NATIONAL BOARD FOR HIGHER MATHEMATICS

Research Scholarships Screening Test

Saturday, January 21, 2017

Time Allowed: 150 Minutes

Maximum Marks: 40

Please read, carefully, the instructions that follow.

INSTRUCTIONS TO CANDIDATES

- Please ensure that this booklet contains 11 numbered (and printed) pages. The back of each printed page is blank and can be used for rough work.
- There are **five** sections, containing **ten** questions each, entitled Algebra, Analysis, Topology, Calculus & Differential Equations, and Miscellaneous. Answer as many questions as possible. The assessment of the paper will be based on the best **four** sections. Each question carries one point and the maximum possible score is **forty**.
- Answer each question, as directed, in the space provided in the **answer booklet**, which is being supplied separately. This question paper is meant to be retained by you and so **do not** answer questions on it.
- In certain questions you are required to pick out the qualifying statement(s) from multiple choices. None of the statements, or one or more than one statement may qualify. Write **none** if none of the statements qualify, or list the labels of **all** the qualifying statements (amongst (a), (b), and (c)).
- Points will be awarded for questions involving more than one answer only if **all** the correct answers are given. **There will be no partial credit**.
- Calculators are **not allowed**.

Notation

- N denotes the set of natural numbers {1, 2, 3, ···}, Z the integers, Q the rationals, R the reals and C the field of complex numbers.
- Let $n \in \mathbb{N}, n \geq 2$. The symbol \mathbb{R}^n (respectively, \mathbb{C}^n) denotes the *n*dimensional Euclidean space over \mathbb{R} (respectively, over \mathbb{C}), and is assumed to be endowed with its 'usual' topology. $\mathbb{M}_n(\mathbb{R})$ (respectively, $\mathbb{M}_n(\mathbb{C})$) will denote the set of all $n \times n$ matrices with entries from \mathbb{R} (respectively, \mathbb{C}) and is identified with \mathbb{R}^{n^2} (respectively, \mathbb{C}^{n^2}) when considered as a topological space.
- The symbol $\binom{n}{r}$ will denote the standard binomial coefficient giving the number of ways of choosing r objects from a collection of n objects, where $n \ge 1$ and $0 \le r \le n$ are integers.
- The symbol]a, b[will stand for the open interval $\{x \in \mathbb{R} \mid a < x < b\}$ while [a, b] will stand for the corresponding closed interval; [a, b[and]a, b] will stand for the corresponding left-closed-right-open and left-open-right-closed intervals respectively.
- The space of continuous real valued functions on an interval [a, b] is denoted by $\mathcal{C}[a, b]$ and is endowed with its usual 'sup-norm' metric.
- The space of continuous real valued functions on \mathbb{R} which have compact support will be denoted $\mathcal{C}_c(\mathbb{R})$ and will be equipped with the 'sup-norm' metric.
- Let $1 \leq p < \infty$ and let $]a, b[\subset \mathbb{R}$ be an open interval equipped with the Lebesgue measure. The symbol $L^p(]a, b[)$ will stand for the space of measurable functions such that

$$\int_a^b |f(t)|^p \ dt \ < \ \infty.$$

The space $L^{\infty}(]a, b[)$ will stand for the space of essentially bounded functions. These spaces are equipped with their usual norms.

- The derivative of a function f is denoted by f' and the second derivative by f''.
- The symbol *I* will denote the identity matrix of appropriate order.
- The determinant of a square matrix A will be denoted by det(A) and its trace by tr(A).
- $GL_n(\mathbb{R})$ (respectively, $GL_n(\mathbb{C})$) will denote the group of invertible $n \times n$ matrices with entries from \mathbb{R} (respectively, \mathbb{C}) with the group operation being matrix multiplication. The symbol $SL_n(\mathbb{R})$ will denote the subgroup of $GL_n(\mathbb{R})$, of matrices whose determinant is unity.
- The symbol S_n will denote the group of all permutations of n symbols $\{1, 2, \dots, n\}$, the group operation being composition.
- The symbol \mathbb{Z}_n will denote the additive group of integers modulo n.
- The symbol \mathbb{F}_p will denote the field consisting of p elements, where p is a prime.
- Unless specified otherwise, all logarithms are to the base e.

Section 1: Algebra

1.1 Let G be a group. Which of the following statements are true? a. Let H and K be subgroups of G of orders 3 and 5 respectively. Then $H \cap K = \{e\}$, where e is the identity element of G.

b. If G is an abelian group of odd order, then $\varphi(x) = x^2$ is an automorphism of G.

c. If G has exactly one element of order 2, then this element belongs to the centre of G.

1.2 Let $n \in \mathbb{N}, n \geq 2$. Which of the following statements are true?

a. Any finite group G of order n is isomorphic to a subgroup of $GL_n(\mathbb{R})$.

b. The group \mathbb{Z}_n is isomorphic to a subgroup of $GL_2(\mathbb{R})$.

c. The group \mathbb{Z}_{12} is isomorphic to a subgroup of S_7 .

1.3 Which of the following statements are true?

a. The matrices

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

are conjugate in $GL_2(\mathbb{R})$.

b. The matrices

$$\left[\begin{array}{rrr}1 & 1\\ 0 & 1\end{array}\right] \text{ and } \left[\begin{array}{rrr}1 & 0\\ 1 & 1\end{array}\right]$$

are conjugate in $SL_2(\mathbb{R})$.

c. The matrices

 $\left[\begin{array}{rrr}1 & 0\\ 0 & 2\end{array}\right] \text{ and } \left[\begin{array}{rrr}1 & 3\\ 0 & 2\end{array}\right]$

are conjugate in $GL_2(\mathbb{R})$.

1.4 Let p be an odd prime. Find the number of non-zero squares in \mathbb{F}_p .

1.5 Find a generator of \mathbb{F}_7^{\times} , the multiplicative group of non-zero elements of \mathbb{F}_7 .

1.6 The characteristic polynomial of a matrix $A \in \mathbb{M}_5(\mathbb{R})$ is given by $x^5 + \alpha x^4 + \beta x^3$, where α and β are non-zero real numbers. What are the possible values of the rank of A?

1.7 Let $A \in \mathbb{M}_3(\mathbb{R})$ be a symmetric matrix whose eigenvalues are 1, 1 and 3. Express A^{-1} in the form $\alpha I + \beta A$, where $\alpha, \beta \in \mathbb{R}$.

1.8 Let $A \in M_n(\mathbb{R}), n \geq 2$. Which of the following statements are true? a. If $A^{2n} = 0$, then $A^n = 0$. b. If $A^2 = I$, then $A = \pm I$. c. If $A^{2n} = I$, then $A^n = \pm I$. **1.9** Which of the following statements are true?

a. There does not exist a non-diagonal matrix $A \in M_2(\mathbb{R})$ such that $A^3 = I$. b. There exists a non-diagonal matrix $A \in M_2(\mathbb{R})$ which is diagonalizable over \mathbb{R} and which is such that $A^3 = I$.

c. There exists a non-diagonal matrix $A \in \mathbb{M}_2(\mathbb{R})$ such that $A^3 = I$ and such that $\operatorname{tr}(A) = -1$.

1.10 Let $n \geq 2$ and let W be the subspace of $\mathbb{M}_n(\mathbb{R})$ consisting of all matrices whose trace is zero. If $A = (a_{ij})$ and $B = (b_{ij})$, for $1 \leq i, j \leq n$, are elements in $\mathbb{M}_n(\mathbb{R})$, define their inner-product by

$$(A,B) = \sum_{i,j=1}^{n} a_{ij} b_{ij}.$$

Identify the subspace W^{\perp} of elements orthogonal to the subspace W.

Section 2: Analysis

2.1 Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers. Let $\alpha = \liminf_{n \to \infty} x_n$. Which of the following statements are true?

a. For every $\varepsilon > 0$, there exists a subsequence $\{x_{n_k}\}$ such that $x_{n_k} \leq \alpha + \varepsilon$ for all $k \in \mathbb{N}$.

b. For every $\varepsilon > 0$, there exists a subsequence $\{x_{n_k}\}$ such that $x_{n_k} \leq \alpha - \varepsilon$ for all $k \in \mathbb{N}$.

c. There exists a subsequence $\{x_{n_k}\}$ such that $x_{n_k} \to \alpha$ as $k \to \infty$.

2.2 Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of positive real numbers such that $\sum_{n=1}^{\infty} a_n$ is divergent. Which of the following series are convergent? a.

$$\sum_{n=1}^{\infty} \frac{a_n}{1+na_n}$$
$$\sum_{n=1}^{\infty} \frac{a_n}{1+n^2a_n}$$

b.

c.

2.3 Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of positive real numbers such that $\sum_{n=1}^{\infty} a_n$ is convergent. Which of the following series are convergent? a.

 $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}.$

$$\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$$

 $\sum_{1}^{\infty} \frac{a_n^{\frac{1}{4}}}{n^{\frac{4}{5}}}.$

b.

c.

$$\sum_{n=1}^{\infty} na_n \sin \frac{1}{n}.$$

2.4 Let $f : \mathbb{R} \to \mathbb{R}$ be a given function. It is said to be *lower semi-continuous* (respectively *upper semi-continuous*) if the set $f^{-1}(] - \infty, \alpha]$) (respectively, the set $f^{-1}([\alpha, \infty[))$ is closed for every $\alpha \in \mathbb{R}$. Let f and g be two real valued functions defined on \mathbb{R} . Which of the following statements are true?

a. If f and g are continuous, then $\max\{f, g\}$ is continuous.

b. If f and g are lower semi-continuous, then $\max\{f, g\}$ is lower semi-continuous.

c. If f and g are upper semi-continuous, then $\max\{f, g\}$ is upper semi-continuous.

2.5 Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Which of the following statements are true?

a. If f is continuously differentiable, then f is uniformly continuous.

b. If f has compact support, then f is uniformly continuous.

c. If $\lim_{|x|\to\infty} |f(x)| = 0$, then f is uniformly continuous.

2.6 Let $f: [0, 2[\rightarrow \mathbb{R}]$ be defined by

$$f(x) = \begin{cases} x^2, & \text{if } x \in]0, 2[\cap \mathbb{Q}, \\ 2x - 1, & \text{if } x \in]0, 2[\setminus \mathbb{Q}. \end{cases}$$

Check for the points of differentiability of f and evaluate the derivative at those points.

2.7 Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of continuous real valued functions defined on \mathbb{R} which converges pointwise to a continuous real valued function f. Which of the following statements are true?

a. If $0 \leq f_n \leq f$ for all $n \in \mathbb{N}$, then

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f_n(t) dt = \int_{-\infty}^{\infty} f(t) dt.$$

b. If $|f_n(t)| \leq |\sin t|$ for all $t \in \mathbb{R}$ and for all $n \in \mathbb{N}$, then

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f_n(t) dt = \int_{-\infty}^{\infty} f(t) dt$$

c. If $|f_n(t)| \leq e^t$ for all $t \in \mathbb{R}$ and for all $n \in \mathbb{N}$, then for all $a, b \in \mathbb{R}, a < b$,

$$\lim_{n \to \infty} \int_a^b f_n(t) dt = \int_a^b f(t) dt.$$

2.8 Which of the following statements are true?

a. The following series is uniformly convergent over [-1, 1]:

$$\sum_{n=0}^{\infty} \frac{x^2}{(1+x^2)^n}.$$

b.

$$\lim_{n \to \infty} \int_{\frac{\pi}{2}}^{\pi} \frac{\sin nx}{nx^5} \, dx = \pi.$$

c. Define, for $x \in \mathbb{R}$,

$$f(x) = \sum_{n=1}^{\infty} \frac{\sin nx^2}{1+n^3}$$

Then f is a continuously differentiable function.

2.9 Write down the Laurent series expansion of the function

$$f(z) = \frac{-1}{(z-1)(z-2)}$$

in the annulus $\{z \in \mathbb{C} \mid 1 < |z| < 2\}.$

2.10 Which of the following statements are true?

a. There exists a non-constant entire function which is bounded on the real and imaginary axes of \mathbb{C} .

b. The ring of analytic functions on the open unit disc of \mathbb{C} (with respect to the operations of pointwise addition and pointwise multiplication) is an integral domain.

c. There exists an entire function f such that f(0) = 1 and such that $|f(z)| \leq \frac{1}{|z|}$ for all $|z| \geq 5$.

Section 3: Topology

3.1 Let (X, d) be a metric space and let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be arbitrary Cauchy sequences in X. Which of the following statements are true?

a. The sequence $\{d(x_n, y_n)\}$ converges as $n \to \infty$.

b. The sequence $\{d(x_n, y_n)\}$ converges as $n \to \infty$ only if X is complete.

c. No conclusion can be drawn about the convergence of $\{d(x_n, y_n)\}$.

3.2 Which of the following statements are true?

a. Let X be a set equipped with two topologies τ_1 and τ_2 . Assume that any given sequence in X converges with respect to the topology τ_1 if, and only if, it also converges with respect to the topology τ_2 . Then $\tau_1 = \tau_2$.

b. Let (X, τ_1) and (Y, τ_2) be two topological spaces and let $f : X \to Y$ be a given map. Then f is continuous if, and only if, given any sequence $\{x_n\}_{n=1}^{\infty}$ such that $x_n \to x$ in X, we have $f(x_n) \to f(x)$ in Y.

c. Let (X, τ) be a compact topological space and let $\{x_n\}_{n=1}^{\infty}$ be a sequence in X. Then, it has a convergent subsequence.

3.3 Which of the following statements are true?

a. Let $n \geq 2$. The subset of nilpotent matrices in $\mathbb{M}_n(\mathbb{C})$ is closed in $\mathbb{M}_n(\mathbb{C})$. b. Let $n \geq 2$. The set of all matrices in $\mathbb{M}_n(\mathbb{C})$ which represent orthogonal projections is closed in $\mathbb{M}_n(\mathbb{C})$.

c. The set of all matrices in $\mathbb{M}_2(\mathbb{R})$ such that both of their eigenvalues are purely imaginary, is closed in $\mathbb{M}_2(\mathbb{R})$.

3.4 Which of the following sets are dense?

a. The set of all numbers of the form $\frac{m}{2^n}$ where $0 \le m \le 2^n$ and $n \in \mathbb{N}$, in the space [0, 1].

b. The set of all polynomial functions in the space $L^1([0, 1[))$.

c. The linear span of the family $\{\sin nt\}_{n=1}^{\infty}$ in the space $L^2(] - \pi, \pi[)$.

3.5 Let $n \geq 2$. Which of the following subsets are nowhere dense in $\mathbb{M}_n(\mathbb{R})$? a. The set $GL_n(\mathbb{R})$.

- b. The set of all matrices whose trace is zero.
- c. The set of all singular matrices.

3.6 Which of the following topological spaces are separable?

- a. Any real Banach space which admits a Schauder basis $\{u_n\}_{n=1}^{\infty}$.
- b. The space $\mathcal{C}[0,1]$.
- c. The space $L^p([0, 1[), \text{ where } 1 \leq p \leq \infty)$.

3.7 Which of the following sets are connected?

- a. The set of all points in the plane with at least one coordinate irrational.
- b. An infinite set X with the topology τ given by

$$\tau = \{X, \emptyset\} \cup \{A \subset X \mid X \setminus A \text{ is a finite set}\}.$$

c. The set

$$K = \{ f \in \mathcal{C}[0,1] \mid \int_0^{\frac{1}{2}} f(t) \, dt - \int_{\frac{1}{2}}^1 f(t) \, dt = 1 \}.$$

3.8 Which of the following statements are true?

a. There exists a continuous bijection $f: [0,1] \to [0,1] \times [0,1]$.

b. There exists a continuous map $f: S^1 \to \mathbb{R}$ which is injective, where S^1 stands for the unit circle in the plane.

c. There exists a continuous map $f: [0,1] \to SL_2(\mathbb{R})$ which is surjective.

3.9 Which of the following statements are true?

a. Let $g \in \mathcal{C}[0, 1]$ be fixed. Then the set

$$A = \{ f \in \mathcal{C}[0,1] \mid \int_0^1 f(t)g(t) \, dt = 0 \}$$

is closed in $\mathcal{C}[0,1]$.

b. Let $g \in \mathcal{C}_c(\mathbb{R})$, be fixed. Then the set

$$A = \{ f \in \mathcal{C}_c(\mathbb{R}) \mid \int_{-\infty}^{\infty} f(t)g(t) \ dt = 0 \}$$

is closed in $\mathcal{C}_c(\mathbb{R})$.

c. Let $g \in L^2(\mathbb{R})$ be fixed. Then the set

$$A = \{ f \in L^2(\mathbb{R}) \mid \int_{-\infty}^{\infty} f(t)g(t) \ dt = 0 \}$$

is closed in $L^2(\mathbb{R})$.

3.10 Which of the following statements are true?

a. Let X be a compact topological space and let \mathcal{F} be a family of real valued functions defined on X with the following properties:

(i) If $f, g \in \mathcal{F}$, then $fg \in \mathcal{F}$, where (fg)(x) = f(x)g(x) for all $x \in X$. (ii) For every $x \in X$, there exists an open neighbourhood U(x) of x and a function $f \in \mathcal{F}$ such that the restiction of f to U(x) is identically zero. Then the function which is identically zero on all of X belongs to \mathcal{F} . b. Let

$$X = \{f : [0,1] \to [0,1] \mid |f(t) - f(s)| \le |t-s| \text{ for all } s, t \in [0,1]\}.$$

Define

$$d(f,g) = \max_{t \in [0,1]} |f(t) - g(t)|$$

for $f, g \in X$. Then (X, d) is a compact metric space.

c. Let $\{f_i\}_{i\in I}$ be a collection of functions in $\mathcal{C}[0,1]$ such that given any finite subfamily of functions, its members vanish at some common point (which depends on that subfamily). Then there exists $x_0 \in [0,1]$ such that $f_i(x_0) = 0$ for all $i \in I$.

Section 4: Calculus & Differential Equations

4.1 Let x > 1. Define

$$F(x) = \int_{x^2}^{x^3} \tan(xy^2) \, dy.$$

Differentiate F with respect to x.

4.2 Evaluate:

$$\int_{-\infty}^{\infty} e^{-2x^2} \, dx.$$

4.3 Let $\mathbf{n}(x, y, z)$ denote the unit outer normal vector on the surface S of the cylinder $x^2 + y^2 \le 4$, $0 \le z \le 3$. Compute

$$\int_{S} \mathbf{v.n} \ dS$$

where $\mathbf{v}(x, y, z) = xz\mathbf{i} + 2yz\mathbf{j} + 3xy\mathbf{k}$.

4.4 Evaluate the line integral $\int_C Pdx + Qdy$, where C is the circle centered at the origin and of radius a > 0 (described in the counter-clockwise sense) in the plane and

$$P(x,y) \;=\; \frac{-y}{x^2+y^2}, \; Q(x,y) \;=\; \frac{x}{x^2+y^2}$$

4.5 Let Ω be a bounded open subset of \mathbb{R}^3 and let $\partial\Omega$ denote its boundary. Given sufficiently smooth real valued functions u and v on $\overline{\Omega}$, let $\frac{\partial u}{\partial n}$ and $\frac{\partial v}{\partial n}$ denote the outer normal derivatives of u and v respectively on $\partial\Omega$. Fill in the blank in the following identity:

$$\int_{\partial\Omega} \left(\frac{\partial u}{\partial n} v - \frac{\partial v}{\partial n} u \right) \, dS = \int_{\Omega} \left(\cdots \cdots \right) \, dx \, dy \, dz.$$

4.6 Find the maximum value of $x^2 + xy$ subject to the condition $x^2 + y^2 \leq 1$.

4.7 Interchange the order of integration:

$$\int_{-1}^{2} \int_{-x}^{2-x^2} f(x,y) \, dy \, dx.$$

4.8 Find all the non-trivial solutions (λ, u) (*i.e.* $u \neq 0$), of the boundary value problem:

$$-u''(x) = \lambda u(x), 0 < x < 1, \text{ and } u(0) = u'(1) = 0.$$

4.9 Consider the initial value problem: u'(t) = Au(t), t > 0, and $u(0) = u_0$, where u_0 is a given vector in \mathbb{R}^2 and

$$A = \left[\begin{array}{cc} 1 & -2 \\ 1 & a \end{array} \right]$$

Find the range of values of a such that $|u(t)| \to 0$ as $t \to \infty$.

4.10 Let u(x,t) be the solution of the wave equation:

$$\begin{array}{rcl} \frac{\partial^2 u}{\partial t^2} &=& \frac{\partial^2 u}{\partial x^2}, \ x \in \mathbb{R}, t > 0, \\ u(x,0) &=& u_0(x), \ x \in \mathbb{R}, \\ u_t(x,0) &=& 0, \ x \in \mathbb{R}. \end{array} \right\}$$

Let $u_0(x)$ be the function defined by

$$u_0(x) = \begin{cases} 1, & \text{if } |x| < 2, \\ 0, & \text{otherwise.} \end{cases}$$

Compute u(x, 1) at all points $x \in \mathbb{R}$ where it is continuous.

Section 5: Miscellaneous

5.1 Let $x \in \mathbb{R}$ and let $n \in \mathbb{N}$. Evaluate:

$$\sum_{k=0}^{n} \binom{n}{k} \sin\left(x + \frac{k\pi}{2}\right).$$

5.2 Let $n \in \mathbb{N}, n \geq 2$. Let $x_1, \dots, x_n \in]0, \pi[$. Set $x = (x_1 + \dots + x_n)/n$. Which of the following statements are true? a.

$$\prod_{k=1}^n \sin x_k \ge \sin^n x.$$

b.

$$\prod_{k=1}^n \sin x_k \leq \sin^n x.$$

c. Neither (a) nor (b) is necessarily true.

5.3 Which of the following sets are convex? a.

$$\{(x, y) \in \mathbb{R}^2 \mid xy \ge 1, x \ge 0, y \ge 0\}$$

b.

$$\{(x,y) \in \mathbb{R}^2 \mid |x|^{\frac{1}{3}} + |y|^{\frac{1}{3}} \le 1\}.$$

c.

 $\{(x,y)\in\mathbb{R}^2\mid y\ge x^2\}.$

5.4 Find the area of the circle got by intersecting the sphere $x^2 + y^2 + z^2 = 1$ with the plane x + y + z = 1.

5.5 Let $n \in \mathbb{N}$, $n \geq 3$. Find the area of the polygon with one vertex at z = 1 and whose other vertices are situated at the roots of the polynomial

$$1 + z + z^2 + \dots + z^{n-1}$$

in the complex plane.

5.6 Find the maximum value of 3x + 2y subject to the conditions:

$$2x + 3y \ge 6, \ y - x \le 2, \ 0 \le x \le 3, \ y \ge 0$$

5.7 A committee of six members is formed from a group of 7 men and 4 women. What is the probability that the committee contains

a. exactly two women?

b. at least two women?

5.8 Find the sum of the infinite series:

$$\frac{1}{2.3.4} + \frac{1}{4.5.6} + \frac{1}{6.7.8} + \cdots$$

5.9 Find the remainder when 8^{130} is divided by 13.

5.10 Let $a_i \in \mathbb{R}, 1 \leq i \leq 4$. Evaluate:

$$\left|\begin{array}{ccccccccc}1&1&1&1\\a_1&a_2&a_3&a_4\\a_1^2&a_2^2&a_3^2&a_4^2\\a_1^3&a_2^3&a_3^3&a_4^3\end{array}\right|.$$