Date:	December 9, 2024	Tutorial 1	Week 2			
No	tation used in the paper:					
1. \mathbb{R}_{u} the space of real numbers with the usual topology						
2. IR	R_i the space of real numbers w	ith the indiscrete topology				

- 3. \mathbb{R}_d the space of real numbers with the discrete topology
- 4. \mathbb{R}_{cc} the space of real numbers with the cocountable topology
- 5. \mathbb{R}_{cf} the space of real numbers with the cofinite topology
- 6. \mathbb{R}_{l} the space of real numbers with the lower limit topology
- 7. \mathbb{R}_{K} the space of real numbers with K-topology
 - 1. Let X be an uncountable set. Let

 $\mathcal{T}_{c} = \{\emptyset\} \cup \{U \subset X \mid X - U \text{ is countable}\}.$

- (a) Show that \mathcal{T} is a topology on X. This topology is called the *co-countable topology*.
- (b) Show that the finite intersection of non-empty open sets is non-empty. Is the result true in usual topology on \mathbb{R} ?
- 2. Let X be a topological space. Let A be a subset of X. Suppose that for each $x \in A$ there is an open set U containing x such that $U \subset A$. Show that A is open in X.
- 3. Let X be a set. Is the collection

 $\mathcal{T}_{\infty} = \{ U \,|\, X - U \text{ is infinite or empty or all of } X \}$

a topology on X?

- 4. Show that if $\{\mathcal{T}_{\alpha}\}$ is the family of topologies on X, show that $\cap \mathcal{T}_{\alpha}$ is a topology on X. Is $\cup \mathcal{T}_{\alpha}$ a topology on X?
- 5. Let $\{\mathcal{T}_{\alpha}\}$ be a family of topologies on X. Show that there is a unique smallest topology on X containing all the collections \mathcal{T}_{α} , and a unique largest topology contained in all \mathcal{T}_{α} .
- 6. If $X = \{a, b, c\}$, let

$$\mathcal{T}_1 = \{\emptyset, X, \{a\}, \{a, b\}\} \text{ and } \mathcal{T}_2 = \{\emptyset, X, \{a\}, \{b, c\}\}.$$

Find the smallest topology containing T_1 and T_2 , and the largest topology contained in T_1 and T_2 .

7. Let \mathbb{N} be the set of natural number. Let $A_n = \{m \in \mathbb{N} \mid m \ge n\}$. Let $\mathcal{T}_1 = \{\emptyset\} \cup \{A_n\}_{n \in \mathbb{N}}$. Let \mathcal{T}_f be the co-finite topology on \mathbb{N} . Show that \mathcal{T}_1 is a topology on \mathbb{N} . Find the smallest topology containing \mathcal{T}_1 and \mathcal{T}_f , and the largest topology contained in \mathcal{T}_1 and \mathcal{T}_f . 8. Let \mathbb{Z} be the set of integers. Let $a, b \in \mathbb{Z}$, $b \neq 0$. Denote

$$N_{a,b} = \{a + bn \mid n \in \mathbb{Z}\}.$$

A non-empty subset U of \mathbb{Z} we define to be open if it is a union of sets of the form $N_{a,b}$ or U is the empty set. Let \mathcal{T} denotes this collection on subsets of \mathbb{Z} .

- (a) Show that \mathcal{T} is a topology on \mathbb{Z} .
- (b) Show that $N_{a,b}$ are both open and closed in \mathcal{T} .
- (c) Is $\{1, -1\}$ open in \mathcal{T} ?
- (d) Using this show that there are infinitely many prime.
- 9. Let $A_1 = \{\frac{1}{n} | n \in \mathbb{N}_{>0}\}$, $A_2 = \mathbb{Q}$, $A_3 = [0, 1)$ and $A_5 = (0, 1]$ subsets of \mathbb{R} . For any set A we denote the interior of A by A^o and the closure of A by \overline{A} . Complete the following table:

Topology on R	A ^o ₁	Ā1	A ^o ₂	Ā2	A ^o ₃	Ā3	A ₄ ^o	$ar{A_4}$
$\mathbb{R}_{\mathfrak{u}}$								
\mathbb{R}_{i}								
\mathbb{R}_d								
\mathbb{R}_{cc}								
\mathbb{R}_{cf}								
\mathbb{R}_{l}								
\mathbb{R}_{K}								

- 10. Let $(\frac{1}{n})_{n\geq 1}$, $\{(-1)^n\}_{n\geq 1}$ be sequences in \mathbb{R} . To what point (s) does these sequences converge to (if there is any) with respect to:
 - (a) the indiscrete topology
 - (b) the discrete topology

- (e) the lower limit topology
- (c) the cocountable topology
- (f) the K-topology
- **Instructor** : Archana Subhash Morye

(d) the cofinite topology

Tutors : Arijit Mukherjee and Gobinda Sau

Date: December 10, 2024	Tutorial 2	Week 2
-------------------------	------------	--------

- 1. Let X be an infinite set and τ_{cc} , τ_{cf} be the *co-countable* and the *co-finite* topology on X respectively. Prove that $\tau_{cf} \subset \tau_{cc}$. Moreover, show that the identity map from (X, τ_{cc}) to (X, τ_{cf}) is continuous.
- 2. Consider \mathbb{R}^2 with discrete topology. What is the closure of open unit disc in this topology?
- 3. Let τ_1 and τ_2 be two topologies on a set X such that $\tau_1 \subset \tau_2$. Prove that (a) $\overline{A}^{\tau_2} \subset \overline{A}^{\tau_1}$ (b)int $A^{\tau_1} \subset intA^{\tau_2}$ for any subset A of X. Here \overline{A}^{τ_1} , \overline{A}^{τ_2} denote the closure of A with respect to τ_1 and τ_2 respectively.
- 4. Show that the identity map Id : $(X, \tau_d) \rightarrow (X, \tau)$ is continuous, where τ_d denotes the discrete topology.
- 5. Let X be a set and let τ_1 be a topology on X which is different from the discrete topology on X. Then the identity map Id : $(X, \tau_1) \rightarrow (X, \tau_d)$ is not continuous.
- 6. Define a relation on the set of all topological spaces: for two topological spaces X and Y, X ~ Y if there exists a homeomorphism from X to Y. Show that ~ is an equivalence relation.
- 7. Prove that the identity map Id : $\mathbb{R}_{\ell} \to \mathbb{R}$ is continuous, but not a homeomorphism. Here \mathbb{R} denotes the the usual topology on the real line.
- 8. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Prove that f as a function from \mathbb{R}_{ℓ} to \mathbb{R} is continuous.
- 9. Let us define a function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} x+2 & \text{if } x < -2, \\ -x-2 & \text{if } -2 \le x < 0, \\ x+2 & \text{if } x \ge 0. \end{cases}$$

- (a) Prove that the function $f : \mathbb{R} \to \mathbb{R}$ is not continuous.
- (b) Is the above $f : \mathbb{R}_{\ell} \to \mathbb{R}$ continuous?
- (c) Discuss continuity of $f : \mathbb{R}_{\ell} \to \mathbb{R}_{\ell}$ continuous?
- 10. Prove that the exponential map exp : $[0, 2\pi) \rightarrow \mathbb{S}^1$ is not open.
- 11. Show that [0, 1) is open in $([0, 2], \tau)$ where τ is the usual topology on [0, 2].

- 12. Show that the order topology on Q is same as subspace topology on Q.
- 13. Are [0,1) and (0,1] homeomorphic? Find an explicit homeomorphism from [0,1) to (0,1].
- 14. (a) Show that [a, b] and [c, d] are homeomorphic.
 - (b) Find an explicit homeomorphism from [a, b) to (c, d].
- 15. (a) Prove that GL_n(ℝ) is an open subset of M_n(ℝ).
 (b) Prove that SL_n(ℝ) is a closed subset of M_n(ℝ).
- 16. Let $f : X \to Y$ be map between topological spaces. Show that f is continuous if and only if $f^{-1}(F)$ is closed in X whenever F is closed in $Y \Leftrightarrow f(\overline{A}) \subset \overline{f(A)}$, for every subset A of X.
- 17. Find all continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) = f(x^2)$ for all $x \in \mathbb{R}$.
- 18. A subset A of a topological space X is said to be nowhere dense if \overline{A} has empty interior.
 - (a) Show that A is nowhere dense ⇔ every non-empty open set has a non-empty open subset disjoint from A.
 - (b) Show that a closed set is nowhere dense ⇔ its complement is everywhere dense. Is this true for an arbitrary set?
 - (c) how that boundary of a closed set is nowhere dense. Is this true for an arbitrary set?
- 19. Prove that $GL_n(\mathbb{R})$ is dense in $M_n(\mathbb{R})$.
- 20. Show that set of all traceless 2×2 matrices is nowhere dense.

Instructor:Archana Subhash MoryeTutors:Arijit Mukherjee and Gobinda Sau

Date: December 13, 2024

Tutorial 3

1. Consider \mathbb{R}^{ω} , the countably infinite product of \mathbb{R} with itself. Recall that

$$\mathbb{R}^{\omega} = \prod_{n \in \mathbb{Z}_+} X_n$$

where $X_n = \mathbb{R}$ for each n. Let us define a function $f : \mathbb{R} \to \mathbb{R}^{\omega}$ by the equation

$$f(t) = (t, t, t, \ldots)$$

the nth coordinate function of f is the function $f_n(t) = t$. Prove that the function f is continuous if \mathbb{R}^{ω} is given the product topology, but f is not continuous if \mathbb{R}^{ω} is given the box topology. Is it continuous if \mathbb{R}^{ω} is given the uniform topology?

2. Consider the product, uniform and box topologies on \mathbb{R}^{ω} . In which topologies are the following function form \mathbb{R} to \mathbb{R}^{ω} continuous?

$$g(t) = (t, 2t, 3t, ...),$$

 $h(t) = (t, \frac{t}{2}, \frac{t}{3}, ...).$

3. Consider the following sequence $\{w_n\}$ in \mathbb{R}^{ω} .

$$w_1 = (1, 1, 1, 1, ...)$$

$$w_2 = (0, 2, 2, 2, ...)$$

$$w_3 = (0, 0, 3, 3, ...)$$

:

Check the convergence of the sequence under product, uniform and box topology on \mathbb{R}^{ω} .

4. Let $\bar{\rho}$ be the uniform metric on \mathbb{R}^{ω} . Given $\mathbf{x} = (x_1, x_2, \ldots) \in \mathbb{R}^{\omega}$ and given $0 < \varepsilon < 1$, let

$$\mathbf{U}(\mathbf{x}, \mathbf{\varepsilon}) = (\mathbf{x}_1 - \mathbf{\varepsilon}, \mathbf{x}_1 + \mathbf{\varepsilon}) \times \cdots \times (\mathbf{x}_n - \mathbf{\varepsilon}, \mathbf{x}_n + \mathbf{\varepsilon}) \times \cdots$$

- (a) Show that $U(\mathbf{x}, \epsilon)$ is not equal to the ϵ -ball $B_{\tilde{\rho}}(\mathbf{x}, \epsilon)$.
- (b) Show that $U(x, \epsilon)$ is not even open in the uniform topology.
- (c) Show that

$$B_{\bar{\rho}}(\mathbf{x},\epsilon) = \bigcup_{\delta < \epsilon} U(\mathbf{x},\delta).$$

5. Let $f, g : [0, 1] \to X$ be two continuous maps into a topological space X. Assume that f(1) = g(0). Prove that the function $h : [0, 1] \to X$ defined by

$$h(t) = \begin{cases} f(2t) & \text{if } 0 \le t \le 1/2, \\ g(2t-1) & \text{if } 1/2 \le t \le 1, \end{cases}$$

is continuous. h is called *concatenation of two paths* f and g.

- 6. Let f, g : X $\rightarrow \mathbb{R}$ be two bounded continuous functions. Prove that max(f, g) is continuous.
- 7. Let X and Y be two topological spaces. Give a countable family $\{F_n \mid n \in \mathbb{N}\}$ of closed sets of X such that $f \mid_{F_n} : F_n \to Y$ is continuous for all n, but $f : \bigcup_{n \in \mathbb{N}} F_n \to Y$ is not continuous. Is it contradicting Pasting Lemma?
- 8. (a) Let A be a subspace of a topological space X. Then A is said to be a *retract* of X, if there exists a continuous map $r : X \to A$ such that $r|_A = Id$. The map r is called a *retraction*. Show that every retraction is a quotient map.
 - (b) Prove that the *radial projection* $r : \mathbb{R}^2 \setminus \{0\} \to \mathbb{S}^1$ defined by

$$\mathbf{r}(\mathbf{x}) = \mathbf{x} / \|\mathbf{x}\|$$

is a quotient map.

- (c) Prove that open maps and closed maps are quotient maps.
- 9. Give an example of a quotient map
 - (a) Which is open but not closed.
 - (b) Which is closed but not open.
 - (c) which is neither open nor closed.

10. Show that the map $\pi : \mathbb{R}^2 \to \mathbb{S}^1 \times \mathbb{S}^1$ defined by

$$\pi(\mathbf{x},\mathbf{y})=(e^{\mathbf{i}\mathbf{x}},e^{\mathbf{i}\mathbf{y}})$$

is a quotient map.

Instructor	:	Archana Subhash Morye
Tutors	:	Arijit Mukherjee and Gobinda Sau

Annual Foundation School - I Topology@ IIT Hyderabad

Date: December 16, 2024			Tutorial 1 Week 3
Notation used in the paper:1. τ be the usual topology3. τ_{cc} be the cocountable topology			be discrete topology be the cofinite topology
1. Discuss the compactness of the	belo	w se	ets
(a) $((0,1),\tau)$			(g) (\mathbb{R}, τ_{cc}) .
(b) (\mathbb{D}^n, τ)			(h) $[0,1], \tau_{cc}$).
(c) (Q, τ)			(i) $(X, \tau_{cc}), X$ is countable.
(d) $A = \{\frac{1}{n}, n \in \mathbb{N}\}.$ (e) $A = \{\frac{1}{n}, n \in \mathbb{N}\} \cup \{0\}.$			(j) Under what condition (X, τ_{cc}) is compact?
(f) (\mathbb{R}, τ_{cf}) .			(k) $([0,1],\tau_k)$

- 2. Prove or disprove the statement below.
 - (a) (X, τ_{di}) is compact iff X is finite.
 - (b) The finite union of compact sets is compact.
 - (c) The arbitrary union of compact sets is compact.
 - (d) The intersection of compact sets in Hausdroff space is compact.
 - (e) What happens if we remove the Hausdroff condition?
- 3. Let X, Y are topological spaces. If $X \times Y$ is compact. Then X and Y are also compact. What about the converse of the above statement?
- 4. Let $f : (\mathbb{R}, \tau_{cf}) \to (\mathbb{R}, \tau_{di})$, defined by $f(x) = x^2$. Then
 - (a) Is $f(\mathbb{R})$ compact
 - (b) What can you infer from the above statement?
- 5. Which of the following topological space is locally compact.
 - (a) \mathbb{R} with usual topology.
 - (b) Q with usual topology.
 - (c) X with discrete topology.
- 6. Let (X, τ) be a compact metric space, then prove that (X, τ) is separable. Also prove that it is second countable.
- 7. Give an example of topological space which is limit point compact but not compact.
- 8. Is the union of two locally compact spaces locally compact. If not, give a counterexample to show that.

- 9. Are polynomials functions, exponential functions, and sin functions proper functions?
- 10. The function $f : \mathbf{R}^2 \to \mathbf{R}$ given by f(x, y) = xy is not proper.

Instructor	:	Archana Subhash Morye
Tutors	:	Mohana Rahul and Sonali Priyadarsini

Date: December 16, 2024					Tutorial 2 Week 3
1.	τ	t ion used in the paper: be the usual topology			be discrete topology
3.	τ_{cc}	be the cocountable topology	4.	τ_{cf}	be the cofinite topology
5.	τ_k	be the k-topology.	6.	\mathbb{R}_{l}	be the topological space \mathbb{R} with lower limit topology.

- 1. Let f, g : X \rightarrow Y be continuous functions between two topological spaces. Consider the set F := { $x \in X | f(x) = g(x)$ }. If Y is a Hausdorff space, then F must be closed in X.
- 2. If $\Pi_{\alpha \in \Lambda} X_{\alpha}$ (non-empty) is Hausdorff, then every X_{α} is Hausdorff for every $\alpha \in \Lambda$.
- 3. Limit of a sequence in a Hausdorff space is unique. Is the converse true?
- 4. Consider a compact topological group G acting on X, a topological space. Let X/G denote the set of orbits of the given actions
 - (a) If X is Hausdorff, then prove that X/G is Hausdorff.
 - (b) Prove that the same is true for regular and normal spaces.
- 5. Let X be a locally compact Hausdorff space and $A \subseteq X$ be a subspace. Prove that if $A \subseteq X$ is closed or open, then A is locally compact.
- 6. Consider a proper surjective map $f : X \to Y$ function. If X is Hausdorff, then show that Y is also Hausdorff.
- 7. Prove \mathbb{R}_l is normal.
- 8. Prove that the metric spaces are normal.
- 9. If X is a Hausdroff space and A is a compact subset of X. Then A is closed.
- 10. Consider $f : X \to Y$ is a continuous function. If X is compact and Y is Hausdorff, then f is proper.
- 11. Two compact subsets of a Hausdorff space can be separated by open sets.
- 12. A topological space is said to be **perfectly normal** if for any closed subset $A \subseteq X$, there exists a continuous function $f : X \to \mathbf{R}$ such that $f^{-1}(0) = A$. Then prove that
 - (a) Every metric space is perfectly normal
 - (b) X perfectly normal \implies X is normal.
- 13. Give a proof of the Urysohn lemma for metric spaces.

- 14. Let X be completely regular and A, B be disjoint closed subsets of X. Show that if A is compact, there exists a continuous function $f : X \rightarrow [0, 1]$ such that f(A) = 0 and f(B) = 1.
- 15. If X is a connected normal space with at least two elements, then X is uncountable.

Instructor:Archana Subhash MoryeTutors:Mohana Rahul and Sonali Priyadarsini