AFS-I, IIT Hyderabad Problem Sheet (Complex Analysis)

Instructor : Prof. G. Ramesh (Week 1)

Problem 1. Prove that a set $\Omega \subset \mathbb{C}$ is compact if and only if every sequence $\{z_n\} \subset \Omega$ has a subsequence that converges to a point in Ω .

Problem 2. An open covering of Ω is a family of open sets U_{α} (not necessarily countable) such that $\Omega \subset \bigcup_{\alpha} U_{\alpha}$. Prove that a set Ω is compact if and only if every open covering of Ω has a finite subcovering.

Problem 3. A set Ω is said to be pathwise connected if any two points in Ω can be joined by a (piecewise-smooth) curve entirely contained in Ω .

(a) Suppose first that Ω is open and pathwise connected, and that it can be written as $\Omega = \Omega_1 \cup \Omega_2$ where Ω_1 and Ω_2 are disjoint non-empty open sets. Choose two points $w_1 \in \Omega_1$ and $w_2 \in \Omega_2$ and let γ denote a curve in Ω joining w_1 to w_2 . Consider a parametrization $z : [0,1] \to \Omega$ of this curve with $z(0) = w_1$ and $z(1) = w_2$, and let

$$t^* = \sup_{0 \le t \le 1} \{ t : z(s) \in \Omega_1 \text{ for all } 0 \le s < t \}.$$

Arrive at a contradiction by considering the point $z(t^*)$.

(b) Conversely, suppose that Ω is open and connected. Fix a point $w \in \Omega$ and let $\Omega_1 \subset \Omega$ denote the set of all points that can be joined to w by a curve contained in Ω . Also, let $\Omega_2 \subset \Omega$ denote the set of all points that cannot be joined to w by a curve in Ω . Prove that both Ω_1 and Ω_2 are open, disjoint and their union is Ω . Finally, since Ω_1 is non-empty (why?) conclude that $\Omega = \Omega_1$ as desired.

Problem 4. (a) Let z, w be two complex numbers such that $\overline{z}w \neq 1$. Prove that:

$$\left|\frac{w-z}{1-\overline{w}z}\right| < 1 \quad if \ |z| < 1 \ and \ |w| < 1,$$

and also that

$$\left|\frac{w-z}{1-\overline{w}z}\right| = 1 \quad if |z| = 1 \quad or |w| = 1.$$

(b) Prove that for a fixed w in the unit disc \mathbb{D} , the mapping

$$F: z \to \frac{w-z}{1-\overline{w}z}$$

satisfies the following conditions:

- (a) F maps the unit disc to itself (i.e. $F : \mathbb{D} \to \mathbb{D}$), and is holomorphic.
- (b) F interchanges 0 and ω , namely $F(0) = \omega$ and $F(\omega) = 0$.
- (c) |F(z)| = 1 if |z| = 1.
- (d) $F : \mathbb{D} \to \mathbb{D}$ is bijective.

Problem 5. Suppose U and V are open sets in the complex plane. Prove that if $f: U \to V$ and $g: V \to \mathbb{C}$ are two functions that are differentiable (in the real sense, that is, as functions of the two real variables x and y), and $h = g \circ f$, then

$$\frac{\partial h}{\partial z} = \frac{\partial g}{\partial z} \frac{\partial f}{\partial z} + \frac{\partial g}{\partial \overline{z}} \frac{\partial \overline{f}}{\partial z}$$

and

$$\frac{\partial h}{\partial \overline{z}} = \frac{\partial g}{\partial z} \frac{\partial f}{\partial \overline{z}} + \frac{\partial g}{\partial \overline{z}} \frac{\partial \overline{f}}{\partial \overline{z}}.$$

This is the complex version of the chain rule.

Problem 6. Show that

$$4\frac{\partial}{\partial z}\frac{\partial}{\partial \overline{z}} = 4\frac{\partial}{\partial \overline{z}}\frac{\partial}{\partial z} = \Delta,$$

where Δ is the **Laplacian**

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.$$

Problem 7. Consider the function defined by $f(x+iy) = \sqrt{|x||y|}$, whenever $x, y \in \mathbb{R}$. Show that f satisfies the Cauchy-Riemann equations at the origin, yet f is not holomorphic at 0.

Problem 8. Suppose that f is holomorphic in an open set Ω . Prove that in any one of the following cases:

- (a) Re(f) is constant;
- (b) Im(f) is constant;
- (c) |f| is constant;

one can conclude that f is constant.

Problem 9. Consider the function f defined on \mathbb{R} by

$$f(x) = \begin{cases} 0 & \text{if } x \le 0, \\ e^{-1/x^2} & \text{if } x > 0. \end{cases}$$

Prove that f is infinitely differentiable on \mathbb{R} , and that $f^{(n)}(0) = 0$ for all $n \ge 1$. Conclude that f does not have a converging power series expansion $\sum_{n=0}^{\infty} a_n x^n$ for x near the origin.

Problem 10. Suppose f is continuous in a region Ω . Prove that any two primitives of f (if they exist) differ by a constant.

Problem 11. Let $f: G \to \mathbb{C}$ be a holomorphic function on an open set G. Define

$$f^*(z) = \overline{f(\overline{z})}, \quad z \in G^* = \{\overline{z} : z \in G\}.$$

Show that f^* is also holomorphic on G^* .

Problem 12. Let G be a region and suppose $f : G \to \mathbb{C}$ is analytic such that f(G) is a subset of a circle. Show that f is a constant function.

Problem 13. Define $\gamma : [0, 2\pi] \to \mathbb{C}$ by $\gamma(t) = \exp(int), \quad t \in [0, 2\pi], \quad n \in \mathbb{Z}.$ Show that $\int_{\gamma} \frac{1}{z} dz = 2\pi i n.$

Problem 14. Let
$$\gamma$$
 be a closed polygon $[1 - i, 1 + i, -1 + i, -1 - i, 1 - i]$. Find $\int_{\gamma} \frac{1}{z} dz$.

Problem 15. Show that if |a| < r < |b|, then

$$\int_{\gamma} \frac{1}{(z-a)(z-b)} \, dz = \frac{2\pi i}{a-b},$$

where γ denotes the circle at the origin of radius r with positive orientation.