MA20103 Partial Differential Equations Assignment 6

1. (a) Given that the displacement, $u(x, t)$, of a flexible string is governed by the equation: $c^{2} u_{x x}=u_{t t}$, where c is a constant. The string which is initially at rest has one end fixed at $x=0$ and the other end at $x=1$. The string is set to motion by an initial shape of $x(1-x)$, however with zero velocity. Formulate the corresponding initial boundary value problem and obtain the solution using separation of variables subject to the boundary conditions $u(0, t)=u(1, t)=0, t \geq 0$.

Solve the following initial boundary value problems
(b)

$$
\begin{gathered}
u_{t t}=c^{2} u_{x x}, \quad 0<x<\pi, \quad t>0 \\
u(x, 0)=0, \quad u_{t}(x, 0)=8 \sin ^{2} x, \quad 0 \leq x \leq \pi \\
u(0, t)=u(\pi, t)=0, \quad t>0
\end{gathered}
$$

(c)

$$
\begin{gathered}
u_{t t}=c^{2} u_{x x}, \quad 0<x<1, \quad t>0 \\
u(x, 0)=0, \quad u_{t}(x, 0)=x \sin \pi x, \quad 0 \leq x \leq 1 \\
u(0, t)=u(1, t)=0, \quad t>0
\end{gathered}
$$

(d)

$$
\begin{gathered}
u_{t t}=c^{2} u_{x x}, \quad 0<x<1, \quad t>0 \\
u(x, 0)=x(1-x), \quad u_{t}(x, 0)=x-\tan \frac{\pi x}{4}, \quad 0 \leq x \leq 1 \\
u(0, t)=u(\pi, t)=0, \quad t>0
\end{gathered}
$$

(e)

$$
\begin{gathered}
u_{t t}=c^{2} u_{x x}, \quad 0<x<\pi, \quad t>0 \\
u(x, 0)=x+\sin x, \quad u_{t}(x, 0)=0, \quad 0 \leq x \leq \pi \\
u(0, t)=u_{x}(\pi, t)=0, \quad t>0
\end{gathered}
$$

(f)

$$
\begin{gathered}
u_{t t}=c^{2} u_{x x}, \quad 0<x<\pi, \quad t>0 \\
u(x, 0)=\cos x, \quad u_{t}(x, 0)=0, \quad 0 \leq x \leq \pi \\
u_{x}(0, t)=0, \quad u_{x}(\pi, t)=0, \quad t>0
\end{gathered}
$$

(g) Consider the process of unsteady heat conduction in a rod of finite length $0<x<1$, which is governed by $u_{t}=k u_{x x}$, where $u(x, t)$ denote the temperature at a position x at time t. If the initial temperature is give by $x(1-x), 0 \leq x \leq 1$, and the end $x=0$ is kept at a temperature t while the other end $x=1$ is kept at $\sin t$ for $t \geq 0$, formulate the initial boundary value problem and then obtain solution using separation of variables.
(h) Solve

$$
u_{t}=c^{2} u_{x x}, \quad 0 \leq x \leq 1
$$

subject to

$$
u(0, t)=2, \quad u(1, t)=3, \quad u(x, 0)=x(1-x)
$$

2. (a) Solve the boundary value problem in an annular region:

$$
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0, \quad a<r<b, \quad 0<\theta<\alpha
$$

subject to

$$
u(r, 0)=0, \quad u(r, \alpha)=0, \quad u(a, \theta)=0, \quad u(b, \theta)=100
$$

(b) Solve the boundary value problem

$$
u_{x x}+u_{y y}=0, \quad 0 \leq x \leq a, \quad 0 \leq y \leq b
$$

subject to
(i) $u(0, y)=0, \quad u(a, y)=0, \quad u_{y}(x, b)=0, \quad u(x, 0)=x^{2}$.
(ii) $u(0, y)=0, \quad u(a, y)=0, u(x, b)=b-x, \quad u(x, 0)=0$.

