
AFS-I, IIT Hyderabad

Problem Sheet (Complex Analysis)

Instructor : Prof. G. Ramesh (Week 1)

Problem 1. Prove that a set Ω ⊂ C is compact if and only if every sequence
{zn} ⊂ Ω has a subsequence that converges to a point in Ω.

Problem 2. An open covering of Ω is a family of open sets Uα (not necessarily
countable) such that Ω ⊂

⋃
α Uα. Prove that a set Ω is compact if and only if every

open covering of Ω has a finite subcovering.

Problem 3. A set Ω is said to be pathwise connected if any two points in Ω can
be joined by a (piecewise-smooth) curve entirely contained in Ω.

(a) Suppose first that Ω is open and pathwise connected, and that it can be written
as Ω = Ω1 ∪ Ω2 where Ω1 and Ω2 are disjoint non-empty open sets. Choose
two points w1 ∈ Ω1 and w2 ∈ Ω2 and let γ denote a curve in Ω joining w1 to
w2. Consider a parametrization z : [0, 1] → Ω of this curve with z(0) = w1

and z(1) = w2, and let

t∗ = sup
0≤t≤1

{t : z(s) ∈ Ω1 for all 0 ≤ s < t}.

Arrive at a contradiction by considering the point z(t∗).

(b) Conversely, suppose that Ω is open and connected. Fix a point w ∈ Ω and
let Ω1 ⊂ Ω denote the set of all points that can be joined to w by a curve
contained in Ω. Also, let Ω2 ⊂ Ω denote the set of all points that cannot be
joined to w by a curve in Ω. Prove that both Ω1 and Ω2 are open, disjoint
and their union is Ω. Finally, since Ω1 is non-empty (why?) conclude that
Ω = Ω1 as desired.

Problem 4. (a) Let z, w be two complex numbers such that zw ̸= 1. Prove that:∣∣∣∣ w − z

1− wz

∣∣∣∣ < 1 if |z| < 1 and |w| < 1,

and also that ∣∣∣∣ w − z

1− wz

∣∣∣∣ = 1 if |z| = 1 or |w| = 1.
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(b) Prove that for a fixed w in the unit disc D, the mapping

F : z → w − z

1− wz

satisfies the following conditions:

(a) F maps the unit disc to itself (i.e. F : D → D), and is holomorphic.

(b) F interchanges 0 and ω, namely F (0) = ω and F (ω) = 0.

(c) |F (z)| = 1 if |z| = 1.

(d) F : D → D is bijective.

Problem 5. Suppose U and V are open sets in the complex plane. Prove that if
f : U → V and g : V → C are two functions that are differentiable (in the real
sense, that is, as functions of the two real variables x and y), and h = g ◦ f , then

∂h

∂z
=

∂g

∂z

∂f

∂z
+

∂g

∂z

∂f

∂z

and

∂h

∂z
=

∂g

∂z

∂f

∂z
+

∂g

∂z

∂f

∂z
.

This is the complex version of the chain rule.

Problem 6. Show that

4
∂

∂z

∂

∂z
= 4

∂

∂z

∂

∂z
= ∆,

where ∆ is the Laplacian

∆ =
∂2

∂x2
+

∂2

∂y2
.

Problem 7. Consider the function defined by f(x+iy) =
√

|x||y|, whenever x, y ∈
R. Show that f satisfies the Cauchy-Riemann equations at the origin, yet f is not
holomorphic at 0.

Problem 8. Suppose that f is holomorphic in an open set Ω. Prove that in any
one of the following cases:
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(a) Re(f) is constant;

(b) Im(f) is constant;

(c) |f | is constant;

one can conclude that f is constant.

Problem 9. Consider the function f defined on R by

f(x) =

{
0 if x ≤ 0,

e−1/x2
if x > 0.

Prove that f is infinitely differentiable on R, and that f (n)(0) = 0 for all n ≥ 1.
Conclude that f does not have a converging power series expansion

∑∞
n=0 anx

n for
x near the origin.

Problem 10. Suppose f is continuous in a region Ω. Prove that any two primitives
of f (if they exist) differ by a constant.

Problem 11. Let f : G → C be a holomorphic function on an open set G. Define

f ∗(z) = f(z), z ∈ G∗ = {z : z ∈ G}.

Show that f ∗ is also holomorphic on G∗.

Problem 12. Let G be a region and suppose f : G → C is analytic such that f(G)
is a subset of a circle. Show that f is a constant function.

Problem 13. Define γ : [0, 2π] → C by γ(t) = exp(int), t ∈ [0, 2π], n ∈ Z.
Show that ∫

γ

1

z
dz = 2πin.

Problem 14. Let γ be a closed polygon [1 − i, 1 + i,−1 + i,−1 − i, 1 − i]. Find∫
γ

1
z
dz.

Problem 15. Show that if |a| < r < |b|, then∫
γ

1

(z − a)(z − b)
dz =

2πi

a− b
,

where γ denotes the circle at the origin of radius r with positive orientation.
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