

Annual Foundation School (AFS) Indian Institute of Technology Hyderabad 09-14, December 2024.

Week 2-Assignment

Instructor: P. Muthukumar

Ref. Book: Complex Analysis by Elias M. Stein, Rami Shakarchi.

Notation: \mathbb{R}, \mathbb{C} and \mathbb{D} denote the set of all real numbers, the set of complex numbers and the open unit disk in the complex plane, respectively.

Problems:

- 1. Compute the integrals: (a) $\int_{|z|=1}^{\infty} \frac{\operatorname{Im}(z)e^{z}\cos z}{z} dz$ and $\int_{C} \frac{dz}{z^{2}(z^{2}+4)}$, where C consists of |z| = 3counter clockwise and |z| = 1 clockwise. (b) $\int_{|z|=1}^{|z|=1} \frac{p(z)}{z^{n}} dz$, where p(z) is a polynomial of degree n. (c) $\int_{0}^{2\pi} e^{\cos\theta} \cos(\sin\theta + \theta) d\theta$ Hint: consider e^{z} . (d) $\int_{0}^{2\pi} \frac{1+2\cos\theta}{5+4\cos\theta} d\theta$ Hint: $2\cos\theta = e^{i\theta} + e^{-i\theta}$. (e) $\int_{0}^{2\pi} e^{2\cos\theta} \cos(2\sin\theta - \theta) d\theta$ Hint: consider $\frac{e^{z^{2}}}{z^{2}}$. (f) $\int_{0}^{2\pi} e^{e^{i\theta} - in\theta} d\theta$, where n is an integer. (g) $\int_{|z|=1}^{2\pi} |z-a|^{-4} |dz|$, where a > 1 is a constant.
- 2. Show that $\frac{1}{6\cdot 7\cdot 8} \int_{|z|=1} \frac{dz}{e^{-z}z^6} = \int_{|z|=1} \frac{dz}{e^{-z}z^9}.$
- 3. Questions 1 4 in the Exercises of Chapter 2 in the reference book.
- 4. $\sum_{n=0}^{\infty} a_n (z-1)^n$ be the power series expansion of the function $\frac{1}{z^2+1}$. Find the radius of convergence of the series.
- 5. What can you say about the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n z^n$, where (a_n) is the Fibonacci sequence $0, 1, 1, 2, 3, 5, 8, \ldots$

- 6. Find all entire functions such that $|f(z)| \leq 1 + 2\sqrt{|z|}$ for all $z \in \mathbb{C}$.
- 7. Let f(z) be an entire function such that $|f(z)| \leq K|z|$, for all $z \in \mathbb{C}$, for some K > 0. If f(1) = i, then find the value of f(i).
- 8. Let f be an entire function which satisfies the following two equations

$$f(z+1) = f(z), f(z+2i) = f(z)$$
 for every z in \mathbb{C} .

Prove that f must be a constant function.

- 9. For any non-constant polynomial P, prove that $P(z) \to \infty$ as $z \to \infty$.
- 10. Find all entire functions f such that $f''(1/n) = e^{1/n}$ for all natural number $n \ge 1$.
- 11. If f is entire function such that f(x) = f(ix) for all $x \in (0, 1)$, should f be an even function? Hint: consider f(z) f(iz).
- 12. Let f be an entire function such that $f(x) \in \mathbb{R}$ and $f(ix) \in i\mathbb{R}$ for all $x \in \mathbb{R}$. Should f be an odd function? Hint: consider $-\overline{f(-\overline{z})}$.
- 13. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be an analytic function on \mathbb{D} . Show that $f(x) \in \mathbb{R}$ for all $x \in (-1, 1)$ if and only if $a_n \in \mathbb{R}$ for all $n = 0, 1, 2, \dots$
- 14. Let D be a domain and let f, g be analytic functions on D such that f(z)g(z) = 0 for all $z \in D$. Prove that either $f \equiv 0$ or $g \equiv 0$ in D.
- 15. Questions 7, 9, 10 in the Exercises of Chapter 2 in the reference book.
- 16. Prove that there is no sequence of polynomial converges to the function 1/z uniformly on $\partial \mathbb{D} = \{z : |z| = 1\}$. (Hint: Cauchy's Theorem)
- 17. Questions 13 15 in the Exercises of Chapter 2 in the reference book.
- 18. Question 4 in the Problems of Chapter 2 in the reference book.

* * * * *