INDIAN INSTITUTE OF TECHNOLOGY HYDERABAD Annual Foundation School - 1 Topology 2 -28, December 2024

1. Let X be a metric space with metric d. Show that d_1 , defined by

$$d_1(x,y) = \frac{d(x,y)}{1+d(x,y)}$$

is also a metric on X. Observe that X itself is a bounded set in the metric space (X, d_1) .

- 2. Let $X = \{0,1\}^n$ (the boolean cube), the set of all strings of length n with entries are from $\{0,1\}$. For $x, y \in X$, define d(x, y) to the number of coordinates in which x and y differ. Show that d is a metric.
- 3. Let G be a group. Let $\{a, b, a^{-1}, b^{-1}\}$ be a generating set for G. Define d(v, w) is the minimal k such that k such that $v = wg_1g_2 \cdots g_k$, where $g_i \in \{a, b, a^{-1}, b^{-1}\}$ for all i. Show that d is a metric on G.
- 4. Let G be a finite graph. Suppose G is connected. Define d(v, v) = 0 and d(v, w) to be the length of the shortest path between the vertices v and w. Show that d is a metric.
- 5. Consider \mathbb{Z} , the set of all integers. Define d(x, y) to be 2^{-m} for $x \neq y$, where m is the largest power of two dividing x y and d(x, x) = 0. Show that d is a metric. Calculate d(999, 1000) and d(0, 1000). Show also that $d(x, z) \leq \max\{d(x, y), d(y, z)\}$.
- 6. Let (X, d_X) and (Y, d_Y) be metric spaces. Then, show that $X \times Y$ is a metric space with respect the following: $d((x_1, y_1), (x_2, y_2)) = \sqrt{d_X(x_1, x_2)^2 + d_Y(y_1, y_2)^2}$.
- 7. Consider a function $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by

$$d(x,y) = \begin{cases} 0 & \text{if } x = y, \\ |x| + |y| & \text{if } x \neq y. \end{cases}$$
(1)

Show that d is a metric on \mathbb{R} .

8. Let X be a non-empty set and let d be a real function of ordered pairs of elements of X which satisfies the following two conditions: $d(x, y) = 0 \iff x = y$ and

$$d(x,y) \le d(x,z) + d(y,z)$$

for all $x, y, z \in X$. Show that d is a metric on X.

- 9. Show that every Cauchy sequence is bounded.
- 10. What are the Cauchy sequences in a discrete metric space? Show that every discrete metric space is complete.
- 11. Define d on \mathbb{N} as follows: $d(m,n) = \left|\frac{1}{m} \frac{1}{n}\right|$ for all $m, n \in \mathbb{N}$. Show that d defines a metric on \mathbb{N} . Show that this is not a complete metric space.
- 12. Let (X, d) be a metric space and $\mathcal{B}(X, \mathbb{R})$ be the set of all bounded real functions defined on X. Prove that it is a metric space with respect to the metric induced by the norm

$$||f|| = \sup_{x \in X} |f(x)|$$

Show that this metric space is complete.

13. If A and B are open subset of \mathbb{R}^n , then A + B is also open where

$$A + B = \{ x + y | x \in A, y \in B \}.$$

14. Describe the interior of each of the following subsets of the real line: the set of all integers; the set of all rationals; the set of all irrationals; $(0, 1); [0, 1]; [0, 1) \cup \{1, 2\}$. Do the same for each of the following subsets of the complex plane:

$$\{z : |z| < 1\}; \{z : |z| \le 1\}; \{z : I(z) = 0\}; \{z : Re(z) \text{ is rational}\}.$$

15. Let A and B be two subsets of a metric space X and prove the following: (a) $Int(A) \cup Int(B) \subseteq Int(A \cup B)$; (b) $Int(A) \cap Int(B) = Int(A \cap B)$.

Give an example of two subsets A and B of the real line such that

$$\operatorname{Int}(A) \cup \operatorname{Int}(B) \neq \operatorname{Int}(A \cup B).$$

- 16. Let X be a metric space, and let G be an open set in X. Prove that G is disjoint from a set $A \Leftrightarrow G$ is disjoint from \overline{A} .
- 17. Show that the following functions f_n defined on [0, 1] is a Cauchy sequence in the space $(C(X, \mathbb{R}), d)$, (continuous bounded functions on X) where $d(f, g) = \int_0^1 |f(x) g(x)| dx$:

$$f_n(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1/2, \\ -2^n(x-1/2) + 1 & \text{if } 1/2 \le x \le 1/2 + (1/2)^n, \\ 0 & \text{if } 1/2 + (1/2)^n \le x \le 1. \end{cases}$$

18. Let X be a metric space and A a subset of X. A is said to be dense in X if A = X. Prove that A is dense in X \Leftrightarrow the only closed superset of A is X \Leftrightarrow the only open set disjoint from A is $\emptyset \Leftrightarrow A$ intersects every non-empty open subset of X.

- 19. Prove that the set $\{m/2^n : m \in \mathbb{Z}, n \in \mathbb{N}\}$ is dense in \mathbb{R} .
- 20. Prove that $\frac{1}{4}$ is an element of the Cantor set.
- 21. Describe the boundary of each of the following subsets of the real line: the integers, the rationals; [0, 1]; (0, 1). Do the same for each of the following subsets of the complex plane: $\{z : |z| < 1\}$; $\{z : |z| \le 1\}$; $\{z : Im(z) > 0\}$.
- 22. Let (X, d) be a metric space. Then f as a function from X to \mathbb{R} is continuous at $c \in X$ iff for every sequence $\{x_n\}$ converging to $c, f(x_n)$ converges.
- 23. Let $f : \mathbb{R} \to \mathbb{R}$ be a function which is continuous at one point and f satisfies

$$f(x+y) = f(x) + f(y)$$

for all $x, y \in \mathbb{R}$, then f(x) = ax for some a.

- 24. Prove that $f : \mathbb{R}^+ \to \mathbb{R}$ defined by $f(x) = \sqrt{x}$ is uniformly continuous.
- 25. Let x_0 be a fixed point in a metric space (X, d) and to each point x in X, define a real valued function f_x on X by $f_x(y) = d(y, x) d(y, x_0)$.
 - (a) Show that f_x is bounded.
 - (b) Show that f_x is continuous.
 - By (a) and (b), the mapping F defined by $F(x) = f_x$ is a mapping of X into $C(X, \mathbb{R})$.
 - (c) Show that F is an isometry.

F is thus an isometry of X into the complete metric space $C(X, \mathbb{R})$. We define the completion X^* of X to be the closure of F(X) in $C(X, \mathbb{R})$.

(d) Show that X^* is a complete metric space that contains an isometric image of X.