{C}.

Proof

Weaker version of Schur's lemma

Theorem
Every matrix A is similar to an upper triangular matrix over \mathbb{C}.

Proof

- Proof by induction.

Weaker version of Schur's lemma

Theorem
Every matrix A is similar to an upper triangular matrix over \mathbb{C}.

Proof

- Proof by induction. If $n=1$, then we are done.

Weaker version of Schur's lemma

Theorem
Every matrix A is similar to an upper triangular matrix over \mathbb{C}.

Proof

- Proof by induction. If $n=1$, then we are done.
- Assume the result is true for $(n-1) \times(n-1)$ matrices.

Weaker version of Schur's lemma

Theorem
Every matrix A is similar to an upper triangular matrix over \mathbb{C}.

Proof

- Proof by induction. If $n=1$, then we are done.
- Assume the result is true for $(n-1) \times(n-1)$ matrices.
- Let A be an $n \times n$ matrix, and λ be an eigenvalue of A with eigenvector x.

Weaker version of Schur's lemma

Theorem

Every matrix A is similar to an upper triangular matrix over \mathbb{C}.

Proof

- Proof by induction. If $n=1$, then we are done.
- Assume the result is true for $(n-1) \times(n-1)$ matrices.
- Let A be an $n \times n$ matrix, and λ be an eigenvalue of A with eigenvector x.
- Let P be a nonsingular matrix with x as the first column.

Weaker version of Schur's lemma

Theorem

Every matrix A is similar to an upper triangular matrix over \mathbb{C}.

Proof

- Proof by induction. If $n=1$, then we are done.
- Assume the result is true for $(n-1) \times(n-1)$ matrices.
- Let A be an $n \times n$ matrix, and λ be an eigenvalue of A with eigenvector x.
- Let P be a nonsingular matrix with x as the first column.
- Then, $P^{-1} A P=\left(\begin{array}{cc}\lambda & y^{T} \\ 0 & C\end{array}\right)$, for some $1 \times n-1$ vector y^{T} and $(n-1) \times(n-1)$ matrix C.

Weaker version of Schur's lemma

Theorem

Every matrix A is similar to an upper triangular matrix over \mathbb{C}.

Proof

- Proof by induction. If $n=1$, then we are done.
- Assume the result is true for $(n-1) \times(n-1)$ matrices.
- Let A be an $n \times n$ matrix, and λ be an eigenvalue of A with eigenvector x.
- Let P be a nonsingular matrix with x as the first column.
- Then, $P^{-1} A P=\left(\begin{array}{cc}\lambda & y^{T} \\ 0 & C\end{array}\right)$, for some $1 \times n-1$ vector y^{T} and $(n-1) \times(n-1)$ matrix C.
- By induction, there exists a non-singular matrix W such that $T=W^{-1} C W$ is upper triangular.

Weaker version of Schur's lemma

Theorem

Every matrix A is similar to an upper triangular matrix over \mathbb{C}.

Proof

- Proof by induction. If $n=1$, then we are done.
- Assume the result is true for $(n-1) \times(n-1)$ matrices.
- Let A be an $n \times n$ matrix, and λ be an eigenvalue of A with eigenvector x.
- Let P be a nonsingular matrix with x as the first column.
- Then, $P^{-1} A P=\left(\begin{array}{cc}\lambda & y^{T} \\ 0 & C\end{array}\right)$, for some $1 \times n-1$ vector y^{T} and $(n-1) \times(n-1)$ matrix C.
- By induction, there exists a non-singular matrix W such that $T=W^{-1} C W$ is upper triangular.
- Set $Q=\left(\begin{array}{cc}1 & 0 \\ 0 & W\end{array}\right)$.

Proof cont...

- $(P Q)^{-1} A(P Q)=\left(\begin{array}{cc}1 & 0 \\ 0 & W^{-1}\end{array}\right)\left(\begin{array}{cc}\lambda & y^{T} \\ 0 & C\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & W\end{array}\right)=$ $\left(\begin{array}{cc}\lambda & y^{\top} W \\ 0 & T\end{array}\right)$,

Proof cont...

- $(P Q)^{-1} A(P Q)=\left(\begin{array}{cc}1 & 0 \\ 0 & W^{-1}\end{array}\right)\left(\begin{array}{cc}\lambda & y^{\top} \\ 0 & C\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & W\end{array}\right)=$ $\left(\begin{array}{cc}\lambda & y^{\top} W \\ 0 & T\end{array}\right)$, which is upper triangular .

Corollary

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be the eigenvalues of the matrix A and let $f(\alpha)$ be a polynomial. Then $f\left(\lambda_{1}\right), f\left(\lambda_{2}\right), \ldots, f\left(\lambda_{k}\right)$ are the eigenvalues of $f(A)$.

Corollary

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be the eigenvalues of the matrix A and let $f(\alpha)$ be a polynomial. Then $f\left(\lambda_{1}\right), f\left(\lambda_{2}\right), \ldots, f\left(\lambda_{k}\right)$ are the eigenvalues of $f(A)$.

Proof

Corollary

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be the eigenvalues of the matrix A and let $f(\alpha)$ be a polynomial. Then $f\left(\lambda_{1}\right), f\left(\lambda_{2}\right), \ldots, f\left(\lambda_{k}\right)$ are the eigenvalues of $f(A)$.

Proof Exercise!

Cayely-Hamilton Theorem

Definition

A polynomial $f(\lambda)$ is said to annihilate A if $f(A)=0$.

Cayely-Hamilton Theorem

Definition
A polynomial $f(\lambda)$ is said to annihilate A if $f(A)=0$.

Theorem

For every matrix A, the characteristic polynomial of A annihilates A.

Proof.

- By weak Schur's lemma, $T=P A P^{-1}$ for some invertible matrix P and upper triangular matrix T.

Cayely-Hamilton Theorem

Definition
A polynomial $f(\lambda)$ is said to annihilate A if $f(A)=0$.

Theorem

For every matrix A, the characteristic polynomial of A annihilates A.

Proof.

- By weak Schur's lemma, $T=P A P^{-1}$ for some invertible matrix P and upper triangular matrix T.
- Let $W_{k}=\prod_{i=1}^{k}\left(T-t_{i i} I\right)$.

Cayely-Hamilton Theorem

Definition

A polynomial $f(\lambda)$ is said to annihilate A if $f(A)=0$.

Theorem

For every matrix A, the characteristic polynomial of A annihilates A.

Proof.

- By weak Schur's lemma, $T=P A P^{-1}$ for some invertible matrix P and upper triangular matrix T.
- Let $W_{k}=\prod_{i=1}^{k}\left(T-t_{i i} I\right)$.
- Then first k columns of W_{k} are zero.

Cayely-Hamilton Theorem

Definition

A polynomial $f(\lambda)$ is said to annihilate A if $f(A)=0$.

Theorem

For every matrix A, the characteristic polynomial of A annihilates A.

Proof.

- By weak Schur's lemma, $T=P A P^{-1}$ for some invertible matrix P and upper triangular matrix T.
- Let $W_{k}=\prod_{i=1}^{k}\left(T-t_{i i} I\right)$.
- Then first k columns of W_{k} are zero. induction.

Cayely-Hamilton Theorem

Definition

A polynomial $f(\lambda)$ is said to annihilate A if $f(A)=0$.

Theorem

For every matrix A, the characteristic polynomial of A annihilates A.

Proof.

- By weak Schur's lemma, $T=P A P^{-1}$ for some invertible matrix P and upper triangular matrix T.
- Let $W_{k}=\prod_{i=1}^{k}\left(T-t_{i i} I\right)$.
- Then first k columns of W_{k} are zero. induction.
- $k=1$ trivial.

Cayely-Hamilton Theorem

Definition

A polynomial $f(\lambda)$ is said to annihilate A if $f(A)=0$.

Theorem

For every matrix A, the characteristic polynomial of A annihilates A.

Proof.

- By weak Schur's lemma, $T=P A P^{-1}$ for some invertible matrix P and upper triangular matrix T.
- Let $W_{k}=\prod_{i=1}^{k}\left(T-t_{i i} I\right)$.
- Then first k columns of W_{k} are zero. induction.
- $k=1$ trivial.
- Assume the result is true for $k-1$.

Proof cont...

Proof.

Proof cont...

Proof.

- Let $B=W_{k-1}$ and $C=T-t_{k k} I$.

Proof cont...

Proof.

- Let $B=W_{k-1}$ and $C=T-t_{k k} I$.
- Then, for $I \leq k$, we have $\left(W_{k}\right)_{i l}=\sum_{j=1}^{n} b_{i j} c_{j l}=0$. (Reason: $b_{i j}=0$ if $j \leq k-1$ and $c_{j l}=0$ if $\left.j \geq k\right)$

Proof cont...

Proof.

- Let $B=W_{k-1}$ and $C=T-t_{k k} I$.
- Then, for $I \leq k$, we have $\left(W_{k}\right)_{i l}=\sum_{j=1}^{n} b_{i j} c_{j l}=0$. (Reason: $b_{i j}=0$ if $j \leq k-1$ and $c_{j l}=0$ if $\left.j \geq k\right)$
- Thus first k columns of W_{k} are zero, and hence $W_{n}=0$.

Proof cont...

Proof.

- Let $B=W_{k-1}$ and $C=T-t_{k k} I$.
- Then, for $I \leq k$, we have $\left(W_{k}\right)_{i l}=\sum_{j=1}^{n} b_{i j} c_{j l}=0$. (Reason: $b_{i j}=0$ if $j \leq k-1$ and $c_{j l}=0$ if $\left.j \geq k\right)$
- Thus first k columns of W_{k} are zero, and hence $W_{n}=0$.
- $0=f(T)=P^{-1} f(A) P$.

Minimal polynomial

Definition

The monic polynomial of the least degree which annihilates A is called the minimal polynomial of A.

Minimal polynomial

Definition

The monic polynomial of the least degree which annihilates A is called the minimal polynomial of A.

Theorem
The minimal polynomial of A divides every polynomial which annihilates A.

Proof.

Division algorithm.

Theorem

The minimal polynomial of A divides the characteristic polynomial of A.

Theorem

The minimal polynomial of A divides the characteristic polynomial of A.A complex number α is a root of the minimal polynomial if and only if α is a root of the characteristic polynomial.

Theorem

The minimal polynomial of A divides the characteristic polynomial of A.A complex number α is a root of the minimal polynomial if and only if α is a root of the characteristic polynomial.

Proof.

- Proof of "if" part is clear.

Theorem

The minimal polynomial of A divides the characteristic polynomial of A.A complex number α is a root of the minimal polynomial if and only if α is a root of the characteristic polynomial.

Proof.

- Proof of "if" part is clear. Proof of converse.

Theorem

The minimal polynomial of A divides the characteristic polynomial of A.A complex number α is a root of the minimal polynomial if and only if α is a root of the characteristic polynomial.

Proof.

- Proof of "if" part is clear. Proof of converse.
- Let $\mu(z)$ be the minimal polynomial of A.

Theorem

The minimal polynomial of A divides the characteristic polynomial of A.A complex number α is a root of the minimal polynomial if and only if α is a root of the characteristic polynomial.

Proof.

- Proof of "if" part is clear. Proof of converse.
- Let $\mu(z)$ be the minimal polynomial of A.
- If λ is a characteristic root of A, then $\mu(A) x=\mu(\lambda) x$, where x is the eigenvector corresponding to the eigenvalue λ of A.

Theorem

The minimal polynomial of A divides the characteristic polynomial of A.A complex number α is a root of the minimal polynomial if and only if α is a root of the characteristic polynomial.

Proof.

- Proof of "if" part is clear. Proof of converse.
- Let $\mu(z)$ be the minimal polynomial of A.
- If λ is a characteristic root of A, then $\mu(A) x=\mu(\lambda) x$, where x is the eigenvector corresponding to the eigenvalue λ of A.
- As $\mu(A)=0$, so $\mu(\lambda)=0$.

Semi-simple matrices

Definition

A matrix is said to be semi-simple or diagonalizable if it is similar to a diagonal matrix.

Semi-simple matrices

Definition

A matrix is said to be semi-simple or diagonalizable if it is similar to a diagonal matrix.

Remark

If A is semi-simple and is similar to the diagonal matrix diagonal entries are $d_{1}, d_{2}, \ldots, d_{n}$, then the eigenvalues of the matrix A are $d_{1}, d_{2}, \ldots, d_{n}$.

Semi-simple matrices

Definition

A matrix is said to be semi-simple or diagonalizable if it is similar to a diagonal matrix.

Remark

If A is semi-simple and is similar to the diagonal matrix diagonal entries are $d_{1}, d_{2}, \ldots, d_{n}$, then the eigenvalues of the matrix A are $d_{1}, d_{2}, \ldots, d_{n}$.

Observation

If $P^{-1} A P=D$ is a diagonal matrix, then $A P=D P$.

Semi-simple matrices

Definition

A matrix is said to be semi-simple or diagonalizable if it is similar to a diagonal matrix.

Remark

If A is semi-simple and is similar to the diagonal matrix diagonal entries are $d_{1}, d_{2}, \ldots, d_{n}$, then the eigenvalues of the matrix A are $d_{1}, d_{2}, \ldots, d_{n}$.

Observation

If $P^{-1} A P=D$ is a diagonal matrix, then $A P=D P$. We can see that, d_{i} is an eigenvalue of A with $i^{\text {th }}$ column of P as the corresponding eigenvector.

Semi-simple matrices

Definition

A matrix is said to be semi-simple or diagonalizable if it is similar to a diagonal matrix.

Remark

If A is semi-simple and is similar to the diagonal matrix diagonal entries are $d_{1}, d_{2}, \ldots, d_{n}$, then the eigenvalues of the matrix A are $d_{1}, d_{2}, \ldots, d_{n}$.

Observation

If $P^{-1} A P=D$ is a diagonal matrix, then $A P=D P$. We can see that, d_{i} is an eigenvalue of A with $i^{t h}$ column of P as the corresponding eigenvector. Conversely, if A has n linear independent eigenvectors, and P is the matrix formed with these vectors as eigenvectors, then $P^{-1} A P$ is diagonal.

Characterization of semisimple matrices

Theorem

The following statements about an $n \times n$ matrix A are equivalent:

Characterization of semisimple matrices

Theorem
The following statements about an $n \times n$ matrix A are equivalent:
(1) A is semi-simple,

Characterization of semisimple matrices

Theorem

The following statements about an $n \times n$ matrix A are equivalent:
(1) A is semi-simple,
(2) algebraic multiplicity of every eigenvalue is equal to the geometric multiplicity of it,

Characterization of semisimple matrices

Theorem

The following statements about an $n \times n$ matrix A are equivalent:
(1) A is semi-simple,
(2) algebraic multiplicity of every eigenvalue is equal to the geometric multiplicity of it,
(3) A has n linearly independent eigenvectors

Characterization of semisimple matrices

Theorem

The following statements about an $n \times n$ matrix A are equivalent:
(1) A is semi-simple,
(2) algebraic multiplicity of every eigenvalue is equal to the geometric multiplicity of it,
(3) A has n linearly independent eigenvectors
(9) the minimal polynomial of A is a product of distinct linear factors.

Characterization of semisimple matrices

Theorem

The following statements about an $n \times n$ matrix A are equivalent:
(1) A is semi-simple,
(2) algebraic multiplicity of every eigenvalue is equal to the geometric multiplicity of it,
(3) A has n linearly independent eigenvectors
(9) the minimal polynomial of A is a product of distinct linear factors.((section 8.5) for minimal polynomial)

Characterization of semisimple matrices

Theorem

The following statements about an $n \times n$ matrix A are equivalent:
(1) A is semi-simple,
(2) algebraic multiplicity of every eigenvalue is equal to the geometric multiplicity of it,
(3) A has n linearly independent eigenvectors
(9) the minimal polynomial of A is a product of distinct linear factors.((section 8.5) for minimal polynomial)

Proof

- (1) implies (2) is clear.

Characterization of semisimple matrices

Theorem

The following statements about an $n \times n$ matrix A are equivalent:
(1) A is semi-simple,
(2) algebraic multiplicity of every eigenvalue is equal to the geometric multiplicity of it,
(3) A has n linearly independent eigenvectors
(9) the minimal polynomial of A is a product of distinct linear factors.((section 8.5) for minimal polynomial)

Proof

- (1) implies (2) is clear.
- (2) implies (3) is clear.

Characterization of semisimple matrices

Theorem

The following statements about an $n \times n$ matrix A are equivalent:
(1) A is semi-simple,
(2) algebraic multiplicity of every eigenvalue is equal to the geometric multiplicity of it,
(3) A has n linearly independent eigenvectors
(9) the minimal polynomial of A is a product of distinct linear factors.((section 8.5) for minimal polynomial)

Proof

- (1) implies (2) is clear.
- (2) implies (3) is clear.
- (2) implies (1) follows from the observation.

Applications:

(1) If an $n \times n$ matrix A has n distinct eigenvalues, then it is diagonalizable.

Applications:

(1) If an $n \times n$ matrix A has n distinct eigenvalues, then it is diagonalizable.
(2) Any idempotent matrix is diagonalizable $\left(P^{2}=P\right)$.

Applications:

(1) If an $n \times n$ matrix A has n distinct eigenvalues, then it is diagonalizable.
(2) Any idempotent matrix is diagonalizable $\left(P^{2}=P\right)$.
(3) Any nonzero nilpotent matrix is not diagonalizable $\left(A^{k}=0\right.$, for some integer k).

Spectral representation for semi-simple matrices

Theorem

The following statements about an $n \times n$ matrix A are equivalent:
(1) A is semi-simple and has rank r,
(2) there exists a non-singular matrix P of order n, and a diagonal nonsingular matrix Δ of order r such that $A=P\left(\begin{array}{cc}\Delta & 0 \\ 0 & 0\end{array}\right) P^{-1}$,
(3) There exists nonzero scalars $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{r}$ and vectors u_{1}, \ldots, u_{r} and v_{1}, \ldots, v_{r} in \mathbb{C}^{n} such that $v_{i}{ }^{\top} u_{j}=\delta_{i j}$ for all i, j and

$$
A=\sum_{i=1}^{r} \gamma_{i} u_{i} v_{i}^{T}
$$

Proof

- (1) implies (2). Permutation of D.

Proof

- (1) implies (2). Permutation of D.
- (2) implies (1). Trivial.

Proof

- (1) implies (2). Permutation of D.
- (2) implies (1). Trivial.
- (2) implies (3). Set $\delta_{i}=i^{\text {th }}$ diagonal entry of $\Delta, u_{i}=i^{\text {th }}$ column of P, and $v_{i}^{\top}=i^{\text {th }}$ row of P^{-1}.

Proof

- (1) implies (2). Permutation of D.
- (2) implies (1). Trivial.
- (2) implies (3). Set $\delta_{i}=i^{\text {th }}$ diagonal entry of $\Delta, u_{i}=i^{\text {th }}$ column of P, and $v_{i}^{\top}=i^{\text {th }}$ row of P^{-1}.
- (3) implies (2).

Proof

- (1) implies (2). Permutation of D.
- (2) implies (1). Trivial.
- (2) implies (3). Set $\delta_{i}=i^{\text {th }}$ diagonal entry of $\Delta, u_{i}=i^{\text {th }}$ column of P, and $v_{i}^{T}=i^{\text {th }}$ row of P^{-1}.
- (3) implies (2). Exercise!

Symmetric and Hermitian matrices

Definition

An $n \times n$ matrix is said to be symmetric, if $A^{T}=A$.

Symmetric and Hermitian matrices

Definition

An $n \times n$ matrix is said to be symmetric, if $A^{T}=A$. An $n \times n$ matrix is said to be Hermitian, if $A^{*}=A$.

Symmetric and Hermitian matrices

Definition

An $n \times n$ matrix is said to be symmetric, if $A^{T}=A$. An $n \times n$ matrix is said to be Hermitian, if $A^{*}=A$.

Theorem
Eigenvalues of any Hermitian matrix are real numbers. (Eigenvalues of any real symmetric matrix are real numbers)

Symmetric and Hermitian matrices

Definition

An $n \times n$ matrix is said to be symmetric, if $A^{T}=A$. An $n \times n$ matrix is said to be Hermitian, if $A^{*}=A$.

Theorem
Eigenvalues of any Hermitian matrix are real numbers. (Eigenvalues of any real symmetric matrix are real numbers)

A real matrix A is said to be orthogonal if $A A^{T}=A^{T} A=I$, and a complex matrix A is said to be unitary if $A A^{*}=A^{*} A=I$.

Theorem (Spectral theorem for real symmetric matrices)
Any real symmetric matrix is orthogonally similar to a diagonal matrix.

Theorem (Spectral theorem for real symmetric matrices)
Any real symmetric matrix is orthogonally similar to a diagonal matrix.

- Proof by induction.

Theorem (Spectral theorem for real symmetric matrices)
Any real symmetric matrix is orthogonally similar to a diagonal matrix.

- Proof by induction.
- $n=1$, trivial case.

Theorem (Spectral theorem for real symmetric matrices)

Any real symmetric matrix is orthogonally similar to a diagonal matrix.

- Proof by induction.
- $n=1$, trivial case.
- Assume the result is true for matrices of order $n-1$, and A be a symmetric $n \times n$ matrix.

Theorem (Spectral theorem for real symmetric matrices)

Any real symmetric matrix is orthogonally similar to a diagonal matrix.

- Proof by induction.
- $n=1$, trivial case.
- Assume the result is true for matrices of order $n-1$, and A be a symmetric $n \times n$ matrix.
- Let λ be a real eigenvalue of A and x be a corresponding eigenvector with unit length.

Theorem (Spectral theorem for real symmetric matrices)

Any real symmetric matrix is orthogonally similar to a diagonal matrix.

- Proof by induction.
- $n=1$, trivial case.
- Assume the result is true for matrices of order $n-1$, and A be a symmetric $n \times n$ matrix.
- Let λ be a real eigenvalue of A and x be a corresponding eigenvector with unit length.
- Let P be an orthogonal matrix with x as the first column.

Theorem (Spectral theorem for real symmetric matrices)

Any real symmetric matrix is orthogonally similar to a diagonal matrix.

- Proof by induction.
- $n=1$, trivial case.
- Assume the result is true for matrices of order $n-1$, and A be a symmetric $n \times n$ matrix.
- Let λ be a real eigenvalue of A and x be a corresponding eigenvector with unit length.
- Let P be an orthogonal matrix with x as the first column.
- Then $P^{-1} A P=\left(\begin{array}{cc}\lambda & y^{T} \\ 0 & C\end{array}\right)$, for some vector y^{T} and some $(n-1) \times(n-1)$ matrix C.

Proof continued...

- Since $P^{-1}=P^{T}$, we have $y^{T}=0$ and C is symmetric.

Proof continued...

- Since $P^{-1}=P^{T}$, we have $y^{T}=0$ and C is symmetric.
- By induction, we have $C=W^{-1} D W$, where D is a diagonal matrix and W is an orthogonal matrix.

Proof continued...

- Since $P^{-1}=P^{T}$, we have $y^{T}=0$ and C is symmetric.
- By induction, we have $C=W^{-1} D W$, where D is a diagonal matrix and W is an orthogonal matrix.
- Set $Q=\operatorname{diag}(1, W)$, then Q and $P Q$ are diagonal matrices.

Proof continued...

- Since $P^{-1}=P^{T}$, we have $y^{T}=0$ and C is symmetric.
- By induction, we have $C=W^{-1} D W$, where D is a diagonal matrix and W is an orthogonal matrix.
- Set $Q=\operatorname{diag}(1, W)$, then Q and $P Q$ are diagonal matrices.
- $(P Q)^{-1} A(P Q)=\left(\begin{array}{cc}1 & 0 \\ 0 & W^{-1}\end{array}\right)\left(\begin{array}{cc}\lambda & 0 \\ 0 & C\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & W\end{array}\right)=\left(\begin{array}{cc}\lambda & 0 \\ 0 & D\end{array}\right)$

Spectral theorem for Hermitian matrices and Schur's lemma

Theorem
Any Hermitian matrix is unitarily similar to a real diagonal matrix.

Spectral theorem for Hermitian matrices and Schur's lemma

Theorem
Any Hermitian matrix is unitarily similar to a real diagonal matrix.

Proof.

Similar to spectral theorem real symmetric matrices.

Spectral decomposition

Theorem

Let A be an $n \times n$ Hermitian matrix with rank r. Then A can be represented in each of the following equivalent forms:
(1) There exists a unitary matrix P and a real diagonal nonsingular matrix Δ of rank r such that $A=P\left(\begin{array}{cc}\Delta & 0 \\ 0 & 0\end{array}\right) P^{*}$.

Spectral decomposition

Theorem

Let A be an $n \times n$ Hermitian matrix with rank r. Then A can be represented in each of the following equivalent forms:
(1) There exists a unitary matrix P and a real diagonal nonsingular matrix Δ of rank r such that $A=P\left(\begin{array}{cc}\Delta & 0 \\ 0 & 0\end{array}\right) P^{*}$.
(2) There exists non-zero real numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ and orthogonal vectors u_{1}, \ldots, u_{r} such that $A=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{*}$.

Spectral decomposition

Theorem

Let A be an $n \times n$ Hermitian matrix with rank r. Then A can be represented in each of the following equivalent forms:
(1) There exists a unitary matrix P and a real diagonal nonsingular matrix Δ of rank r such that $A=P\left(\begin{array}{cc}\Delta & 0 \\ 0 & 0\end{array}\right) P^{*}$.
(2) There exists non-zero real numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ and orthogonal vectors u_{1}, \ldots, u_{r} such that $A=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{*}$.
(3) There exists matrices R and Δ of orders $n \times r$ and $r \times r$, respectively, such that Δ is real, diagonal and non-singular, $R^{*} R=I$ and $A=R \Delta R^{*}$.

Theorem (Schur, Jacobi)
Every complex matrix A is unitarily similar to an upper triangular matrix.

Theorem (Schur, Jacobi)
Every complex matrix A is unitarily similar to an upper triangular matrix.
Similar to the proof of invertible similarity.

Theorem (Schur, Jacobi)

Every complex matrix A is unitarily similar to an upper triangular matrix.
Similar to the proof of invertible similarity.

Remark

(1) True or False: Every real matrix is orthogonally similar to an upper triangular matrix.

Theorem (Schur, Jacobi)

Every complex matrix A is unitarily similar to an upper triangular matrix.
Similar to the proof of invertible similarity.

Remark

(1) True or False: Every real matrix is orthogonally similar to an upper triangular matrix. Answer: False

Theorem (Schur, Jacobi)

Every complex matrix A is unitarily similar to an upper triangular matrix.
Similar to the proof of invertible similarity.

Remark

(1) True or False: Every real matrix is orthogonally similar to an upper triangular matrix. Answer: False
(2) Every real matrix A with real eigenvalues is orthogonally similar to an upper triangular matrix.

Normal matrices

Suppose an $n \times n$ complex matrix A is unitarily similar to a diagonal matrix D i.e., $A=U^{*} D U$, where U is an unitary matrix. Then $A A^{*}=A^{*} A$.

Normal matrices

Suppose an $n \times n$ complex matrix A is unitarily similar to a diagonal matrix D i.e., $A=U^{*} D U$, where U is an unitary matrix. Then $A A^{*}=A^{*} A$.

Definition

An $n \times n$ matrix is said to be normal, if $A A^{*}=A^{*} A$.

Normal matrices

Suppose an $n \times n$ complex matrix A is unitarily similar to a diagonal matrix D i.e., $A=U^{*} D U$, where U is an unitary matrix. Then $A A^{*}=A^{*} A$.

Definition

An $n \times n$ matrix is said to be normal, if $A A^{*}=A^{*} A$.

Theorem

An upper triangular matrix is normal if and only if it is diagonal.

Normal matrices

Suppose an $n \times n$ complex matrix A is unitarily similar to a diagonal matrix D i.e., $A=U^{*} D U$, where U is an unitary matrix. Then $A A^{*}=A^{*} A$.

Definition

An $n \times n$ matrix is said to be normal, if $A A^{*}=A^{*} A$.

Theorem

An upper triangular matrix is normal if and only if it is diagonal.

Proof:

- Consider the $k^{\text {th }}$ diagonal entry of $T T^{*}$ and $T^{*} T$,

$$
\sum_{i=1}^{k}\left|t_{i k}^{2}\right|=\sum_{j=k}^{n}\left|t_{k j}^{2}\right|
$$

Normal matrices

Suppose an $n \times n$ complex matrix A is unitarily similar to a diagonal matrix D i.e., $A=U^{*} D U$, where U is an unitary matrix. Then $A A^{*}=A^{*} A$.

Definition

An $n \times n$ matrix is said to be normal, if $A A^{*}=A^{*} A$.

Theorem

An upper triangular matrix is normal if and only if it is diagonal.

Proof:

- Consider the $k^{t h}$ diagonal entry of $T T^{*}$ and $T^{*} T$,

$$
\sum_{i=1}^{k}\left|t_{i k}^{2}\right|=\sum_{j=k}^{n}\left|t_{k j}^{2}\right|
$$

- By equating first diagonal entries of $T T^{*}$ and $T^{*} T$, we can observe the first row of T is zero expect the diagonal entry.

Normal matrices

Suppose an $n \times n$ complex matrix A is unitarily similar to a diagonal matrix D i.e., $A=U^{*} D U$, where U is an unitary matrix. Then $A A^{*}=A^{*} A$.

Definition

An $n \times n$ matrix is said to be normal, if $A A^{*}=A^{*} A$.

Theorem

An upper triangular matrix is normal if and only if it is diagonal.

Proof:

- Consider the $k^{t h}$ diagonal entry of $T T^{*}$ and $T^{*} T$,

$$
\sum_{i=1}^{k}\left|t_{i k}^{2}\right|=\sum_{j=k}^{n}\left|t_{k j}^{2}\right|
$$

- By equating first diagonal entries of $T T^{*}$ and $T^{*} T$, we can observe the first row of T is zero expect the diagonal entry.
- By a similar argument, we can conclude T must be diagonal.

Spectral theorem for Normal matrices

Theorem
A matrix is unitarily similar to a diagonal matrix if and only if it is normal.

Spectral theorem for Normal matrices

Theorem
A matrix is unitarily similar to a diagonal matrix if and only if it is normal.

Proof:

- "If" part is clear.

Spectral theorem for Normal matrices

Theorem
A matrix is unitarily similar to a diagonal matrix if and only if it is normal.

Proof:

- "If" part is clear.
- Assume A is normal.

Spectral theorem for Normal matrices

Theorem
A matrix is unitarily similar to a diagonal matrix if and only if it is normal.

Proof:

- "If" part is clear.
- Assume A is normal.
- By Schur's lemma, A is unitarily similar to a upper triangular matrix T.

Spectral theorem for Normal matrices

Theorem
A matrix is unitarily similar to a diagonal matrix if and only if it is normal.

Proof:

- "If" part is clear.
- Assume A is normal.
- By Schur's lemma, A is unitarily similar to a upper triangular matrix T.
- Now, $T=U^{*} A U$, and T is normal.

Spectral theorem for Normal matrices

Theorem
A matrix is unitarily similar to a diagonal matrix if and only if it is normal.

Proof:

- "If" part is clear.
- Assume A is normal.
- By Schur's lemma, A is unitarily similar to a upper triangular matrix T.
- Now, $T=U^{*} A U$, and T is normal.
- So, T is diagonal, by previous theorem.

Positive Semidefinite Matrices(PSD)

Let \mathcal{S}^{n} denote the subspace of symmetric matrices in $\mathbb{R}^{n \times n} . A \in \mathcal{S}^{n}$ is positive semidefinite(PSD) if $x^{T} A x \geq 0$ for every $x \in \mathbb{R}^{n}$.

Theorem
TFAE for $A \in \mathbb{R}^{n \times n}$:

Theorem
TFAE for $A \in \mathbb{R}^{n \times n}$:
(1) A is $P S D$

Theorem
TFAE for $A \in \mathbb{R}^{n \times n}$:
(1) A is $P S D$
(2) There exists $C \in \mathcal{S}^{n}$ such that $A=C^{2}$,

Theorem

TFAE for $A \in \mathbb{R}^{n \times n}$:
(1) A is $P S D$
(2) There exists $C \in \mathcal{S}^{n}$ such that $A=C^{2}$,
(3) There exists an $n \times n$ lower triangular matrix L such that $A=L L^{T}$,

Theorem

TFAE for $A \in \mathbb{R}^{n \times n}$:
(1) A is $P S D$
(2) There exists $C \in \mathcal{S}^{n}$ such that $A=C^{2}$,
(3) There exists an $n \times n$ lower triangular matrix L such that $A=L L^{T}$,
(9) There exists an $n \times k$ real matrix B such that $A=B B^{T}$,

Theorem

TFAE for $A \in \mathbb{R}^{n \times n}$:
(1) A is $P S D$
(2) There exists $C \in \mathcal{S}^{n}$ such that $A=C^{2}$,
(3) There exists an $n \times n$ lower triangular matrix L such that $A=L L^{T}$,
(9) There exists an $n \times k$ real matrix B such that $A=B B^{T}$,

Proof

- (1) implies (2), Spectral theorem.

Theorem

TFAE for $A \in \mathbb{R}^{n \times n}$:
(1) A is $P S D$
(2) There exists $C \in \mathcal{S}^{n}$ such that $A=C^{2}$,
(3) There exists an $n \times n$ lower triangular matrix L such that $A=L L^{T}$,
(9) There exists an $n \times k$ real matrix B such that $A=B B^{T}$,

Proof

- (1) implies (2), Spectral theorem.
- (2) implies (3), QR-decomposition

Theorem

TFAE for $A \in \mathbb{R}^{n \times n}$:
(1) A is $P S D$
(2) There exists $C \in \mathcal{S}^{n}$ such that $A=C^{2}$,
(3) There exists an $n \times n$ lower triangular matrix L such that $A=L L^{T}$,
(9) There exists an $n \times k$ real matrix B such that $A=B B^{T}$,

Proof

- (1) implies (2), Spectral theorem.
- (2) implies (3), QR-decomposition
- (3) implies (4),

Theorem

TFAE for $A \in \mathbb{R}^{n \times n}$:
(1) A is $P S D$
(2) There exists $C \in \mathcal{S}^{n}$ such that $A=C^{2}$,
(3) There exists an $n \times n$ lower triangular matrix L such that $A=L L^{T}$,
(9) There exists an $n \times k$ real matrix B such that $A=B B^{T}$,

Proof

- (1) implies (2), Spectral theorem.
- (2) implies (3), QR-decomposition
- (3) implies (4), proof? Exercise!

Theorem

TFAE for $A \in \mathbb{R}^{n \times n}$:
(1) A is $P S D$
(2) There exists $C \in \mathcal{S}^{n}$ such that $A=C^{2}$,
(3) There exists an $n \times n$ lower triangular matrix L such that $A=L L^{T}$,
(9) There exists an $n \times k$ real matrix B such that $A=B B^{T}$,

Proof

- (1) implies (2), Spectral theorem.
- (2) implies (3), QR-decomposition
- (3) implies (4), proof? Exercise!
- (4) implies (1).

Singular value decomposition(SVD)

Definition

A singular value decomposition of an $m \times n$ matrix A is a representation of A in the following form: $A=U\left(\begin{array}{cc}\Delta & 0 \\ 0 & 0\end{array}\right) V^{*}$, where U and V are unitary matrices and Δ is a diagonal matrix with positive diagonal entries.

Singular value decomposition(SVD)

Definition

A singular value decomposition of an $m \times n$ matrix A is a representation of A in the following form: $A=U\left(\begin{array}{cc}\Delta & 0 \\ 0 & 0\end{array}\right) V^{*}$, where U and V are unitary matrices and Δ is a diagonal matrix with positive diagonal entries.

Theorem
Every matrix has a singular value decomposition.

Singular value decomposition(SVD)

Definition

A singular value decomposition of an $m \times n$ matrix A is a representation of A in the following form: $A=U\left(\begin{array}{cc}\Delta & 0 \\ 0 & 0\end{array}\right) V^{*}$, where U and V are unitary matrices and Δ is a diagonal matrix with positive diagonal entries.

Theorem
Every matrix has a singular value decomposition.

Proof:

- Let A be an $m \times n$ matrix with rank r.

Singular value decomposition(SVD)

Definition

A singular value decomposition of an $m \times n$ matrix A is a representation of A in the following form: $A=U\left(\begin{array}{cc}\Delta & 0 \\ 0 & 0\end{array}\right) V^{*}$, where U and V are unitary matrices and Δ is a diagonal matrix with positive diagonal entries.

Theorem
Every matrix has a singular value decomposition.

Proof:

- Let A be an $m \times n$ matrix with rank r.
- Then the matrix $A A^{*}$ is Hermitian with rank r.

Singular value decomposition(SVD)

Definition

A singular value decomposition of an $m \times n$ matrix A is a representation of A in the following form: $A=U\left(\begin{array}{cc}\Delta & 0 \\ 0 & 0\end{array}\right) V^{*}$, where U and V are unitary matrices and Δ is a diagonal matrix with positive diagonal entries.

Theorem
Every matrix has a singular value decomposition.

Proof:

- Let A be an $m \times n$ matrix with rank r.
- Then the matrix $A A^{*}$ is Hermitian with rank r.
- By Spectral theorem, we have $A A^{*}=R \wedge R^{*}$, where $\Lambda=\operatorname{diag}\left(d_{1}, \ldots, d_{r}\right)$ and $R^{*} R=I$.

Singular value decomposition(SVD)

Definition

A singular value decomposition of an $m \times n$ matrix A is a representation of A in the following form: $A=U\left(\begin{array}{cc}\Delta & 0 \\ 0 & 0\end{array}\right) V^{*}$, where U and V are unitary matrices and Δ is a diagonal matrix with positive diagonal entries.

Theorem
Every matrix has a singular value decomposition.

Proof:

- Let A be an $m \times n$ matrix with rank r.
- Then the matrix $A A^{*}$ is Hermitian with rank r.
- By Spectral theorem, we have $A A^{*}=R \wedge R^{*}$, where $\Lambda=\operatorname{diag}\left(d_{1}, \ldots, d_{r}\right)$ and $R^{*} R=I$.
- Take $B=A^{*} R$, then $B^{*} B=\Lambda$.

Singular value decomposition(SVD)

Definition

A singular value decomposition of an $m \times n$ matrix A is a representation of A in the following form: $A=U\left(\begin{array}{cc}\Delta & 0 \\ 0 & 0\end{array}\right) V^{*}$, where U and V are unitary matrices and Δ is a diagonal matrix with positive diagonal entries.

Theorem
Every matrix has a singular value decomposition.

Proof:

- Let A be an $m \times n$ matrix with rank r.
- Then the matrix $A A^{*}$ is Hermitian with rank r.
- By Spectral theorem, we have $A A^{*}=R \wedge R^{*}$, where $\Lambda=\operatorname{diag}\left(d_{1}, \ldots, d_{r}\right)$ and $R^{*} R=I$.
- Take $B=A^{*} R$, then $B^{*} B=\Lambda$.
- Define $S=B G$ where $G=\operatorname{diag}\left(\frac{1}{\sqrt{d_{1}}}, \ldots, \frac{1}{\sqrt{d_{r}}}\right)$.

Singular value decomposition(SVD)

Definition

A singular value decomposition of an $m \times n$ matrix A is a representation of A in the following form: $A=U\left(\begin{array}{cc}\Delta & 0 \\ 0 & 0\end{array}\right) V^{*}$, where U and V are unitary matrices and Δ is a diagonal matrix with positive diagonal entries.

Theorem

Every matrix has a singular value decomposition.

Proof:

- Let A be an $m \times n$ matrix with rank r.
- Then the matrix $A A^{*}$ is Hermitian with rank r.
- By Spectral theorem, we have $A A^{*}=R \wedge R^{*}$, where $\Lambda=\operatorname{diag}\left(d_{1}, \ldots, d_{r}\right)$ and $R^{*} R=I$.
- Take $B=A^{*} R$, then $B^{*} B=\Lambda$.
- Define $S=B G$ where $G=\operatorname{diag}\left(\frac{1}{\sqrt{d_{1}}}, \ldots, \frac{1}{\sqrt{d_{r}}}\right)$.
- Verify $R G^{-1} S^{*}$ is a singular value decomposition for A.

